

 University of Groningen

Simplified Representation of Vector Fields
Telea, Alexandru; Wijk, Jarke J. van

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Wijk, J. J. V. (1999). Simplified Representation of Vector Fields. In EPRINTS-BOOK-TITLE
University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/5fd97121-3613-47b4-a53e-622f3fbfb3b4

Simplified Representation of Vector Fields

Alexandru Telea Jarke J. van Wijk

Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Abstract

Vector field visualization remains a difficult task. Although many
local and global visualization methods for vector fields such as flow
data exist, they usually require extensive user experience on setting
the visualization parameters in order to produce images communi-
cating the desired insight. We present a visualization method that
produces simplified but suggestive images of the vector field auto-
matically, based on a hierarchical clustering of the input data. The
resulting clusters are then visualized with straight or curved arrow
icons. The presented method has a few parameters with which users
can produce various simplified vector field visualizations that com-
municate different insights on the vector data.

Keywords: Flow Visualization, Simplification, Clustering

1 Introduction

Visualization of vector data produced from application areas such
as computational fluid dynamics (CFD) simulations, environmen-
tal sciences, and material engineering is a challenging task. Even
though many vector data visualization methods have been devel-
oped and are in widespread use, gaining insight in complex vec-
tor fields is still difficult. In comparison with scalar data, vector
fields have an inherently higher complexity and therefore pose un-
derstanding and representation problems which are more difficult to
address.

As vector datasets obtained from simulations grow increasingly
larger and as they have often to be presented to non-specialized audi-
ences, there is a demand for methods that display in an effective and
compact manner, such that insight in the global behavior and also a
good understanding of local effects is quickly obtained. A good in-
spiration for such visualizations is commercial imagery displaying
fluid flow or weather forecasts which convey the flow information
in an intuitively understandable way using a few simple but sug-
gestive icons, combined with a well chosen background. It would
be desirable to have a method to produce such visualizations auto-
matically from flow datasets. However, the most usual actual proce-
dure requires a strong input from human users that have to construct
the simplified visualization by tuning a multitude of parameters in
a visualization package or manually place icons or probes such as
streamline starting positions.

We present a compact visualization method for vector fields
which produces simplified flow displays automatically. The user in-
tervention is limited to a few parameters which allow an intuitive
control of the look or complexity of the resulting image. Our method
combines several ideas from existing visualization techniques, out-
lined in Section 2. Section 3 presents the method. The behavior of
the presented algorithm under various input is outlined in Section 4,
and its implementation and integration in an end-user environment
is presented in Section 5. We conclude the paper with further re-
search directions.

2 Background

Although effective, existing methods for flow visualization still have
limitations. There are several problems involved with them:

1. Although such methods generate richly detailed and shaded
pictures, the process of generating them can be time-
consuming and intricate to set-up and control. Considerable
trial and error and knowledge of the techniques’ imple-
mentation is required to produce images that communicates
the desired insight. Methods that generate such images
automatically or with minimal user intervention would thus
be highly useful.

2. Users must take subjective decisions while producing a visu-
alization, e.g. which streamline start positions to select, how
fine to sample a field plotted by a hedgehog, what colormap to
use, etc. Visualizations in which users can and have to control
all these parameters are prone to miss important aspects in the
data due to uninspired tuning of these parameters.

3. Dataset aspects can be missed also when observing a visual-
ization if there is too much or poorly structured information
presented. Arrow plots show for example all the dataset infor-
mation but are often hard to interprete visually.

4. Datasets such as those produced from CFD simulations grow
larger and larger, exceeding the visualization software capabil-
ities and the the observation power of the users viewing them.

Numerous techniques have been developed for flow visualization.
However, the above problems are usually only partially addressed.

The most ubiquitous flow visualization method uses hedgehogs
or similar glyphs. Hedgehog plots are intuitive but impractical for
large 2D or 3D datasets due to the visual difficulty to perceive dense
arrow renderings. Although subsampling can be used to reduce
the arrow count, this often introduces visual artifacts and may not
provide the best arrow distribution to convey insight in the dataset.
For example, the hedgehog visualization in Fig. 1 a) is unclear in
the region where the flow field exhibits a bifurcation. To avoid
such problems, flow visualizations such as commercial advertise-
ments or weather forecasts that must convey insight to a more di-
verse and often untrained audience are produced manually by a plac-
ing a few glyphs (e.g. curved arrows) over the flow regions where
something ’interesting’ happens. Other global techniques include
texture-based methods such as spot noise and line integral convolu-
tion [3, 2]. Although these give good local insight and global cover-
age, they don’t show the flow direction (see Fig. 1 b) and thus may
be difficult to interpret for spatially rapid changing flows.

