

 University of Groningen

A Component-Based Dataflow Framework for Simulation and Visualization
Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A. (1999). A Component-Based Dataflow Framework for Simulation and Visualization. In EPRINTS-
BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/7ab5d204-dfdf-4f6a-b804-fd630bc15fff

A Component-Based Dataflow Framework for Simulation and

Visualization

Alexandru Telea
Department of Mathematics and Computer Science

Eindhoven University of Technology, The Netherlands
alext@win.tue.nl

Abstract

Reuse in the context of scientific simulation appli-
cations has mostly taken the form of procedural or
object-oriented libraries. End users of such systems
are however often non software experts needing very
simple, possibly interactive ways to build applications
from domain-specific components and to control their
parameters. Integrating independently written (existing
or new) code as components should ideally be a sim-
ple, possibly automated black-box process. We propose
a dataflow-based component framework for simulation
and visualization in which large existing C++ appli-
cation libraries were easily integrated as interactively
manipulable components by using a meta-layer object-
oriented component abstraction. The path from user-
level requirements to the framework design and imple-
mentation decisions is outlined.

1 Introduction

Designing open systems for scientific visualization and
simulation (VisSym) has become crucial for disciplines
such as computational fluid dynamics (CFD), medical
sciences, or numerical analysis. As simulations’ com-
plexity has grown, the amount and variety of software
elements involved in their design has increased consid-
erably. In consequence, VisSym software architectures
strive to evolve from problem-specific, monolithic ap-
plications to general-purpose frameworks offering inter-
active application monitoring and control and simple
mechanisms to plug in various domain specific soft-
ware.

Component-based frameworks seem ideal for the
above task as they decouple component manufactur-
ing from component usage. The latter is reduced to a
simple operation of connecting matching components
and having the framework enforce their correct coop-

eration via some standard protocol. Most of VisSym
end-users are not programming experts, so frameworks
should provide simple, interactive ways to load various
components and connect them to produce the desired
application without having to program. The compo-
nents’ parameters should be easily controllable inter-
actively in order to steer the running simulations, and
results should be available in real-time. Finally, the
large amounts of existing scientific software libraries
should be easily integrable in such frameworks as com-
ponents, without having to modify their often unavail-
able source code.

However, due to several factors, designers have been
so far reluctant to adopt component-based designs.
Firstly, the above constraint combination is hard to
satisfy, so virtually all existing VisSym frameworks
mostly use white-box inheritance techniques, and are
thus notoriously limited and difficult to use by re-
searchers that need to focus on the modelled problem
and not on the often intricate software integration tech-
niques. Secondly, the extra indirections introduced by
loosely coupled designs were considered too expensive
for the interactive behavior of VisSym applications.

We addressed the above issues by designing vission

[15], a component-based VisSym framework based on
an object-oriented component model which extends the
C++ class notion non-intrusively, in a black-box man-
ner. Based on this component notion, we provide an
easy way to build components from existing C++ class
libraries, an interactive, programming-free manner to
load, instantiate and connect them to create applica-
tions, and automatically built graphics user interfaces
(GUIs) for for component parameter control and visual
monitoring.

1

1.1 Requirements and User Roles

In VisSym, frameworks strive to satisfy the require-
ments of three user roles, or viewpoints, in the termi-
nology of by Alencar et al[1]. End-users (EU), mostly
non-programming experts, need virtual cameras, GUIs,
and sometimes scripting languages. Application de-
signers (AD) build the EU application by assembling
predefined domain-specific components and work best
if this assembly process is supported by a visual, in-
teractive tool. This is usually done by connecting the
components in a directed graph called a dataflow net-
work. As the simulation runs, data flows from its
source through components that process it up to the
visualization components [10, 2]. The component de-
veloper (CD) forms the third user category: he builds
application libraries by writing or often reusing exist-
ing code. The CD requires that existing code should
be easily extensible and reusable as application com-
ponents, and that the system loading the components
should not constrain their design. Most frameworks ad-
dress the CD’s requirements by supporting some form
of object-oriented components. By OO component, we
shall further denote an OO software entity directly
reusable in the context of a given framework. Often
the same person cycles through all the roles (e.g. a
researcher who develops his code as a CD, then builds
a test experiment as an AD, and steers the final ap-
plication as an EU). The cycle is repeated, as end-
user insight triggers application re-design for the AD,
which may induce component changes, a task for the
CD. As the same person must quickly and frequently
switch roles, frameworks should not only offer freedom
for each individual role, but also an ideally automatic
way to make the work of a role immediately available
to the next role.

