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Abstract

In this paper we introduce and investigate similarity measures for convex polyhedra based on Minkowski addition and
inequalities for the mixed volume and volume related to the Brunn}Minkowski theory. All measures considered are
invariant under translations; furthermore, some of them are also invariant under subgroups of the a$ne transformation
group. For the case of rotation and scale invariance, we prove that to obtain the measures based on (mixed) volume, it is
su$cient to compute certain functionals only for a "nite number of critical rotations. The paper presents a theoretical
framework for comparing convex shapes and contains a complexity analysis of the solution. Numerical implementations
of the proposed approach are not discussed. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd.
All rights reserved.

Keywords: Shape comparing; Similarity measure; Convex set; Convex polyhedron; Minkowski addition; Slope diagram representation;
A$ne transformation; Similitude; Volume; Mixed volume; Brunn}Minkowski inequality

1. Introduction

Shape comparison is one of the fundamental problems
of machine vision. Shape similarity is usually measured in
the literature either by a distance function or a similarity
measure. In practice, it is usually important for the result
of comparisons to be invariant under some set of shape
transformations, leading to the necessity of solving com-
plicated optimization problems. On the other hand, one
is always interested to compare shapes in an e$cient
way. Since this is not possible in general, it is important
to study and describe shape classes and transformation
sets for which a compromise between generality and
e$ciency can be found.

Most of the known related results are valid for com-
paring 2D shapes (see, for example, Refs. [1,2]) and it is
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not clear how to extend them for comparing 3D shapes
e$ciently. This is mainly because of the fact that contour
representations are used for comparison of shapes. In 3D
the problem becomes much more di$cult and here poly-
hedral shapes can be considered as a simple but su$-
ciently general model for developing techniques for shape
comparison. In this paper we deal however with the more
constrained case of convex polyhedral shapes. This allows
us to estimate the complexity of the problem and to
develop an approach that avoids the necessity of check-
ing all possible variants, unlike other methods known in
the literature.

The method we use in this paper for comparing convex
polyhedra is based on Minkowski addition. The Brunn}
Minkowski theory [3] allows one to introduce several
similarity measures for convex shapes based on inequali-
ties for the volume and mixed volume. We consider
similarity measures for convex shapes which are invari-
ant under subgroups of the group of a$ne transforma-
tions on R3 and follow the outline of the paper [4]
devoted to 2D convex polygons. All these similarity
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measures are translation-invariant. If one considers
the measures which are invariant under the group of
orthogonal transformations, the direct computation
of similarity measures in the 3D case becomes very time
consuming. Every orthogonal transformation with posit-
ive determinant can be considered as a rotation about
some axis by a "xed angle. Therefore, the optimization
should be performed for all possible positions of rotation
axes and rotation angles.

Data representation is a very important part of every
computation. A spherical representation of convex poly-
hedra is most suitable while dealing with Minkowski
addition. One of the simplest of such spherical repres-
entations is the extended Gaussian image (EGI). Accord-
ing to this representation every polyhedral facet is given
by a point on the unit sphere having the same unit
normal vector as the corresponding facet. A weight is
assigned to such a point which equals the area of the
corresponding facet. It follows from the Minkowski exist-
ence theorem [3] that the discrete distribution of these
weights uniquely de"nes a convex polyhedron. The
representation is translation-invariant and if the poly-
hedron rotates its EGI rotates in the same way. Due to
these properties the EGI representation is often used in
computer vision for solving problems of recognition and
pose determination of 3D shapes [5}8].

Although the EGI de"nes a unique convex polyhed-
ron, the reconstruction of a polyhedron itself from its
EGI is a di$cult problem. Several algorithms have been
developed for this reconstruction. Little [9] suggested an
iterative algorithm which "nds the distances of the poly-
hedral facets from the origin. Recently, Moni [10] pro-
posed an algorithm which "rst establishes an adjacency
relation of facets and then "nds directions and lengths
of polyhedral edges. However, this algorithm is quite
time-consuming due to the necessity of solving nonlinear
optimization problems. The time complexity of the
polytope reconstruction problem from its EGI was in-
vestigated in Ref. [11]. Since the EGI is limited to convex
shapes, several extensions of it have been proposed in the
literature to deal with non-convex shapes as well [12}14].

This paper deals only with convex polyhedra and uses
the slope diagram representation [15]. The facets, edges
and vertices of a polyhedron are represented on the unit
sphere in R3 by spherical points, spherical arcs and
spherical polygons, respectively. Additionally, we keep
information about areas of facets and lengths of polyhed-
ral edges. This representation is unique for convex poly-
hedra, allows easy polyhedron reconstruction and com-
putation of Minkowski addition of polyhedra. This
representation is redundant in comparison to EGI which
contains only spherical points and areas of correspond-
ing polyhedral facets. As will be shown later, spherical
arcs play also an important role in computing similarity
measures for convex polyhedra. Although in fact they can
be derived from spherical points using time-consuming

reconstruction algorithms, we prefer to have them ex-
plicitly in the polyhedron representation.