Advection based techiques such as streamlines, streamtubes, par-
ticles, or flow ribbons [13, 8] give good local insight, but require
strong input from the user (e.g. the positions to advect from), so are
less adequate for getting a global impresion of a flow.

Vortex and feature extraction techniques [12, 1] simplify large
flow datasets efficiently into a few features that are eventually
tracked in the time dependent cases [7] and displayed using various

0-7803-5897-X/99/$10.00 Copyright 1999 IEEE

35

a) b)

Figure 1: Flow visualized with hedgehog (a) and spot noise (b)

iconification methods. Although compact, such techniques often re-
quire user knowledge to e.g. set various parameters to control fea-
ture detection and tracking. Since feature extraction methods con-
vey insight in a particular flow feature, which is identified and then
specifically tracked, they may be ineffective in producing a global
flow picture. The above can be said also about visualization tools
based on selection expressions [11].

Topological field analysis [4] is an excellent, ideally automatic
way to produce compact and mathematically insightful flow repre-
sentations. The produced visualizations are however sometimes too
abstract to be directly interpretable by non-specialists and can be un-
stable for fields with many critical points.

As the quality of user-steered visualizations may depend on a
good guess of the steerable parameters, some work was targeted at
automated visualization. However, the most widespread metaphor
remains the interactively steerable visualization system in which the
user experiments with different visualization techniques and param-
eter settings to visually fine tune the rendering until the desired im-
ages are obtained.

Visualization methods can be applied either directly on the
datasets, or on simplified datasets. Simplified datasets contain less
data points so visualizing them generates less visual problems such
as cluttering. The flow features of interest must however be recog-
nizable in the simplified datasets. Multiresolution techniques such
as Fourier or wavelet based methods [5, 6, 14] represent datasets
as hierarchies with different levels of detail. However useful, such
methods simplify the entire domain uniformly so they can not pro-
duce visualizations containing both global and detailed information
in various parts of the same image.

The challenge we identify is to generate insightful flow visual-
izations as automatically as possible offering a good local insight,
global coverage, directional insight, and overall a simple and intu-
itive perception of the flow.

3 Simplification

Our aim to produce intuitive flow visualizations automatically from
a flow dataset exploits the observation that (curved) arrow plots, like
the ones used by weather forecasts or commercial imagery are easy
to interpret: an arrow carries a visually unambiguous representation
of the direction and curvature of the flow over the region covered
by and immediately around its drawing. A second observation is
that most of the visualizations of the above mentioned types use a
few large arrows to indicate the main directions of the flow and op-
tionally small, detail arrows to depict local behaviour. The large ar-
rows have a stronger visual impact and thus communicate the im-
portant flow attributes quickly to the spectator by visually filling in
a larger space on the illustration, while the smaller arrows cover only

smaller illustration areas, and thus have a limited and well confined
visual impact. The same separation of information visualization in
larger, structurally more important elements and smaller detail ele-
ments can be also seen in the construction of urban maps, for exam-
ple. In our case, our goal can be summarized as ’represent a given
vector field with a given arrow count in the most suggestive man-
ner’.

3.1 Algorithm Principle

To model the above we use the cluster concept. We define a clus-
ter as a connected subdomain of a flow dataset on which the flow is
approximated for visualization purposes by a single (curved) arrow,
called the cluster’s representative. We visualize a flow dataset on
a given domain by covering that domain with a (small) number of
clusters such that their representatives are as close as possible to the
given field’s vectors. For the time being, we shall assume that the
representatives are straight arrows, so every cluster carries actually
a vector.