1.2 Limitations of Current Frameworks

Matching the above requirements to the most known
VisSym frameworks, we identified the following limita-
tions:

1.2.1 Extensibility and Reuse Problems

While OO libraries written in e.g. C++ or Java are
easily extensible by subclassing (e.g. vtk [16] and Open
Inventor [11] for C++ or Java3D for Java [7]), most
frameworks require relinking or recompilation to use
new component versions. They also often force compo-
nents to inherit from a common root class (hierarchies
having different roots are not accepted) or use only sin-
gle inheritance (SI) in e.g. the C++ case [11, 10, 16].

White-box frameworks based on inheritance or other
compile-time schemes that check the validity of com-
ponents by checking their interface conformance are
thus the most common.

1.2.2 Inflexible I/O Typing

By providing typed inputs and outputs for compo-
nents (also called ports in the dataflow terminology),
VisSym frameworks assist the AD with run-time type
checking to forbid connections between incompatible
types. However, most frameworks’ run-time type sys-
tems have only a few basic types (integer, float, string,
and arrays of these), and are not extensible with user
defined types. By value and by reference data passing
are also rarely both supported in the same framework.
To provide run-time data conversion from one type to
another, explicit conversion modules [2],[16] or compli-
cated run-time schemes to register conversion functions
[11] are used, instead of more elegant schemes present
in some programming languages such as conversion op-
erators or copy constructors, or of other meta-level
object protocols that could negotiate data conversions
more flexibly.

1.2.3 Intrusive code integration

Frameworks take a limited number of run-time deci-
sions so are often simpler than full-fledged compilers
or interpreters. The development language is often
richer in concepts than the target framework, so CDs
are forced to change their code to match the system’s
standard (e.g. give up multiple inheritance, pass by
value, etc). Some frameworks require the components
to be interfaced in a language different from the devel-
opment one (e.g. tcl used by [16, 10] to interface C++
classes), thus the manual creation of wrapper classes or
’glue’ code [1]. Sometimes the CD must add system-
specific code to his components to add dataflow and
GUI functionality [2, 5, 14], which is yet another form
of white-box composition. Many researchers reported
that otherwise well-designed OO libraries could not be
integrated in VisSym frameworks due to the need to
intrusively adapt their (sometimes unavailable) source
code or need to build complex wrappers.

1.2.4 Different Run-Time and Compile-Time
Languages

Most VisSym frameworks implement their components
in native executable code for speed reasons, and offer
the EUs interpreted languages to quickly set up exper-
iments or issue various commands. Component devel-

2

opment languages are often different and usually more
powerful than the run-time ones (e.g. tcl for [10], V
for avs, cli for [2]), making some features of the latter
unavailable in the former, and forcing the CD to learn
two languages.

1.2.5 Manual GUI Construction

Even though GUIs could be automatically created from
the components specification, the CD usually has to
manually program (or interactively build [2]) the GUIs
for the developed components. Moreover, the GUIs
of most frameworks support editing only a few basic
types (integers, strings, floats). There is no support
for editing user-defined types (e.g. a 3D vector) or
user defined GUI widgets (e.g. a 3-dimensional virtual
spaceball).