If one restricts oneself to comparing convex polyhedra
then it is possible to prove that the volume and mixed
volume (which will be referred to as &objective func-
tionals') of a Minkowski sum of polyhedra are piecewise
concave functions of the rotation angle of one polyhed-
ron with a "xed axis of rotation. This implies that, for
every "xed rotation axis, there is only a "nite number of
rotation angles at which it is necessary to compute the
objective functionals in order to obtain the similarity
measure. We also show that the set of rotation axes to be
checked can be found using only information about the
orientation of facets of polyhedra and the position of
their edges. This set depends also on the similarity
measure under consideration. Moreover we show that for
the case of (mixed) volume the set of rotation axes to be
checked is "nite.

The paper is organized in the following way. In Sec-
tion 2 we brie#y discuss the approaches for Minkowski
addition of convex polyhedra, and introduce the slope
diagram representation of convex polyhedra, as well as
some facts about the a$ne transformation group and its
subgroups. Properties of mixed volumes and main in-
equalities related to the Brunn}Minkowski theory needed
in the paper are given in Section 3. To compare convex
polyhedra we introduce in Section 4 the notion of sim-
ilarity measures and de"ne a number of such measures
based on inequalities for the volume and mixed volume.
In Section 5 similarity measures based on (mixed) volume
are investigated which are invariant under rotations and
scaling. Given any axis of rotation, it is proved that it is
su$cient to compute the objective functionals needed to
obtain these measures only for a "nite number of critical
rotations, thus generalizing a similar result for the 2D
case [4]. Moreover, it is proved for the case of (mixed)
volume that only a "nite number of rotation axes has to
be checked.

2. Preliminaries

This section presents some basic notation and other
prerequisites needed in the remainder of the paper. Also,
the representation of convex polyhedra using slope dia-
grams is introduced, as well as some facts about the a$ne
transformation group and its subgroups.

By K(R3), or brie#y K, we denote the family of all
nonempty compact subsets of R3. Provided with the
Hausdor! distance [3] this is a metric space. The com-
pact convex subsets of R3 are denoted by C"C(R3), and
the convex polyhedra by P(R3). In this paper, we are not
interested in the location of a shape A-R3; in other
words, two shapes A and B are said to be equivalent
if they di!er only by translation. We denote this as
A,B.
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2.1. Minkowski addition of convex polyhedra

Minkowski addition of two sets A, B-Rn is de"ned by

A=B"Ma#bDa3A, b3BN.

It is well-known [3] that every element A of C is uniquely
determined by its support function given by

h(A, u)"supMSa, uTDa3AN, u3S2.

Here Sa, uT is the inner product of vectors a and u, and
S2 denotes the unit sphere in R3. It is also known that [3]

h(A=B, u)"h(A, u)#h(B, u), u3S2, (1)

for A, B3C. The support set F(A, u) of A at u3S2 consists
of all points a3A for which Sa, uT"h(A, u). Support sets
can be of dimension 0, 1, 2. The support set of dimension
k (k"0, 1, 2) is called a k-face and denoted by Fk. If A is
a convex polyhedron, then 0-faces, 1-faces and 2-faces are
called vertices, edges and facets of A, respectively. Hence-
forth, a facet will be denoted by F

i
, and its area by S(F

i
).

It is known from Minkowski's existence theorem [16]
(see also Ref. [3, p. 390] for a discussion of the n-dimen-
sional case as well as a general concept of surface
measures for convex sets) that a convex polyhedron is
uniquely determined by areas and normal vector direc-
tions of its facets.

Theorem 2.1 (Minkowski's existence theorem). Let
u
1
,2, u

k
3S2 be distinct vectors linearly spanning R3, and

let m
1
,2,m

k
be positive real numbers such that

k
+
i/1

m
i
u
i
"0.

Then there exists a convex polyhedron P in R3 having
k facets with normal vectors u

i
and area m

i
, i.e.,

S(F(P, u
i
))"m

i

for i"1,2, k.

This theorem is true for n-dimensional polytopes as
well.

Several equivalent ways are known to de"ne Min-
kowski addition [17] for convex polyhedra using repres-
entations based on vertices or facets. These are especially
helpful for the actual computation of Minkowski sums.
Let p

i
, i"1,2, n

P
be the vertices of P and q

i
, i"

1,2, n
Q
, be those of Q. Then

P=Q"convMp
i
#q

j
D i"1,2, n

P
, j"1,2, n

Q
N.

Here convM ) N denotes the convex hull.

Theorem 2.2. Let P and Q be two convex polyhedra in R3.
Then for every u3S2,

F(P=Q, u)"F(P, u)=F(Q, u). (2)

This theorem is valid for the n-dimensional case as well
[3, Theorem 1.7.5].

Eq. (2) is the basis for computing Minkowski addition
of convex polyhedra. We follow here the outline of
Ref. [15] and refer to it for a more detailed discussion.