ClusterSet s;
for (all cells cell i in dataset)
{
 c = makeCluster(cell i);
 set level of c to 0;
 add c to s;
}

for (all clusters c i in s)
 for (all clusters c j neighbours of c i)

 {
 e = clustering_error(c i ,c j);
 insert pair (c i ,c j) in increasing order
 of error e in a hash−table;
 mark c i and c j as NOT_CLUSTERED;

 }

int l =0;
for (all pairs (c i ,c j) in increasing order of
 error in the hash−table)
 if (both c i and c j are NOT_CLUSTERED)
 {

 c = mergeClusters(c i ,c j);
 set level of c to l ++;
 mark c i and c j as CLUSTERED;
 for (all neighbours ni of c)
 {
 e = clustering_error(c,n i)
 insert pair (c,n i) in order in hash−table;
 }
 }

return c as root of tree;

Figure 2: Clustering algorithm

Our input is a vector field given as a mesh of cells with one vec-
tor per cell. Datasets with node vector data can be easily converted
to cell data by averaging the node data over cells. The clusters are
in this case connected sets of cells, so two clusters are neighbors if
they contain cells that are neighbors, i.e. share an edge in 2D or face
in 3D. We start creating one initial cluster from every dataset cell,
having the cell’s vector data as its representative, with the origin in
the cell’s center. Next, we perform a bottom-up clustering algorithm
by repeatedly selecting the two most resembling neighboring clus-
ters and merging them to form a larger cluster until a single cluster
emerges which covers the whole given domain and represents it by
a single arrow. The algorithm produces a binary cluster tree with the
initial clusters as leaves and the root as the final cluster covering the

36

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0 0 0

0 0 0 0

0 0 0 0

1
0 0 0

0 0 0

0 0 2

0 0 0 0

1
0 0 0

0 0
3

0 2

0 0 0 0

1
0 0

0

0 0
3

0 2

0 0 0 0

1
4 0

0
3

7

0
5

0

6

4

15
9

11

12

8

9
11

13

9
14

9 7
5

0

10

8

0

9 7
5

0

6

8

0
3

7

0
5

0

6

8

9
115

10

8

0

0
3

2

0
5

0 0

6

40

0 0
3

2

0
5

0 0

1
4

15

9 14
30

0 0
1113

12 8
5 10

6 0
1 0

0 0

00
4 0

0 0

0

2

0 0

7

0

Figure 3: Clustering algorithm example

whole domain. Merging two clusters produces a new cluster cov-
ering the union of its parents and having a representative computed
by averaging its parents’ representatives. Initial clusters represent
thus the dataset exactly, while clusters higher in the tree have higher
representation errors.

To remember at which stage of the clustering a given cluster was
produced, every cluster in the tree has a level attribute. This infor-
mation will be used for the visualization of the clustered data de-
scribed in Section 4. Leaves have level 0, while the level of other
nodes is computed from an integer incremented during the cluster-
ing algorithm. Since we use binary clustering, the algorithm will
do N � 1 steps and the root’s level will thus be N � 1, where N
is the number of cells in the initial dataset. The pseudocode for the
clustering algorithm is shown in Fig. 2. After the clustering is com-
pleted, we can easily examine the dataset at a simplification level l
by displaying only the clusters with levels smaller or equal to l with
parents having levels greater than l.

Figure 3 shows the 16 steps taken by the algorithm on a hypothet-
ical 4x4 2D regular grid and the produced cluster tree.

The algorithm’s key is the evaluation of the similarity of two
clusters (function clustering error() in the pseudocode) and the
merging procedure mergeClusters(). The fact that neighbor clus-
ters are merged in the increasing order of this error function, i.e. in
decreasing order of similarity, ensures that the obtained clustering
minimizes the representation error, which is thus known at all lev-
els. These operations are presented in the next Section.

3.2 Similarity Evaluation and Cluster Merging

The clustering algorithm is driven by two main elements: the clus-
ter similarity function, i.e. how we find the best clusters to merge,
and the merging operation itself, i.e. how a new cluster is made by
merging two existing ones. We present first the similarity function

v

w1

w2

w3

x

y

x

y

l c

a

b

a) b)

Figure 4: Elliptic similarity function

and then the merging procedure. The similarity function evaluates
how similar two clusters are, and thus gives implicitly an estimate
of the representation error one would get by merging them. This is
so since two identical clusters, i.e. with equal representatives and
sizes, can be obviously merged with no error into a larger cluster
with the same representative. We compare clusters by comparing
their representative vectors so we do not explicitly use the clusters’
shapes. We split the comparison of these vectors into two parts: the
direction and magnitude comparison and the position comparison.

