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When does the algebraic Riccati equation have a
negative semi-definite solution?

Harry L. Trentelman®

November 24, 1999

1 Introduction

In this contribution we want to draw the readers’s attention to an open problem
that concerns the existence of certain solutions to the algebraic Riccati equa-
tion. Since its introduction in control theory by Kalman in the beginning of
the sixties, the algebraic Riccati equation has known an impressive range of ap-
plications, such as linear quadratic optimal control, stability theory, stochastic
filtering and stochastic control, stochastic realization theory, the synthesis of
linear passive networks, differential games, and H., optimal control and robust
stabilization. For an overview of the existing literature on the algebraic Riccati
equation, we refer to [3].

In this note, we deal with the existence of real symmetric solutions to the
algebraic Riccati equation, in particular with the existence of negative semi-
definite solutions. It is well-known (see [9]) that the existence of a real symmet-
ric solution to the algebraic Riccati equation is equivalent to a given frequency
domain inequality along the imaginary axis. In [9], it was also stated that the
existence of a negative semi-definite solution is equivalent to this frequency do-
main inequality holding for all complex numbers in the closed right half of the
complex plane. Soon after the appearance of [9], a correction [10] appeared in
which it was outlined that this statement is not correct, and that the frequency
domain inequality in the closed right half plane is a necessary, but not sufficient
condition for the existence of a negative semi-definite solution.

Since then, several attempts have been made to obtain a convenient neces-
sary and sufficient frequency domain condition for the existence of a negative
semi-definite solution. In this note we discuss some of these conditions. We also
explain that we consider these conditions not to be satisfactory yet, and there-
fore we claim the problem of formulating a sensible frequency domain condition
to be still an open problem.
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2 The algebraic Riccati equation

Let A € R"™™ and B € R"*™ be such that (A, B) is a controllable pair. Also,
let Q € R**™ be such that Q = Q7, let S € R™*", and let R € R™*™ he such
that R > 0. We deal with the following algebraic Riccati equation:

ATK + KA+Q— (KB+ST) R YBTK +8)=0 (2.1)

In order to give a frequency domain condition for the existence of a real sym-
metric solution K, we define the matrix of two-variable rational functions W
in the indeterminates ( and n by

W) =R+BT(I—AT)'ST + S(nI — A)'B
+BT (I - AT 'Q(nI — A)'B (2.2)

which is often called the Popov function associated with (2.1). (see [7]). The
coefficients of this matrix are quotients of real polynomials in the indeterminates
¢ and n. With this two-variable rational matrix W we associate a (one-variable)
rational matrix OW by defining OW (§) := W (—¢,&), i.e., obtained by taking
¢ = —¢ and n = . Tt was shown in [9] that the algebraic Riccati equation (2.1)
has a real symmetric solution if and only if

OW (iw) > 0 for all w € R, iw & o(A) (2.3)

In [9] it was claimed that the two-variable rational matrix W also provides the
clue to the existence of a negative semi-definite solution. Indeed, [9], Theorem
4 states that (2.1) has a real symmetric solution K < 0 if and only if

W (X A) >0 for Re(\) >0, A & o(A) (2.4)

Unfortunately, as was noted in [10], this statement is not correct: in general
the condition (2.4) is only a necessary conditition, but not a sufficient one. Tt is
certainly interesting to note that for certain important special cases (2.4) does
provide a necessary and sufficient condition. For one important special case
this result is known as the bounded real lemma. This special case in concerned
with the situation that @ = —CTC, S = 0, and R = I. In that case, after a
change of variable from K to —K, the Riccati equation becomes

ATK + KA+C"C+ KBBTK =0 (2.5)
while we have W (¢,n) = I — GT(¢)G(n). The condition (2.4) then becomes
GT(NG(N) < T for Re(\) >0, A & 0(A)

which indeed is well-known to be equivalent to the existence of a solution K > 0
to the algebraic Riccati equation (2.5) (see, for example [2]). In [5], a number
of additional special cases in which the frequency domain inequality (2.4) is a
necessary and sufficient condition were established. We will not go into these
special cases here. Instead, we want to discuss an alternative condition on the
two-variable rational matrix W that was proven in [4] to be equivalent to the
existence of a negative semi-definite solution to (2.1). In order to rederive this
condition here, we make use of recent results in [12] on quadratic differential
forms and dissipativity of linear differential systems