Since a convex polyhedron is de"ned by its oriented
facets, it is su$cient for computation of P=Q to "nd
only the facets of polyhedron P=Q. For every facet
F(P=Q, u) the normal unit vector u is either orthogonal
to a facet of P or/and Q, or there exist non-parallel edges
of P and Q for which u is a normal vector. Therefore the
facets of P=Q can be obtained by [15,18]

(1) Minkowski addition of two facets: addition of a facet of
P and a facet of Q;

(2) Minkowski addition of a facet and an edge: addition
of a facet of one of the two summands and an edge of
the other;

(3) Minkowski addition of a facet and a vertex: addition
of a facet of one of the two summands and a vertex of
the other;

(4) Minkowski addition of two non-parallel edges: addi-
tion of non-parallel edges of P and Q.

Here the added facets, edges, and vertices lie in sup-
porting planes with parallel outward normals.

2.2. Polyhedra representation

The remainder of the paper makes use of the slope
diagram representation (SDR) of convex polyhedra [15].
According to this representation, facets, edges and
vertices of a polyhedron are given by points, spherical
arcs and convex spherical polygons of the unit sphere S2,
see Fig. 1.

f Facet representation. A facet F
i
of a polyhedron which

is orthogonal to the unit vector u
i
is represented on the

sphere S2 by the end point of this vector.
f Edge representation. Each edge is represented by the

arc of the great circle (spherical arc) joining the two
points corresponding to the two adjacent facets of the
edge.

f Vertex representation. The region (called the spherical
polygon) of the sphere bounded by the spherical arcs
corresponding to the edges which are adjacent to a
polyhedral vertex, represents this vertex on the sphere
S2. The spherical arcs are included in the region.

Sometimes we speak about spherical points and arcs of
a polyhedron, meaning spherical points and arcs of its
slope diagram representation. Also, weights of spherical
points and spherical arcs are used. The weight of
a spherical point or arc equals the area of the corre-
sponding polyhedral facet, or the length of the corre-
sponding polyhedral edge, respectively.
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Fig. 1. Polyhedron (a) and its slope diagram representation (b).

Therefore, the SDR of a polyhedron P is a triple
SDR(P)"(V,A,W). Here V"Mu

1
, u

2
,2, u

nP
N is the set

of spherical points, for which the same notation is used as
for the corresponding unit vectors Mu

i
N of P. ALV]V

is the set of spherical arcs. An arc from A connecting
points u

i
and u

j
is denoted by (u

i
, u

j
). W denotes the

weights of points and arcs, i.e., a
P
(u

i
) (or a(u

i
)) equals the

area of the corresponding facet F
i
and l

P
(u

i
, u

j
) (or simply

l(u
i
, u

j
)) equals the length of the edge between facets

F
i
and F

j
of the polyhedron P.

In the two-dimensional case, i.e., in the case of convex
polygons, the slope diagram can be considered also as
a function M(P, u) de"ned on the unit circle S1. Given
a polygon P-R2, denote by l

i
the length of edge i and by

u
i
the vector orthogonal to this edge. Then

M(P, u)"G
l
i

if u"u
i

0 otherwise.

This representation is also called in Ref. [4] a perimetric
measure representation.

As follows from Eq. (2), Minkowski addition of two
convex polygons can be computed by merging their re-
spective slope diagrams. Mathematically, this amounts
to the following relation [17,19]:

M(P=Q,u)"M(P, u)#M(Q, u),

for P, Q3P(R2) and u3S1. (3)

Let us denote by a
i
"Lu

i
the angle between the positive

x-axis and u
i
. Then, given a slope diagram representation

M(P, u) of a convex polygon P, its area S(P) can be
computed as follows [4]:

S(P)"
n
+
i/1

l
i
sin a

i

i
+
j/1

l
j
cos a

j
!

1

2

n
+
i/1

l2
i

sin a
i
cos a

i
. (4)

Here n is the number of vertices of polygon P.
Now we have all the necessary tools to "nd the

Minkowski addition of two convex polyhedra P and

Q by merging their slope diagram representations. The
following three cases need special attention:

(1) A spherical arc of one polyhedron intersects a spheri-
cal arc of the other:

(2) A spherical point of one polyhedron lies on a spheri-
cal arc of the other:

(3) Two spherical points coincide.

Let us consider these cases in more detail.
Case 1: Let two spherical arcs (u, u@) and (v, v@) intersect

at the point w3S2 (see Fig. 2(c)). Point w represents
a facet of P=Q. This point is adjacent to u, u@, v, v@ and
the weights of the corresponding spherical arcs are com-
puted as follows (see Fig. 2(d)}(f) for illustration):

l
P^Q

(w, u)"l
P^Q

(w, u@)"l
P
(u, u@),

l
P^Q

(w, v)"l
P^Q

(w, v@)"l
Q
(v, v@).

For, the edges corresponding to arcs (u, u@) and (v, v@) will
be the edges of a facet (parallelogram) of P=Q corre-
sponding to w. The normal vectors uA"u]u@/Du]u@D and
vA"v]v@/Dv]v@D are parallel to the corresponding edges
of polyhedra P and Q represented by the arcs (u, u@) and
(v, v@), respectively. Directions and lengths of all edges of
the facet corresponding to the point w being known, one
can "nd the area of this facet by (4).