To estimate the direction and magnitude similarity, we introduce
first the notion of iso-error contours. Given a 2D vector v of length l
taken along the x axis for simplicity, we define an iso-error contour
of a given value as being the locus of the apexes of all vectors w with
the same position as v that are equally similar to v. The position dif-
ference will be treated separately. Based on the remarks starting this
section, we would like the similarity function to acount for similar
directions, so we model the iso-error contours as ellipses with the
grand axis aligned with v and centered along v at a distance c from
its apex (Fig. 4 a). The ellipse’s size (half-axes a; b) and center-to-
vector apex distance are functions of the error magnitude such that
larger ellipses having the same aspect ratio correspond to larger er-
ror magnitudes. For example, in Fig. 4 b w1 and w2 are equally sim-
ilar to v, but more similar than w3, since w3’s apex is on a larger
iso-error elliptic contour.

As outlined, the parameters a; b; c of an elliptic contour are in-
creasing functions of the contour’s error t. We can model such a
contour by an equation f(x; y; t) = 0 with

f(x; y; t) = [
x� c(t)

a(t)
]2 + [

y

b(t)

2

]� 1 (1)

and the parameters a; b; c by linear functions of t

a(t) = �t

b(t) = �t (2)

c(t) = l+ t

Solving f(x; y; t) = 0 for t leads to a second-order equation in t.
We impose the condition t > 0 since we are interested in positive
error values and we find t as a function of x; y, the vector length l
and the coefficients �; �; .

t =

q
((x� l)2 + �2

�2
y2)(�2

� 2) + 2(x� l)2

�2
� 2

�

(x� l)

�2
� 2

(3)

Given a vector w=[x; y], the dissimilarity as compared to the x axis-
aligned vector v=[0; l] is thus t computed with the above expression.
Suitable values for the coefficients �; �; are based on a heuristics
saying how the error iso-contours change as the error increases. A
possible setting that relates these coefficients to the vector’s length

37

v
w1

w2
w3

x

y

Figure 5: Vector position similarity function

l and creates ellipses with an aspect ratio of 1:2 is given by:

� = 2l

� = l (4)

 = l

Note however that � must be greater than , otherwise the ellipses
intersect each other and thus do not represent iso-error contours of
a well-defined error function.

The above compared only the vectors’ sizes and directions. To
compare the vectors’ positions, we use the same idea of error iso-
contours, but this time around the vector’s position. For example,
w1 and w3 in Fig. 5 are equally similar to v from their positions’
viewpoint as these are on the same iso-error contour, while w2 is
less similar, its position being situated on a larger iso-error contour.

If we denote w’s position by xs; ys, the iso-error contours around
the reference vector v’s position are defined as ellipses described by
s(xs; ys) = 0, where s is given by:

s(xs; ys) =
x2s
d2

+
y2s
e2
� 1 (5)

The value of s gives thus the dissimilarity between the positions of
the two involved vectors. The coefficients d and e control the el-
lipse’s aspect ratio and size. To model position similarity, it is use-
ful to let the elliptic iso-error contours’ aspect ratio under the user’s
control. For instance, an aspect ratio d=e of 3:1 favorizes clustering
along the vectors’ directions, one of 1:3 tends to cluster orthogo-
nally to this direction, while a 1:1 aspect ratio favorizes all cluster-
ing directions equally, all other parameters being the same.