3 Dissipativity of linear differential systems

As was also noted in [9], the study of the algebraic Riccati equation can be
put into the more general framework of studying quadratic storage functions
for linear systems with quadratic supply rates. In that context, an important
role is played by the linear matriz inequality L(K) > 0, where

ATK + KA+ Q KB+ST> (3.1)

L(K) :=< BTK + S R

It can be shown that L(K) > 0 if and only if the quadratic function V(z) :=
—zT Kz satisfies the inequality

%V(m(t)) < 2T (1)Qu(t) + 207 () STu(t) + uT (t) Ru(?) (3.2)
for allt € R, for all x and u satisfying the differential equation © = Ax+Bu. The
inequality (3.2) is called the dissipation inequality for the system & = Az + Bu
with supply rate 27 Qx + 227 STu + uT Ru. If a function V(x) satisfies this
inequality, it is called a storage function. The dissipation inequality expresses
the property that along trajectories z and u of the system the increase in
internal storage cannot exceed the rate at which storage is supplied to the
system. If such a function V(z) exists, we call the system dissipative with
respect to the given supply rate. It can be shown that the system # = Ax +
Bu with supply rate 7 Qz + 227 ST u + u” Ru is dissipative if and only if the
frequency domain condition (2.3) (so along the imaginary axis) holds. Thus,
(2.3) is equivalent to the existence of a real symmetric solution K to the linear
matrix inequality L(K) > 0. Moreover, if this condition holds, there exist
real symmetric solutions K~ and KT such that any real symmetric solution
K satisfies K~ < K < K*. The function V;(z) := —2T KTz is then the
smallest, and the function Va(z) := —2T K~z is the largest storage function.
Also, K~ and K™ are solutions of the algebraic Riccati equation (2.1). These
considerations show that the existence of a negative semi-definite solution to
(2.1) is equivalent to the existence of a negative semi-definite solution to the
linear matrix inequality (3.1), equivalently, to the existence of a positive semi-
definite storage function of the system 4 = Az 4+ Bu with supply rate 27 Qz +
227 STy + u” Ru.

The general problem of the existence of storage functions was recently put in
the framework of quadratic differential forms for linear differential systems [12],
[8]). An important role in these references is played by two-variable polynomial
matrices, i.e., matrices whose coefficients are real polynomials in two indeter-
minates, say ¢ and 7. A two-variable polynomial matrix ® can be represented
as

O(¢,m) =Y ¢y’
kd

where the ®; ; are matrices with real coefficients, k,j € N, and the sum is a
finite one. ® is called symmetric if ®(¢,n)T = ®(n,¢). Bach symmetric ¢ x ¢



two-variable poynomial matrix ® induces a quadratic differential form (QDF),
ie.,, a map Qg : €°(R,R?) — €>°(R,R), defined by

dke dit
Qa(l) = Z(W)T%’jﬁ
k,j
Associated with ®, we define the (one-variable) polynomial matrix 0® by
0P (&) := ®(—¢&,£). Note that this polynomial matrix is para-hermitian, i.e.,
(0B (=€)T = 0®(¢). A QDF Qg is called average non-negative if for all
£ € €°(R,R?) of compact support we have

/OO Qa(£)dt >0

In [12] this property was shown to be equivalent with the existence of a sym-
metric two-variable polynomial matrix ¥ such that

%Q\p(ﬁ) < Qo(¢) for all £ € €=(R, RY) (3.3)