Case 3: Let us consider now an example of case 3.
Denote the coinciding spherical points of P and Q by
s (see Fig. 3(a)}(c)). Suppose also that point s is adjacent
to spherical points u

1
, u

2
, u

3
of P and spherical points

v
1
, v

2
, v

3
, v

4
of Q. Point s represents a facet of polyhed-

ron P=Q. The arcs (s, u
2
), (s, u

3
), (s, v

2
) and (s, v

4
) are

assumed to belong to di!erent great circles. Therefore,
there will be arcs (s, u

2
), (s, u

3
), (s, v

2
) and (s, v

4
) in the

SDR of P=Q with lengths determined by the SDR of
P and Q, respectively. For, the edges corresponding to
these spherical arcs will be the edges of the polyhedral
facet corresponding to s in P=Q. The arcs (s, u

1
), (s, v

1
)

and (s, v
3
) are assumed to belong to the same great circle,

such that the arcs (s, u
1
) and (s, v

1
) have the same direc-

tion and the arc (s, u
1
) is shorter than (s, v

1
). Therefore,

the spherical point s in P=Q will be adjacent to u
1

and
v
3

and l
P^Q

(s, u
1
)"l

P
(s, u

1
)#l

Q
(s, v

1
) and l

P^Q
(s, v

3
)"

l
Q
(s, v

3
). That is, the edges e

1
, e

2
corresponding to the

arcs (s, u
1
) and (s, v

1
) on the same great circle are parallel,

with the length of the corresponding edge of polyhedron
P=Q being equal to the sum of the lengths of the edges
e
1
, e

2
. This rule of changing weights is illustrated in

Fig. 3(f ). Similar to case 1 we can compute the area of the
facet of P=Q corresponding to the spherical point s by
Eq. (4).

Case 2: This is similar to case 3. Suppose that a spheri-
cal point u lies on a spherical arc (v, v

1
). Let us introduce

a new spherical point v@ on the arc (v, v
1
) at the same

position as u having weight zero, i.e. corresponding to
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Fig. 2. Minkowski addition of two convex polyhedra P and Q with intersecting spherical arcs.

a rectangular facet of zero area. This brings us back to
case 3.

2.3. Transformation groups

Consider subgroups of the group G@ of azne trans-
formations on R3. If g3G@ and A3K, then g(A)"
Mg(a) D a3AN. We write g,g@ if g(A),g@(A) for every
A3K. This is equivalent to saying that g~1g@ is a transla-
tion. We denote by G the subgroup of G@ containing all
linear transformations, i.e., transformations g with
g(0)"0.

The following result is obvious.

Lemma 2.3. For any two sets A, B-R3 and for every
g3G,

g(A=B)"g(A)=g(B). (5)

We introduce the following notations for subsets of G:

M: multiplications with respect to the origin by a posi-
tive factor

R: rotations about an axis (passing through the origin)

E: (plane) re#ections (planes passing through the origin)
I: isometries (distance preserving transformations)
S: similitudes (rotations, re#ections, multiplications)

Observe that I, R, M and S are subgroups of G [20].
For every transformation g3G one can compute its de-
terminant &det g' which is, in fact, the determinant of
the matrix corresponding to g. If g is an isometry then
Ddet gD"1; the converse is not true, however. If H is
a subgroup of G, then H

`
denotes the subgroup of

H containing all transformations with positive deter-
minant. For example, I

`
"R and S

`
comprises all

multiplications and rotations. If H is a subgroup of G,
then the set MmhDh3H, m3MN is also a subgroup,
which will be denoted by MH. Rotations in R3 are
denoted as follows. When l is an axis (i.e., directed line)
passing through the coordinate origin, r

l,a means a rota-
tion about l through angle a in a counter-clockwise
direction.

At several instances in this paper, the following con-
cept will be needed.

De5nition 2.4. Let H-G and J-K. We say that H is
J-compact if, for every A3J and every sequence Mh

n
N in

A.V. Tuzikov et al. / Pattern Recognition 33 (2000) 979}995 983



Fig. 3. Minkowski addition of two convex polyhedra P and Q with coinciding spherical points.

H, the sequence Mh
n
(A)N has a limit point of the form h(A),

where h3H.

It is easy to verify that R is compact. However, the
subcollection Mrm D m3ZN, where r"rl,a3R is a rotation
with a/n irrational, is not K-compact for "xed axis l.
The following result is easy to prove.

Lemma 2.5. Assume that H is J-compact and let f : JPR

be a continuous function. If A3J and f
0
:"sup

h|H
f (h(A))

is xnite, then there exists an element h
0
3H such that

f (h
0
(A))"f

0
.

3. Mixed volumes

This section brie#y describes properties of volumes
and mixed volumes of compact sets in R3. For a compre-
hensive treatment the reader may consult [3].

The following theorem is due to Minkowski for n"3
[21, p. 353]. Here C(Rn) is the space of compact convex
subsets of Rn.