The functions t(x; y) and s(xs; ys) give the distance in our er-
ror space between two vectors’ directions and magnitudes, and po-
sitions respectively. We can define the similarity of two vectors as
any monothonically increasing function of t and s since these are
independent quantities. A good candidate is a linear combination
l(s; t) of s and t:

l(s; t) = As+ (1�A)t (6)

where the coefficient A can be used to favor clustering on similar
directions and magnitudes, repectively similar positions. The sim-
ilarity function l is not a distance in the strict mathematical sense
(it is not symmetric since the ellipses used are sized on just one of
the two vectors v1; v2 that we compare). To make l (seen now as a
function of v1; v2) symmetric, we simply replace it by l0(v1; v2) =
l(v1; v2)+l(v2; v1). When the algorithm decides to merge two clus-
ters using the presented similarity function, it creates a new cluster
containing the union of the merged clusters’ cells. Its representative
vector is computed as an area-weighted (in 2D) or volume-weighted
(in 3D) average of the merged clusters’ representative vectors. The
same is done for the representative vector’s position, which coincide
thus always with the cluster’s gravity center. In most cases, the sim-
ilarity function will generate convex clusters. However, we don’t
impose explicit geometric constraints on the cluster shape, so con-
cave clusters having the gravity center outside their perimeter may
appear.

4 Effect of Parameters

The original challenge was to generate insightful flow visualizations
automatically by displaying a simplified flow. However, since dif-
ferent users may be interested in different aspects of the same flow, it
is conceptually hard to generate a unique flow simplification method
satisfying all users. In this sense, our algorithm has three control pa-
rameters. Varying these parameters one can produce a large range
of visualizations emphasizing on various aspects of the flow data.
These parameters are described in the following.

4.1 Level of Detail

The presented algorithm produces a hierarchical cluster structure
which describes the flow dataset at different detail levels. For a level
l, the dataset is represented withN�l clusters, whereN is the initial
number of dataset cells. This hierarchy allows us to easily create vi-
sualizations that answer the question ”display the flow by showing
its F most prominent features”, by selecting the N � F th hierar-
chy level and displaying one flow icon per cluster. Since the flow
over a cluster is approximated by the cluster’s representative vector,
we can directly visualize clusters by rendering their representative
vectors in a hedgehog style, using the cluster size to control their
magnitude. Figure 6 and Fig. 12 a show the same flow presented in
Fig. 1 and a circular vortex flow, visualized with different numbers
of vectors. Figures 12 b-e show simplifications of a 3D field similar
to the 2D one in Fig. 1 rendered from several viewpoints and with
several numbers of arrows and arrow thicknesses.

Visualization of the clusters is however independent on their con-
struction. We can obtain better results if instead of plain arrows we
display curved arrows, by computing streamlines from every clus-
ter’s center up and downstream and capping them with arrow hats.
Using curved arrows (e.g. represented by splines) as cluster repre-
sentatives would be a step further, as the clustering process itself
and not just the final visualization would be driven by the curved
arrow model. A second observation is that the cluster visualization,
similarly to iconic visualization, is effective when only a few icons
(e.g. curved or straight arrows) are displayed to show the main struc-
ture of the flow. On the other hand, texture-based visualizations as
spot noise are effective in showing flow local details with an equal
emphasis over the entire domain. We combined the two visualiza-
tion methods by superimposing the curved arrows generated by the
clustering over a spot noise texture (see Fig. 7 for a couple of ex-
amples). Combining curved arrows with spot noise textures can in-
crease the overall clarity of the visualization, especially for more
complex flows for which the generated textures tend to be noisy and
thus visually unclear (Fig. 7 d). Spot noise textures can be also ef-
fectively combined with 3D curved arrow visualizations, as shown
in Fig. 12 e where a semi-transparent spot noise textured 2D slice
adds a spatial clue to the otherwise hard to perceive 3D curved ar-
row rendering.

4.2 Clustering Parameters

At the core of the clustering algorithm, the decision to merge clus-
ters is taken by the vector similarity function presented in Sec-
tion 3.2. The clustering process can be controlled by changing sev-
eral parameters. For example, �; �; (Equation 4) influence the
way we compare the vectors’ directions and magnitudes; d; e (Equa-
tion 5) influence the way we compare the vectors’ positions, while
A (Equation 5) controls the overall interest we have in comparing
directions and magnitudes versus comparing the vectors’ positions.