2 Overview of vission

Analyzing the presented limitations, it seems that most
of them are caused by a very limited, ad-hoc notion
of components, usually the result of the evolution of
simple code integration schemes used in early systems.
However, requirements as dynamic, transparent inte-
gration of independently developed OO class libraries
definitely ask for black-box integration, supported by
mechanisms such as dynamic code loading and reflec-
tion. The fact that many VisSym frameworks do not
promote a clear identity for components, separate from
and semantically higher than the computational code
they extend, forces white-box composition with all its
known problems.

Our solution employs the C++ language in compiled
form for the development of component libraries, and
in interpreted form for the application developer and
the end user. vission’s kernel is a C++ interpreter
[4] able to call C++ compiled code from dynamically
loadable user-written libraries, execute on-the-fly syn-
thesized C++ code, and offer a reflection API. This
allows us to completely merge the OO and dataflow
modelling concepts in a new abstraction called a meta-
class, which extends a C++ class with dataflow seman-
tics to create our framework’s component.

Component libraries are loaded in vission where the
AD interactively builds dataflow networks using a vi-
sual programming mouse-based GUI for component in-
stantiation, cloning, destruction, port connections and
disconnections (Fig. 3) performed on iconic represen-
tations of metaclass instances. The icons for the meta-
classes and their instances, as well as the GUIs used

C++ Metaclass Language

type: class metaclass
instance: object meta−object
interface: public part input/output ports
implementation: private part public part of own C++ class

and update method

Figure 1: Comparison of C++ class and metaclass con-
cepts

for monitoring and modification of port values, are au-
tomatically constructed by vission from the metaclass
specification (Fig. 4).

2.1 The Metaclass Concept

A metaclass is a programming construct written in a
simple object-oriented declarative language. It adds
a dataflow interface to a C++ class: a description
of the inputs,outputs, and update method, i.e. the
code to be executed by the dataflow engine when the
inputs have changed. The metaclass inputs, outputs
and update are forwarded to the public interface of the
C++ class it extends: when an input is written into,
a C++ class method is called to perform the write or
a public member is written; when an output is read
from, a method is called and the return value is used
or a public member is read. Inputs and outputs are
typed by the C++ types of their underlying methods
or members. Metaclasses are object-oriented since they
can inherit inputs, outputs and the update methods
from other metaclasses (single, multiple and virtual in-
heritance are supported) similarly to their underlying
C++ classes, so a metaclass hierarchy is isomorphic
to the C++ hierarchy it extends. We added however
some OO features present in C++ to the metaclass lan-
guage, e.g. the selective hiding or renaming of inherited
features, similar to the approach described by Meyer
in [9]. This proved very useful when managing com-
plex metaclass hierarchies. Metaclasses of non abstract
C++ classes with public constructors can be instan-
tiated to create meta-objects which are connected to
form the dataflow network. A metaclass is ultimately
an object-oriented type for the dataflow mechanism,
implemented in terms of the C++ class type (Fig. 1).
Fig. 2 shows two C++ classes of a larger hierarchy and
their metaclasses: the IVSoLight metaclass has three
inputs for a light’s color, intensity, and on/off value,
modelled by the corresponding C++ class’s methods
with similar names, and of types IVSbColor (a RGB
color triplet), float, and respectively boolean. Meta-

3

class IVSoLight
{ public:
 BOOL on;
 void setIntensity(float);
 float getIntensity();
 void setColor(IVSbColor&);
 IVSbColor getColor();
};

class IVSoDirectionalLight: public IVSoLight
{ public:
 void setDirection(IVSbVec3f&);
 IVSbVec3f getDirection();
};

module IVSoLight
{ input:
 WRPort "intensity" (setIntensity,getIntensity)

 editor: Slider
 WRport "color" (setColor,getColor)
 WRport "light on" (on)
}

module IVSoDirectionalLight: IVSoLight
{ input:
 WRPort "direction" (setDirection,getDirection)
}

Metaclasses: C++ classes:

Figure 2: Example of C++ class hierarchy and corresponding metaclass hierarchy

class IVSoDirectionalLight extends IVSoLight with an
input for the light’s direction, of type IVSbVec3f (a
3-space vector). Besides the port to C++ member
mapping, metaclasses specify other non-functional re-
quirements such as the labels to be used in their au-
tomatically constructed GUIs (Fig. 4), optional widget
preferences (for the intensity, a slider is preferred to a
typein in the above example), and documentation data
that can be accessed on-line. Appropriate widgets are
automatically created based on the ports’ C++ types
(3 float typeins for IVSbColor and IVSbVec3f, a toggle
for the boolean, and a slider, as the user option spec-
ified, for the float). The requirements and limitations
listed in Sect. 1.2 are addressed as follows:

2.1.1 Extensibility and Reuse

The CD develops his application C++ classes with no
restriction imposed by vission (no common root class
required, multiple and virtual inheritance can be used,
etc) and organizes them in application libraries. Ex-
tra information is next added by writing the meta-
class descriptions for the C++ classes in a straight-
forward fashion (the metaclass language has only a
few keywords and very simple declarative constructs).
Metaclasses are organized in libraries using the C++
application libraries as implementation only via their
public interfaces, introducing a first level of black-box
reuse. Metaclass libraries can include other metaclass
libraries and metaclasses from one library can inherit
from metaclasses in other libraries, similarly to Java
packages. When vission dynamically loads a meta-
class library, metaclasses from directly and indirectly
included libraries are transparently loaded, together
with their corresponding C++ classes. This is a second
level of black-box reuse between the framework and the
metaclass libraries.

2.1.2 Flexible I/O Typing

Data flow between ports is based on the full OO typing
of C++: it can be passed by value, by reference, and
can be of any type (fundamental or class). For class
types, constructors and destructors are automatically
called when data flows from an output to an input.
Port connection type checking obey all C++ typing
rules: a port of C++ type A can be connected to a
port of type B if A conforms to B by trivial conversion,
subclass to baseclass conversion, user-defined construc-
tor and conversion operator [12]. This generalizes the
dataflow typing policies of other systems: The Oorange
system [10], based on Objective C, offers by-reference
but no by-value data passing. AVS/Express [2] limits
the run-time data types to the ones provided by its OO
V language which lacks constructors, destructors, and
multiple inheritance. Compiled toolkits as Open In-
ventor [11] and vtk [16] are only statically extendable,
as all types have to be known at compile time.

2.1.3 Non-intrusive code integration

All information needed to promote a C++ class to
a metaclass directly usable by vission resides in the
metaclass. The metaclass-C++ class pair is roughly
similar to the handle-body idiom [3], the Adapter pat-
tern [6] or the customizable adapters presented by Ku-
cuk et al [8], but is much easier to do than e.g. manual
Adapter coding as the parallel hierarchies are managed
automatically by the system, not the user. Separat-
ing the dataflow information in the metaclass allows
adding dataflow semantics to existing class libraries,
even when they are not available in source form. This
separation between the pure, framework-independent
code and the ’adaptation’ layer including framework
specific elements such as non-functional requirements
is advocated by many [6],[13], as it allows code to be

4

network
editor

meta-object
icon

metaclass
library

Figure 3: The dataflow network is build in the visual
editor by instantiating the loaded metaclasses

easily reused in various contexts as its design is not
influenced by the target environment.

Moreover, since the metaclass specification code is
simply parsed by vission, it is very easy and fast to
change it to e.g. adapt different C++ classes (e.g. hav-
ing different interfaces) or adapt the same classes dif-
ferently (e.g. define ports or the update to call back
on other C++ methods). In this sense, our adaptation
method is different from other solutions. The meta-
class code might be seen as partially white-box (since
it has explicit dependencies on the C++ classes’ in-
terfaces), but it has practically none of the white-box
drawbacks, since it comes in a very easy to edit/change
form and not as binaries.