Theorem 3.1 (Minkowski theorem on mixed volumes).
The volume of the Minkowski sum A"j

1
A

1
=2=j

m
A

m
of convex sets from C(Rn), where m is a positive integer and
j
i
*0, is a homogeneous polynomial of degree n in

j
1
,2, j

m
. That is

<(A)"
m
+

i1/1

2

m
+

in/1

j
i12

j
in
<(A

i1
,2, A

in
),

where the coezcients <(A
i1
,2, A

in
) are invariant under

permutations of their arguments. The coezcient
<(A

i1
,2, A

in
) is called the mixed volume of the convex sets

A
i1
,2, A

in
.

For our purposes the case n"3, m"2 is the most
interesting one. Thus, for convex sets A,B in R3 and
j, k*0 one has

<(jA=kB)"j3<(A)#3j2k<(A, A, B)

#3jk2<(A, B, B)#k3<(B). (6)

Let us present some useful properties of mixed volumes
[3,22]:

<(A, A, A)"<(A), (7)

<(A, B, C)*0; if <(A), <(B), <(C)'0,

then <(A, B, C)'0, (8)

<(jA, B, C)"j<(A, B, C) for every j'0, (9)

If x3R3 then <(A#x, B, C)"<(A, B, C), (10)

984 A.V. Tuzikov et al. / Pattern Recognition 33 (2000) 979}995



If A
1
LA

2
then <(A

1
, B, C))<(A

2
, B, C), (11)

<(g(A), g(B), g(C))"Ddet gD )<(A, B, C), for every a$ne g,

(12)

<(A,B, C) is continuous in A, B, C

w.r.t. the Hausdor!metric. (13)

Note that the fundamental relation

<(g(A))"Ddet gD )<(A), (14)

holding for every a$ne transformation g, is in agreement
with Eqs. (7) and (12).

If P is a convex polyhedron with facets F
i
and corre-

sponding outward unit normal vectors u
i
, i"1,2, k,

then [3]

<(A, P, P)"
1

3

k
+
i/1

h(A, u
i
)S(F

i
), (15)

where S(F
i
) is the area of the facet F

i
of P and h(A, u

i
) is

the value of the support function of A for the normal
vector u

i
.

In this paper the following inequalities play a central
role, see Hadwiger [23] or Schneider [3] for a compre-
hensive discussion.

Brunn}Minkowski inequality. For two arbitrary com-
pact sets A, BLR3 the following inequality holds:

<(A=B)1@3*<(A)1@3#<(B)1@3, (16)

with equality if and only if A and B are convex and
homothetic modulo translation, i.e., B,jA for some
j'0.

Minkowski inequality. For convex sets A, B3C(R3)

<(A, A, B)3*<(A)2<(B), (17)

and as before the equality holds if and only if B,jA for
some j'0.

Using the fact that for two arbitrary real numbers x, y
one has (x#y)2*4xy with equality i+ x"y, one de-
rives from the Brunn}Minkowski inequality that

<(A=B)*8<(A)1@2<(B)1@2, (18)

with equality if and only if A,B and both sets are
convex.

There exist several formulas, based on the support
function and areas of facets, that can be used to calculate
the volume of convex polyhedra (see, for example,
Ref. [17, p. 324]). Let u

1
, u

2
,2, u

k
be unit normal vec-

tors of the facets F
1
, F

2
,2, F

k
of a three-dimensional

convex polyhedron P, and let h(P, u) be the value of the
support function of P for the unit vector u. Then, from
Eq. (15), the volume of P can be calculated as follows:

<(P)"
1

3

k
+
i/1

h(P, u
i
)S(F

i
). (19)

Here S(F
i
) is the area of the facet F

i
. Other formulas for

convex polyhedra can be found in Ref. [24] and for
non-convex ones in Ref. [25].

4. Similarity measures

This section adopts the approach developed in Ref. [4]
to compare di!erent shapes in such a way that this
comparison is invariant under a given group H of trans-
formations. For example, if one takes for H all rotations,
then the comparison should return the same outcome
for A and B as for A and r(B), where r is some rotation.
In this section, we consider subgroups of the group
G of linear transformations on R3, as introduced in
Section 2.3.

To compare di!erent shapes the notion of similarity
measures is introduced. Recall that K is the family of all
nonempty compact subsets of R3.

De5nition 4.1. Let H be a subgroup of G and J-K.
A function p : J]JP[0, 1] is called an H-invariant
similarity measure on J if

(1) p(A, B)"p(B,A);
(2) p(A, B)"p(A@, B@) if A,A@ and B,B@;
(3) p(A, B)"p(h(A), B), h3H;
(4) p(A, B)"1QB,h(A) for some h3H;
(5) p is continuous in both arguments with respect to the

Hausdor! metric.

When H contains only the identity mapping, then p will
be called a similarity measure.

Although not stated explicitly in the de"nition above,
it is also required that J is invariant under H, that is,
h(A)3J if A3J and h3H.