Two of the above parameters have an important influence on the
clustering, namely the parameter A and the ratio B = d=e of the d
and e parameters, normalized by imposing d + e = 1. By chang-
ing the A and B parameters, we can produce several visualizations

38

5 vectors18 vectors90 vectors220 vectors420 vectors

5 vectors18 vectors90 vectors220 vectors420 vectors

Figure 6: Visualization of two flow datasets at various simplification levels

a b c d

Figure 7: Flow visualizations using curved arrows on spot noise textured backgrouds

communicating different insights on the input flow data. We found it
useful to leave these parameters under the direct control of the end-
user, as different users or the same user with different datasets may
wish to perform different simplifications. Figure 8 shows several
clusterings of the fork flow, for several values of the B and A pa-
rameters varying from 0 to 1 on horizontal, respectively on vertical,
and displaying the same number of vectors. To get a better impre-
sion of the clustering, we displayed also the cluster of each vector
using different colors. This figure shows several aspects. Small val-
ues ofA favor clustering of vectors with similar directions (table up-
per rows), and thus produce a subdivision of the original square do-
main into pie-like sectors, as the vectors’ direction varies the least
along a radius of the vortex. Small values of B favor clustering or-
thogonally to the vectors’ directions (table left columns). The two
effects strengthen each other in the upper-left table corner, where
the images show clusters having borders almost perfectly aligned or-
thogonally on the vector field. Large values of A favor clustering of
vectors with similar positions (table lower rows), and thus produce
a domain subdivision into clusters with similar size. Large values of
B favor clustering along the vectors’ direction (table right columns).
The two previous effects strengthen each other in the lower-right ta-
ble corner, where the clustering resembles an almost regular subdi-

vision. The extreme combinations of the A and B parameters are
also illustrated for the vortex flow simplification in Fig. 9.

The effects of the parameter B on the clustering direction can be
clearly seed in Fig. 10. Figure 10 a shows a simplification of a nearly
constant vector field done for a large value of B which favors clus-
tering along the vector field’s direction. In contrast to this, Fig. 10 b
shows the same vector field simplified with a small B value which
favors clustering orthogonally to the vector field’s direction.

Users interested in the main flow directions would employ small
values of A and B, as the two strengthen each other in producing
clusters over which vectors having similar directions. For datasets
exhibiting both laminar and high vorticity flow, this setting gener-
ates clusterings that may contain very large, respectively very small
clusters in the same image. Although this conveys both global and
detail information in the same image, displaying both very small
and large arrow icons may sometimes be undesirable due to their
high visual non-uniformity. If this is not desired, the A parame-
ter can be increased to favor more uniformly-sized clusters. At the
other extreme, users comfortable with hedgehog-like visualizations
that uniformly sample the whole domain can obtain similar images
by using high values of A and B. We see this ability to easily se-
lect the type of visualization by continuously interpolating between

39

0.
1

fa
vo

ur
 d

ire
ct

io
n

0.
9

0.
65

0.
35

fa
vo

r p
os

iti
on

favour ortho favor parallel
B 0.1 0.25 0.75 0.90.5

A

Figure 8: Fork flow simplification for several A and B values

the mentioned extremes as an important advantage of the presented
method. Similarly, our method can be seen as combining the ad-
vantages of fully interactive visualization systems where the user is
responsible for all the parameter settings and gets no system assis-
tance and fully automated ones, where the user can not influence the
system’s heuristics.

5 Implementation

The clustering algorithm has two main phases (see (Fig. 2). First, a
list of all the possible cluster pairs (ci; cj) that can be merged has to
be produced. Since primary clusters are created from the dataset’s
cells and since clusters are allowed to merge only with neighbor
clusters, we maintain for every cluster a list of its neighbor clusters
throughout the algorithm to efficiently find the merge candidates of
a cluster by scanning only its neighbors. Initially, the primary clus-
ters get their neighbors using the cell neighboring information avail-
able from the input dataset in O(N) time, where N is the number
of cells in the dataset. The input dataset can be either a structured or
unstructured mesh since cell neighbouring information can be easily
computed for any mesh type.

The second phase of the algorithm involves an iteration-merge
pass over the cluster-pairs list created initially, until this list contains

a single cluster. Using a hash-table of pairs which keeps its contents
in increasing order of the clustering error allows us to find the next
pair to merge in O(1) time. As insertion of new cluster pairs in the
hash-table isO(logN), we can show that the second phase has a cost
of maximum O(NlogN). The clustering has thus an overall cost of
O(NlogN).