It was also shown that Qg is average non-negative if and only if 0® is non-
negative along the imaginary axis, i.e., d®(iw) > 0 for all w € R. We now
explain how this result can be used to rederive the condition 2.3 for the ex-
istence of a real symmetric solution to the algebraic Riccati equation. Con-
sider the controllable system & = Az + Bu, more precisely, the system ¥ =
(R, R™+™ 98), with time axis R, signal space R"*™ and behavior B := {(z,u) €
CX(R,R"™™) | = Az + Bu}. Any controllable system also admits an image
representation (see ([6, 11]). Consider the image representation

x C(4)B >
= 14 3.4
(2)- (5 59
Here, p(§) is the characteristic polynomial of A, i.e., p(§) := det(¢1 — A), and
C(€) is the polynomial matrix defined by C(¢) := p(¢)(é1 — A)~!, that is, the

classical adjoint of £ — A, appearing when one applies Cramer’s rule to compute
the inverse (£ — A)~!. We have

B = {(z,u) € C°(R,R™™) | there exists £ € €*°(R, R™) such that 3.4}

so (3.4) indeed defines an image representation of our system ¥. Now define
the symmetric two-variable polynomial matrix & by

_(cB T( Q s ) ( C(n)B )

®(C,n) == ( DO ) S R ()] (3.5)
It is immediate that if z, u and £ are related by (3.4), then for the QDF Qg
associated with ® we have Qg (¢) = 27 Qx4+ 227 STy + u” Ru. Assume now that
Qs is average non-negative, equivalently, there exists W such that %Q\p <Qs.
It was proven in ([8]) that any such Qg can be represented as a (static) quadratic
function of any state of the underlying system. In our case, a (minimal) state is
given by z = C(%)Bé, so there exists a real symmetric matrix K € R"*" such
that if z and £ are related by z = C(%)Bé, then Qu(¢) = 2T Kz. Collecting
these facts we find that the following three statements are equivalent:



1 [% (#7Qz + 2275w + w"Ru)dt > 0 for all z € ¢*°(R,R") and u €
C(R,R™) of compact support, satisfying £ = Az + Bu

2. there exists a real symmetric matrix K € R"*" such that %ZETKQS <
27Qx 4+ 227 STu + uTRu for all z € €®(R,R") and u € €®(R,R™)

satisfying © = Ax + Bu
3. 00(iw) >0 forallw e R

As noted before, condition (2) is equivalent to the existence of a real symmetric
solution of the algebraic Riccati equation. Note that for ® given by (3.5) we
have ®(¢,n) = p(¢)p(n)W(¢,n) with W the two-variable rational matrix given
by (2.2). Hence, along the imaginary axis we have 0®(iw) = |p(iw)|20W (iw).
Therefore, condition (3) is equivalent to the frequency domain inequality (2.3).
Thus we have re-established the fact that the existence of a real symmetric
solution to the algebraic Riccati equation is equivalent to the frequency domain
inequality (2.3).

4 The existence of negative semi-definite solutions

Let us now study what the set-up of QDF’s for linear differential systems can tell
us on the existence of negative semi-definite solutions to the algebraic Riccati
equation. To start with, let ® be an arbitrary ¢ x ¢ symmetric two-variable
polynomial matrix. The associated QDF Qg is called half-line non-negative if
for all £ € €°(R,RY) of compact support we have

/0 Qa(0)dt > 0

It was proven in [12] that a QDF Q¢ is half-line non-negative if and only if
there exists a symmetric two-variable polynomial matric ¥ such that Q¢ > 0
and such that (3.3) holds. Applying this fact to our system 3, again using
that it has an image representation given by (3.4), we this time find that the
following two statements are equivalent:

1. fi)oo(xTQx + 227 STy + uTRu)dt > 0 for all z € €®(R,R") and u €
C®(R,R™) of compact support, satisfying © = Az + Bu

2. there exists a real symmetric matrix K € R"™", K < 0, such that
4(—2TKz) < 27Qz + 227STu + u"Ru for all z € €*°(R R") and
u € €°(R, R™) satisfying £ = Az + Bu