Remark 4.2. If p in De"nition 4.1 satis"es the inequality

p(A, C)*p(A, B)p(B, C),

then the function d(A, B)"!log (p(A, B)) constitutes
a metric on J modulo translations and transformations
h3H. That is, d satis"es the triangle inequality.

The following result is needed.

Proposition 4.3. If p is a similarity measure on J and H is
a J-compact subgroup of G, then

p@(A, B)"sup
h|H

p(h(A), B)

dexnes an H-invariant similarity measure on J.

Unfortunately, p@ is di$cult to compute in many prac-
tical situations. Below, however, we consider several
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cases (with J"C) for which the computational com-
plexity can be reduced if one limits oneself to convex
polyhedra.

Let H be a given subgroup of G, and de"ne

p
1
(A, B)"sup

h|H

8Ddet hD1@2<(A)1@2<(B)1@2

<(A=h(B))
, (20)

p
2
(A, B)"sup

h|H

Ddet hD1@3<(A)2@3<(B)1@3

<(A, A, h(B))
, (21)

p
3
(A, B)"

1

3
sup
h|H
A
Ddet hD1@3<(A)2@3<(B)1@3

<(A, A,h(B))

#

Ddet hD2@3<(A)1@3<(B)2@3

<(A, h(B),h(B)) B. (22)

Remark 4.4. It is easy to show that p
3
(A, B)"

1
2
(p

2
(A, B)#p

2
(B, A)). Instead, one can also de"ne

p@
3
(A, B)"minMp

2
(A, B), p

2
(B, A)N.

The following proposition and its proof are very sim-
ilar to Proposition 4.4 in Ref. [4].

Proposition 4.5. If H is a C-compact subgroup of G, then

(a) p
1

is an H-invariant similarity measure on C;
(b) p

3
is an MH-invariant similarity measure on C;

(c) p
2

possesses only properties 2-5 of an MH-invariant
similarity measure on C.

Proof. We prove (a). The proof of (b) and (c) goes along
the same lines. Conditions (1), (2) and (5) in De"nition 4.1
are straightforward to verify. First let us prove (3). Using
(14) and (5) one gets

p
1
(h(A), B)"sup

h{|H

8Ddet h@D1@2<(h(A))1@2<(B)1@2

<(h(A)=h@(B))

"sup
h{|H

8Ddet h@D1@2Ddet hD1@2<(A)1@2<(B)1@2

<(h(A=h~1h@(B)))

"sup
h{|H

8Ddet h@D1@2Ddet hD~1@2<(A)1@2<(B)1@2

<(A=h~1h@(B))

"sup
h{|H

8Ddet h~1h@D1@2<(A)1@2<(B)1@2

<(A=h~1h@(B))

(putting hA"h~1h@)

"sup
hA|H

8Ddet hAD1@2<(A)1@2<(B)1@2

<(A=hA(B))

"p
1
(A, B).

Finally we prove Eq. (4). It is easy to see that p
1
(A, B)"1

if B,h(A). To prove the converse, assume that
p
1
(A, B)"1. Since H is C-compact, one can conclude

from Lemma 2.5 that there exists an h3H such that

8Ddet hD1@2<(A)1@2<(B)1@2

<(A=h(B))
"1,

that is,

<(A=h(B))"8<(A)1@2<(h(B))1@2.

In Eq. (18) we have seen that this implies that A,h(B).
This concludes the proof. h

In the next section invariance under rotations and
multiplications is investigated. Here we consider sim-
ilarity measures which are invariant under the multipli-
cation group.

Example 4.6 (Invariance under multiplications). Take
H"M, the multiplication group. Since the determinant
of the multiplication by j equals j3 one has

p
2
(A, B)"sup

j;0

j<(A)2@3<(B)1@3

<(A, A, jB)
"

<(A)2@3<(B)1@3

<(A, A, B)
.

Using Remark 4.4 one may also "nd a simple expres-
sion for p

3
.

The computation of p
1
(A, B) is reduced to minimizing

<(j~1@2A=j1@2B) for j'0, a non-trivial task. Proposi-
tion 4.7 below presents a result that can be applied to
overcome this di$culty.

In a number of cases it is possible to transform an
H-invariant similarity measure into an MH-invariant
similarity measure. Towards that goal the following nor-
malization procedure can be used. Given A3K, de"ne
A@"A/<(A)1@3. Thus A@ has volume 1. Furthermore,
g@"Ddet gD~1g for g3G; the normalized transform g@ has
determinant 1. It is obvious that

[g(A)]@"g@(A@), for A3K, g3G.

The following result holds; the proof is rather straight-
forward.

Proposition 4.7. Assume that H-G and J-K are such
that

h3HNh@3H,

A3JNA@3J.

If p is an H-invariant similarity measure on J, then p@
given by

p@(A, B)"p(A@, B@)

is an MH-invariant similarity measure on J. Furthermore,
p@"p if and only if p is MH-invariant.
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We conclude this section with the following simple but
useful result on re#ections, which is similar to Proposi-
tion 4.6 from Ref. [4]. Denote by e the re#ection on
R3 with respect to the origin.