The cluster-pair list often contains several cluster-pairs with the
same clustering error. Since the domain to be clustered consists of
a finite grid of finite size cells, the clustering is sensitive to which of
the above pairs it picks first, since, as two clusters are merged, this
influences their neighbors’ chances to merge, and so on. This can
be sometimes observed in the final image as regular cluster patterns
which have nothing to do with the data but emerge from the clus-
tering order. To remove this unpleasant effect, we included an op-
tion to permute the initial cluster-pair list randomly (shuffle) which
maximizes the chances that clustering starts from several points ran-
domly distributed over the whole domain.

We implemented the presented algorithm as a collection of
classes written in the C++ language and integrated them with the
Visualization Toolkit (vtk) package. Vtk is a powerful, comprehen-
sive scientific visualization library which conveniently provided the
data structures needed for flow data representation and manipula-
tion. Next, we integrated our classes in the VISSION interactive vi-

40

0.1
0.

1
fa

vo
r d

ire
ct

io
n

0.
9

favor ortho favor parallel
0.9

fa
vo

r p
os

iti
on

B
A

Figure 9: Vortex flow simplification for several A and B values

a) b)

Figure 10: Constant flow simplification that favors clustering along
the vector field direction (a) and across the vector field direction (b)

sualization environment [9]. VISSION’s open object-oriented archi-
tecture allowed us to easily couple our clustering pipeline’s output to
its available 3D rendering and direct manipulation modules, its input
to various vtk flow data sets, and to the spot noise texture generation
pipeline. End users can freely configure the visualization pipelines
with new modules in a visual editor (Fig. 11 a) similar to systems
like AVS [10] or Data Explorer, steer the clustering parameters by
means of GUIs (Fig. 11 b), and monitor the results interactively in
3D cameras (Fig. 11 c). The clustering itself takes a few seconds for
datasets around 10000 cells like the ones shown in this paper’s illus-
trations, while selecting the level of detail to display is done in real
time on a SGI O2 R5000 machine. Simplification of 3D flow fields
as those presented in Fig. 12 b-e is however considerably slower, as
these contain more cells, each having a higher neighbor count.

By connecting the ’level of detail’ input port of the simplification
pipeline to an iterator which dynamically varies an integer value and
its output to a MPEG production module, one can easily produce
a simplification MPEG animation displaying a progressively sim-
plified view of a given flow dataset. Animated visualizations of the
progressively simplified data are however not always an appropriate
manner to convey insight in a vector field. This is caused by the fact

c

b

a

Figure 11: Clustering pipeline and visualization in the Vission sys-
tem

that, as clusters get progressively merged, their representative ar-
rows may be replaced by new arrows having sensibly different sizes
and positions. Especially at the top of the hierarchy where large
clusters get merged one may notice ’jumping arrows’ between con-
secutive simplification frames corresponding to consecutive simpli-
fication hierarchy levels. This is basically due to the fact that the
presented clustering algorithm tries to minimize the representation
error at each individual hierarchy level but does not explicitly try to
preserve a visual coherency between the visual representations (e.g.
arrow icons) of consecutive hierarchy levels. Doing this would in-
volve a totally different definition of the cluster similarity function,
which should encompass both a comparison with spatial neighbor
clusters and with parent and child clusters in the hierarchy. We be-
lieve that the added complexity for devising and efficiently imple-
menting such a similarity function would not pay off as compared
to its possible advantages.

6 Conclusion

This paper presented a new method for producing compact vector
field visualizations using a hierarchical simplification of the vector
data. The simplification is driven by a vector similarity function the
parameters of which can easily be tuned to produce visualizations
which stress different aspects of the vector field. After the simpli-
fication is done, one can visualize the vector data at different levels
of detail by interactively choosing the simplification level to be dis-
played. For the display phase, we used straight or curved arrows for
the simplified data over a spot noise textured background that fills
the visual gaps between the arrows with local detail. We have in-

41

tegrated our method in an interactive dataflow visualization system
where one can change the parameters influencing simplification and
monitor the resulting images interactively.