2.1.4 Single language solution

C++ is vission’s single language: application libraries
are written in C++, the metaclass ports are typed also
in C++, C++ commands can be typed in a console to
be dynamically interpreted (obviating the need for a
scripting language). We implemented also a generic
persistence mechanism which saves all meta-object in-
put port values and connections as C++ source code
commands and restores the state by simply interpret-
ing the saved code. The fact that our metaclass state is
completely intrinsic supports once more the idea that
components should be designed independently on the

context in which they are used.

output port

input ports

 metaclass name
IVSoDirectionalLight

instance name
 obj0

Figure 4: Metaclass icon with ports (left) and its au-
tomatically constructed GUI (right)

2.1.5 Automatic GUI Construction

vission automatically builds GUI interaction panels
(shortly interactors) to examine and modify the val-
ues of any metaclass’s ports. Interactors create the
system’s third object, isomorphic with the C++ class
and the metaclass hierarchies: an interactor inher-
its the widgets from the interactors of its metaclass’
bases. The three hierarchies correspond to the three
user classes: EUs are concerned with the interactors,
ADs with the metaclass interfaces, and CDs with the
C++ classes. The interactor widgets reflect directly
the C++ types of the edited ports. For example, a
float port can be edited by a slider, a char* port by
a text type-in (Fig. 4), a three-dimensional VECTOR
port by a 3D widget allowing direct manipulation of a
3D vector icon (Fig. 5 c), a boolean by a toggle button,
a complex Material class encoding over 15 attributes by
a Material widget (Fig. 5 c), and so on. vission’s wid-
get set for the fundamental C++ types is extendable
by the AD with widgets for new, application-specific
C++ types. We used this mechanism to provide GUI
widgets for C++ types used by various libraries we in-
cluded in vission, such as 3D vectors, colors, rotation
matrices, and light values. Type-specific widgets are
loaded and unloaded with the metaclass libraries defin-
ing their types, so they can also be seen as black-box
components from the framework’s point of view.

5

c

a b

c

d e f

Figure 5: Automatically constructed GUIs and visualization examples in the vission framework

The association of a widget to a port type is done au-
tomatically at run-time by vission, which picks from
the available widgets the one whose C++ type best
matches the type of the port to edit. The best match
rules are based on a distance metric in type space be-
tween the type to edit and the type editable by a wid-
get, roughly similar to C++’s type conformance rules.
The GUI building process can be however customized
by supplying new GUI widgets or by specifying pre-
ferred widgets (a float type-in can be preferred to a
slider for a float port, for example) in the metaclass
specification. The loose coupling between OO widgets
and OO ports via the run-time best match rule, the
user-specifiable hints and the interactive widget switch-
ing correspond to the three user layers (CD,AD,EU).
They form a meta-object protocol between vission and
the component to negotiate the GUI creation.

3 Architecture

vission consists of three main parts: the object man-
ager, the dataflow manager, and the interaction man-
ager (Fig. 2) that use two subsystems: the C++ inter-
preter and the library manager. All subsystems com-
municate by sharing the simulation dataflow graph.
The key element is the C++ interpreter [4]. Opera-
tions throughout vission, such as connection or dis-

Interaction ManagerC++ Interpreter

Editor Widnow

"type"

Center

Name
Value

ROTOR r1

12.45
-123.2
 60.66

Editor Widnow

Editor Widnow

End user

Dataflow Graph

Dataflow Manager

Library Manager

Application libraries

Application developer

Figure 6: Architecture of the vission component
framework

connection of ports, data transfer between ports, up-
date methods’ call, GUI editing of ports, are all im-
plemented as small C++ fragments dynamically sent
to the interpreter. The automatic GUI construction
and the port connection type checking use the inter-
preter’s reflection API. The interpreter cooperates with
the library manager to dynamically load and unload