Proposition 4.8. Assume that A3J implies e(A)3J. Let
p be a similarity measure on J, and dexne

p@(A, B)"maxMp(A, B), p(e(A), B)N.

(a) If p is R-invariant, then p@ is an I-invariant similarity
measure.

(b) If p is G
`

-invariant, then p@ is a G-invariant similarity
measure.

Proof. The proofs of (a) and (b) are almost identical. Here
only (b) will be proved. The properties (1), (2), and (5) of
De"nition 4.1 are straightforward to verify. We prove (3)
and (4).

(3) Let g3G. There are two possibilities: g3G
`

or
g3GCG

`
. Consider the second case. One can write

g"he with h"ge, and also g"eh@ with h@"eg; then
h, h@3G

`
. Now

p@(g(A),B)"maxMp(g(A), B), p(e(g(A)), B)N

"maxMp(h(e(A)), B), p(h@(A), B)N

"maxMp(e(A), B), p(A,B)N

"p@(A, B),

as was to be shown.
(4) Assume p@(A, B)"1, then either p(A, B)"1 or

p(e(A), B)"1. In the "rst case one has B,g(A), for some
g3G

`
, and in the second case B,g(e(A)) for some

g3G
`

. Therefore, B,g(A) for some g3G. h

5. Rotations and multiplications

In this section we consider similarity measures on the
spaceP of convex polyhedra which are S

`
-invariant, i.e.,

invariant under rotations and multiplications. Towards
this goal, the similarity measures will be used as de"ned
in (20)}(22) with H"S

`
and H"R, respectively. In

these expressions, the terms <(P=h(Q)),<(P, P, h(Q))
and <(P, h(Q), h(Q)) play an important role. Let the
slope diagram representations of two convex polyhedra
P and Q be given by (V(P), A(P), W(P)) and
(V(Q), A(Q), W(Q)), where V(P)"Mu

1
, u

2
,2, u

nP
N and

V(Q)"Mv
1
, v

2
,2, v

nQ
N are the normal vectors to facets

of polyhedra P and Q, respectively.

5.1. Representation and objective functionals

It is well known (see e.g. Ref. [26]) that every similitude
transformation can be represented as a product of a
homothetic transformation with prescribed center and an

Fig. 4. Geometry of rotation by an angle a about an axis with
spherical angles (h, /).

orthogonal transformation. Every orthogonal transfor-
mation in R3 with a positive determinant can be repre-
sented (up to translation) as a rotation about some axis.

Let l be an axis passing through the coordinate origin
and rl,a be the rotation in R3 about l by an angle a in
a counter-clockwise direction. Let h be the angle between
l and the z-axis, and / the angle between the projection
of l on the xy-plane and the x-axis, see Fig. 4. The
rotation rl,a can be expressed as a product of "ve rota-
tions:

rl,a"r
z,(

r
y,hrz,ary,~hrz,~(.

First the rotation axis l is made to coincide with the
z-axis through rotation about the z-axis by an angle
!/, followed by rotation about the y-axis by an angle
!h. Then the rotation by a is performed about the z-
axis. Finally, the axis l is rotated back to its original
position.

The required matrices of these transformations are
given by

R
z,(

"A
cos/ !sin/ 0

sin/ cos/ 0

0 0 1B, R
y,h"A

cosh 0 sinh

0 1 0

!sinh 0 coshB.
(23)

Alternatively, the rotation rl,a can be decomposed as
a product of three rotations about the coordinate axes
using Euler angles.

The slope diagram representation (SDR) of polyhed-
ron P is assumed to have the same center as the SDR of
Q by de"nition, that is, they are considered to be de"ned
on the same unit sphere. Moreover the SDR of P is "xed
and the SDR of Q can be rotated about any axis passing
through the origin. It is easy to formulate the rotation of
a polyhedron in terms of its SDR: SDR(r(Q))"r(SDR(Q)),
for every rotation r.

Given a "xed axis l, Eq. (15) can be used to compute
<(P, rl,a(Q), rl,a(Q)) for a3[0,2p):

<(P, rl,a(Q), rl,a(Q))"
1

3

nQ
+
j/1

h(P, rl,a(vj ))a(v
j
).
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The problem to be considered is the minimization of one
of the functionals <(P, P, rl,a(Q)), <(P, rl,a (Q), rl,a (Q)),
and <(P=rl,a(Q)). Below we refer to these functionals as
objective functionals.

5.2. Critical rotations

While rotating the slope diagram of polyhedron Q,
situations arise when spherical points of the rotated SDR
of Q intersect spherical arcs or points of the SDR of P.
Such relative con"gurations of Q w.r.t. P are critical in
the sense that they may correspond to (local) minima of
the objective functionals to be minimized.

First some de"nitions are needed distinguishing sev-
eral situations. Instead of rl,a we will also write (l,a) to
denote a rotation about the axis l by an angle a.