Put in mathematical terms, we try to approximate a vector field by
a (small) hierarchical set of constant basis functions of finite sup-
ports whose union equals the field’s support. The basis functions’
supports are the clusters and their values are the clusters’ represen-
tative vectors. The shapes of the basis functions’ supports are deter-
mined such that the representation error is minimized (this is actu-
ally the clustering algorithm). The main difference between our ap-
proach and other representation techniques reducible to basis func-
tions such as Fourier analysis or wavelets is that we do not prescribe
a priori the shape of the basis functions’ supports, but determine it
by a minimization process. In this respect, the presented technique
does not use a given set of basis functions (like the sine and cosine
functions used by the Fourier analysis or the polynomial basis func-
tions used by spline techniques) but computes a different base for
each new given input dataset.

To completely automate our technique we plan to devise a
method of setting the simplification parameters that are now still un-
der the end-user’s control, based on a model of the user’s perception
of a vector field. Such a method should be able to determine how to
produce the most insightful or most easily perceivable visualizations
and act as a feed-forward control on the presented simplification. In
the same time we plan to devise better models for the clusters which
should approximate the underlying field more accurately, e.g. by us-
ing a curved arrow model based on splines. On one hand, the intro-
duction of such techniques would simplify the task of the user con-
siderably by producing perceptually meaningful visualizations with
a minimal or no direct user intervention. On the other hand, anima-
tions that show progressively simplified views of the same dataset
on the outline of the idea sketched in Section 5 would be easier to
produce, as a perceptually based simplification could guarantee a
certain coherency among several simplification levels of the same
dataset.

References

[1] D. C. Banks and C. A. Singer. Vortex tubes in turbulent flows:
Identification, representation, reconstruction. Proc. Visualiza-
tion 94, IEEE Computer Society Press, pp. 132-139, 1994.

[2] B. Cabral and L. C. Leedom. Imaging vector fields using line
integral convolution. Computer Graphics (Proc. SIGGRAPH
’93), pp. 263-279, 1993.

[3] W. de Leeuw and J. J. van Wijk. Enhanced spot noise for vec-
tor field visualization. Proc. Visualization 95, IEEE Computer
Society Press, pp. 233-239, 1995.

[4] J. Helman and L. Hesselink. Representation and display of
vector field topology in fluid flow data sets. Computers, vol.
22, no. 8, pp. 27-36, 1989.

[5] P. Burrel J. Rossignac. Multiresolution 3d approximations for
rendering complex scenes. Modelling in Computer Graphics,
E. B. Falcidieno, T. L. Kunn, eds, Springer Verlag, pp 455-465,
1993.

[6] S. Mallat. A theory for the multiresolution signal decomposi-
tion: The wavelet representation. IEEE Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 676-693, 1989.

[7] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing
features and tracking their evolution. IEEE Computer Graph-
ics and Applications, vol. 27, no. 7, pp. 20-27, 1994.

[8] W. J. Schroeder, C. R. Volpe, and W. E. Lorensen. The stream
polygon: A technique for 3d vector field visualization. Proc.
Visualization 91, IEEE Computer Society Press, pp. 126-132,
1991.

[9] A. C. Telea and J. J. van Wijk. VISSION: An object oriented
dataflow system for simulation and visualization. Proceed-
ings of the 10th IEEE/Eurographics Visualization Workshop,
Vienna, Austria, 1999.

[10] C. Upson, T.Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,
and J. Vroom. The application visualization system: A com-
putational environment for scientific visualization. IEEE
Computer Graphics and Applications, July 1989, pp30-42,
1989.

[11] T. van Walsum. Selective visualization on curvilinear grids.
PhD thesis, Delft University of Technology, the Netherlands,
1995.

[12] T. van Walsum, F. H. Post, D. Silver, and F. J. Post. Feature
extraction and iconic visualization. IEEE Computer Graphics
and Applications, vol. 2, no. 2, pp. 111-119, 1996.

[13] J. J. van Wijk. Flow visualization with surface particles. IEEE
Computer Graphics and Applications, vol. 13, no. 4, pp. 18-
24, 1993.

[14] P. Wong and D. Bergeron. Hierarchical representation of very
large data sets for visualization using wavelets. Scientific Visu-
alization, eds. G. Nielson, H. Hagen, H. Mueller, IEEE Com-
puter Society Press, p. 415-429, 1997.

42

e

a b

dc

Figure 12: Examples of 2D (a) and 3D (b-e) flow field simplifications