6

metaclass libraries and their underlying compiled C++
classes, with the object manager to parse metaclass
declarations and instantiate metaclasses, and with the
interaction manager to build and control the GUIs.
Almost all code is executed from the compiled C++
classes, leaving only a tiny amount of C++ code to be
interpreted. Performance loss as compared to a 100%
compiled system was estimated to be below 2%, even
for complex networks requiring an intensive commu-
nication with the interpreter, so the extra indirection
level due to the loose coupling was definitely negligible.
Loading and unloading metaclass libraries was however
much slower: this implies, for medium-sized libraries
having hundreds of metaclasses with 10-20 attributes
each, the introduction in vission’s type and function
tables of thousands of new names and other informa-
tion. We noticed however that loading a few large li-
braries is times faster than managing a fine-grained
network of many small libraries referring each other, a
fact similar to the performance issues of compilers vs
header files.

Figure 7 presents the relationship between the port
read and write operations, the interpreted and com-
piled C++ code, and the high-level tasks (data trans-
fer, GUI-based inspection and modification of ports).
A write operation in a GUI widget triggers a write to
a port of the GUI’s metaclass (step W1), which sends
a C++ fragment of the form ”obj1.set()” to the inter-
preter (step W2), the argument of set() being the data
written to the GUI and the target of the set() mes-
sage being the metaclass’s C++ object obj1. The in-
terpreter executes the C++ fragment calling the set()
method from the compiled application library (step
W3). A similar process occurs when reading a C++
value to refresh the GUI (steps R1,R2,R3). To transfer
data between two ports (step T1), a port read (steps
R1,R2,R3) followed by a port write (steps W1,W2,W3)
is executed. The dataflow manager uses the above
mechanism to perform automatically a network traver-
sal calling node updates whenever an input changes.

4 Conclusion

vission is a general-purpose visualization and simula-
tion component framework built on a black-box com-
ponent foundation. It provides simple ways to speci-
fication, monitoring, steering of simulations, and com-
ponent integration, by merging the powerful, yet so far
independently used OO and dataflow modelling con-
cepts in the metaclass component notion.

Metaclasses extend C++ classes with dataflow se-

Node n1

C++ Object obj1

void set(T)

C++ Interpreter

C++ Compiled
 Library

Node n2

C++ Object obj2

 U get()

User Interface ReadUser Interface Write Data Transfer

transfer
data (T1)

port
read
(R1)

 interprete
"obj2.get()"
(R2)

call compiled
get() (R3)

port
write
(W1)

interprete
"obj1.set()"
 (W2)

call compiled
 set() (W3)

Figure 7: User interface read/write operations, data
transfers between ports and the underlying C++ mech-
anism

mantics, GUI and documentation information in a
black-box fashion, making them easily reusable in other
contexts and also making it easy to plug-in existing
C++ libraries as components. Metaclass libraries (or
their underlying implementation C++ libraries) can be
seen as application frameworks modelling some partic-
ular domain, while vission is a component framework,
since it a) coordinates the interaction of independently
designed components according to its domain-specific
(VisSym) rules implemented using the dataflow model,
and b) it communicates with these components only
via the metaclass interface.

We have provided a mechanism for automatic GUI
construction from type-specific, user-defined widgets,
based on a meta-object protocol merging OO typing
with higher level information such as user preferences.
vission’s implementation key issue was the choice for
a single (OO) language solution based on C++. vis-

sion’s C++ interpreter/compiler design shows that
one can combine speed and design freedom of com-
piled C++ (multiple inheritance, pass by value for user
types, etc) with the advantages of interpreted environ-
ments (run-time flexibility, ease of use, reflection APIs)
like Java/JavaBeans also in the context of the C++.
Had we chosen a JavaBeans-based implementation, it
would have been tedious and very difficult for our tar-

7

get users to integrate several large existing C++ class
libraries which extensively use pass by value and mul-
tiple inheritance.