As before, condition (2) is equivalent to the existence of a negative semi-definite
real symmetric solution to the algebraic Riccati equation. In the following, we
establish a condition on the two-variable polynomial matrix ® that is equivalent
to condition (1). It turns out that in this way we reobtain the frequency domain
condition for the existence of a negative semi-definite solution to the algebraic
Riccati equation that was obtained before in [4]. First note that condition (1)



is equivalent to the condition that for all £ € €*°(R, R™) of compact support
we have

0 d T T d
/ (A(dZ)B£> <Q s ) (A(dé)3e>dt20 W)
—00 p(m)ﬁ S R p(m)ﬁ
By an approximation argument, this condition is equivalent to the same in-
equality holding for all £ € €*°(R, R™) such that f?oo |£]|?dt is finite. Now, let

N € N, and let Aj, Ag,..., Ay be N distinct complex numbers in Re(\) > 0.
Also, let v1,v9,...vx be arbitrary vectors in C™. Consider the function

N
) =) ey (4.2)
i=1

Applying (4.1) to this function £ (silently moving from real valued functions to
complex valued functions), we obtain

gg/_ooo(e(&uj)tv;‘ ( i&;f >T< g i > ( ;1)8;;1[9 )Uj)dt >0

which, after integration, yields

N N -
vf%vj >0 (4.3)
i=1 j=1 J
Since, for fixed complex numbers A1, Ao, ..., Ay, this holds for all v1,vs,... vy,
this implies that the hermitian mN x mN matrix whose (i, j)th block is equal
to the m x m matrix % is positive semi-definite. If, conversely, (4.3) holds
for any choice of N, any choice of distinct complex numbers Ay, Ag,..., Ay in

Re(A) > 0, and any choice of vectors vy, ve, ... vy in C™, then clearly (4.1) holds
for any function £ of the form (4.2). Again by an approximation argument, the
inequality (4.1) must then hold for all £ € €° (R, R™) of compact support. This
proves that any of the statements (1) and (2) is equivalent with the following
condition (3):

3. for all N € N, and for any choice A1, Ao, ..., Ay of distinct complex num-
bers in Re(A) > 0, the hermitian mN x mN matrix (M)
At ) i=12,..N

is positive semi-definite.

We now express condition (3) in terms of the two-variable rational matrix W.
It is easily verified that

<(I)_(>\ia)\j)> _ p* (W_(M,Aj)> D
Ait A Jiici0 N Ait XA ) iici9.N

Here D is the blockdiagonal matrix whose ith diagonal block is equal to p(A\;)I
(with I the m x m identity matrix). Thus we claim that condition (3) is
equivalent to the following condition (4):



4. for all N € N, and for any choice Aj, Ag, ..., Ay of distinct complex num-
bers in Re(A\) > 0 such that \; € o(A), 1 = 1,2,..., N, the hermitian
mN X mN matrix (M) is positive semi-definite.

it ) ig=1.2,...
Indeed, if \; € 0(A), i =1,2,..., N, then D is nonsingular. From this the proof
of the implication (3) = (4) is obvious. The proof of the converse implication
then follows by using a continuity argument.

We have now shown that the existence of a negative semi-definite real sym-
metric solution of the algebraic Riccati equation is equivalent to condition (4)
on the two-variable rational matrix W. Thus we have re-established the condi-
tion that was proposed in [4] as a correct alternative for the errorous frequency
domain condition (2.4). A similar condition was obtained in [1] in related work
on spectral factorization.

We remind the reader that the title of this note is: “When does the algebraic
Riccati equation have a negative semi-definite solution?” We have re-derived
the necessary and sufficient frequency domain condition (4) for this to hold.
Yet, in our opinion, this condition is not a satisfactory one, since not only it
requires one to check non-negativity of an infinite number of hermitian matrices,
but also there is no upper bound to the dimension of these matrices. In view
of this, we formulate the following open problem:

Find a reasonable necessary and sufficient frequency do-
main condition, i.e., a condition in terms of the rational
matrix 0W, or possibly in terms of the two-variable ratio-
nal matrix W, for the existence of a real symmetric nega-
tive semi-definite solution of the algebraic Riccati equation
(2.1).
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