Several applications illustrate the advantages a fully
object-oriented computational steering architecture
provides. Component designers plugged-in existing
well-known libraries such as vtk [16] for scientific vi-
sualization and Open Inventor [11] for rendering (420
classes,over 200000 C++ lines), or other libraries for
radiosity (18 classes, over 6000 C++ lines) and finite
element analysis (25 classes, over 7500 C++ lines) in
vission in a short time (approximately 2 months, 5
days, respectively 10 days). Integration required writ-
ing a comparable number of metaclasses of an average
length of 6 lines, and absolutely no change of the li-
braries (of which, Inventor was only available as bina-
ries).

Application designers and non-programmer end
users could effectively use visison in a matter of min-
utes (Fig. 5 a,b,e,f show snapshots from scalar, vector,
tensor, and medical visualizations).

The strong separation of pure application code (writ-
ten by the component designer) from infrastructure as
dataflow mechanisms, GUIs, persistence schemes (pro-
vided by vission) makes the code to be written by the
former clear and also very concise. This is noteworthy
since most large application toolkits [11, 16] dedicate
up to 50% of their code to implement backbone ser-
vices as the ones mentioned before. Library designers
may save 50% time if infrastructural services are au-
tomatically provided. Moreover, if a single backbone
is applicable, it is coded just once (in vission) and
not replicated in endless flavors among the open set of
application libraries.

References

[1] P. Alencar, D. Cowan, C. Lucena, L. Nova,
A Model for Gluing Components, Proc. of WCOP’
98, Turku Centre for Computer Science, 1998.

[2] C. Upson, T. Faulhaber, D. Kamins,

D. Laidlaw, D. Schlegel, J. Vroom,

R. Gurwitz, and A. van Dam, The Application
Visualization System: A Computational Environ-
ment for Scientific Visualization., IEEE Com-
puter Graphics and Applications, July 1989, 30–
42.

[3] J. O. Coplien, Advanced C++ Programming
Styles and Idioms, Addison-Wesley, 1992

[4] M. Goto, The CINT C/C++ Interpreter and
Dictionary Generator, The ROOT System URL
http://root.cern.ch/root/Cint.html

[5] J. J. van Wijk and R. van Liere, An environ-
ment for computational steering, in G. M. Niel-
son, H. Mueller and H. Hagen, eds, Scientific Vi-
sualization: Overviews, Methodologies and Tech-
niques, Computer Society Press, 1997

[6] E. Gamma, R. Helm, R. Johnson, J. Vlis-

sides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

[7] The Java 3D Application Programming Interface,
http://java.sun.com/products/java-media/3D/

[8] B. Kucuk, M. N. Alpdemir, R. N. Zo-

bel, Customizable Adapters for Black-Box Com-
ponents, in Proceedings of WCOP ’98, Turku Cen-
tre for Computer Science

[9] B. Meyer, Object-oriented software construction,
Prentice Hall, 1997

[10] C. Gunn, A. Ortmann, U. Pinkall,

K. Polthier, U. Schwarz, Oorange: A Vir-
tual Laboratory for Experimental Mathematics,
Sonderforschungsbereich 288, Technical Univer-
sity Berlin. URL http://www-sfb288.math.tu-
berlin.de/oorange/OorangeDoc.html

[11] J. Wernecke, The Inventor Mentor: Program-
ming Object-Oriented 3D Graphics with Open In-
ventor, Addison-Wesley, 1993.

[12] B. Stroustrup, The C++ Programming Man-
ual, Addison-Wesley,1993.

[13] C. Szyperski, Component Software - Beyond
Object-Oriented Programming, Addison-Wesley,
1998.

[14] D. Jablonowski, J. D. Bruner, B. Bliss, and

R. B. Haber, VASE: The visualization and ap-
plication steering environment, in Proceedings of
Supercomputing ’93, pages 560-569, 1993

[15] A. C. Telea, J. J. van Wijk Design of an
Object-Oriented Computational Steering System,
to be presented at the IEEE-Eurographics Work-
shop on Scientific Visualization and Simulation
VisSym’99, Vienna, Austria

[16] W. Schroeder, K. Martin, B. Lorensen,
The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, Prentice Hall, 1995

8