De5nition 5.1. Let l be a "xed rotation axis. Polyhedron
Q is called l-critical w.r.t. P when there exists at least one
spherical point v

j
in the SDR of Q which is on the

boundary of a spherical polygon in the SDR of P, i.e., for
every o'0 the points rl,~o (vj

) and rl,`o (vj
) belong to

di!erent spherical polygons in the SDR of polyhedron P.
Polyhedron Q is called critical w.r.t. P when Q is l-critical
w.r.t. P for at least one rotation axis l.

De5nition 5.2. Let l be a "xed rotation axis. Polyhedra
P and Q are called mutually l-critical when Q is l-critical
w.r.t. P or P is l-critical w.r.t. Q.

Notice that if Q is l-critical w.r.t. P (or vice versa),
P and Q are mutually l-critical.

De5nition 5.3. Let l be a "xed rotation axis. The
l-critical angles of Q w.r.t. P for mixed volume are the
angles a@

i

0)a@
1
(a@

2
(2(a@

N
(2p

such that Q@:"rl,a{i (Q) is l-critical w.r.t. P. The rotation
h:"rl,a{i ; is called a critical rotation of Q w.r.t. P for mixed
volume.

Let us emphasize here that the l-critical angles of
Q w.r.t. P for mixed volume are de"ned only by spherical
points in the SDR of the rotating polyhedron Q and not
by spherical points in the SDR of P. The l-critical angles
of Q w.r.t. P will in general be di!erent from the l-critical
angles of P w.r.t. Q.

This motivates the following de"nition.

De5nition 5.4. Let l be a "xed rotation axis. The l-
critical angles of Q w.r.t. P for volume are the angles aH

i
,

0)aH
1
(aH

2
(2(aH

K
(2p, (24)

such that P and Q@:"rl,aHi (Q) are mutually l-critical.
Note that the angles aH

i
are obtained by merging into

one ordered sequence the angles a@
i

such that Q@ is l-

critical w.r.t. P and the angles aA
j

such that P@:"r~1l,aAj (Q)
is l-critical w.r.t. Q.

Also, a classi"cation of critical angles is needed. To this
end, we introduce the index of criticality of two poly-
hedra.

De5nition 5.5. The index of criticality n(Q, P) of Q w.r.t.
P is the number of spherical points v

j
in the SDR of

Q which are on the boundary of spherical polygons in the
SDR of P.

De5nition 5.6. Polyhedron Q is called simply (doubly,
multiply) critical w.r.t. P when n(Q, P) equals one (two,
more than two). Polyhedra P and Q are called simply
(doubly, multiply) mutually critical when n(P, Q)#n(Q, P)
equals one (two, more than two).

De5nition 5.7. When P and Q are doubly mutually criti-
cal, and at least one spherical point of P coincides with
a spherical point of Q, this critical con"guration is called
point-double.

De5nition 5.8. Polyhedron Q is called strongly critical
w.r.t. P if Q is multiply critical w.r.t. P, or doubly critical
of type point-double. Polyhedra P and Q are called
strongly mutually critical if P and Q are multiply mutually
critical, or doubly critical of type point-double.

We will also say that (l, a) is a simply (doubly, multi-
ply, strongly) critical rotation of Q w.r.t. P for mixed
volume if Q@:"rl,a (Q) is simply (doubly, multiply, strong-
ly) critical w.r.t. P. Similarly, (l, a) is called a simply
(doubly, multiply, strongly) critical rotation of Q w.r.t.
P for volume if Q@:"rl,a(Q) and P are simply (doubly,
multiply, strongly) mutually critical.

Example 5.9. Take for P a cube, whose sides are parallel
to the coordinate axes, and for Q a cube identical to
P except for a rotation of p/4 w.r.t. the vertical axis, so
that the spherical points of P and Q on the equator are
distinct, cf. Fig. 5. Q is multiply critical w.r.t. P because all
spherical points of Q are on arcs of P. Q is not z-critical
w.r.t. P, where z is the vertical axis, because an in"nitesi-
mal rotation about this axis does not move points from
one spherical region to another. However, the angle p/4
is z-critical, because after rotating Q by p/4 spherical
points of Q hit spherical points of P; continuing
the rotation, they move along arcs of P from one spheri-
cal region of P to another (remember that spherical
arcs are included in spherical regions by de"nition, cf.
Section 2.2).

5.3. Minimization for xxed rotation axis

Let l be a "xed rotation axis and a3(a@
k
, a@

k`1
) for some

k, where Ma@
j
N are the l-critical angles of Q w.r.t. P for
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Fig. 5. Critical rotations of two cubes. In (c), spherical points u
1
!u

6
belong to SDR(P) and v

1
!v

6
to SDR(Q). Not all spherical arcs

are indicated.

Fig. 6. The value DOHD of the support function equals
DOCD cos(t

j
(a)) for the normal vector rl, a (vj ).

mixed volume, cf. De"nition 5.3. Then, for every spherical
point v

j
of Q, the value of the support function

h(P, rl,a(vj )) is de"ned by some vertex of polyhedron P,
say by vertex C as in Fig. 6. (The support plane of P with
normal rl,a(vj ) may also hit P in an edge; in that case one
takes for C a vertex adjacent to this edge.) Let t

j
(a) be the

angle between the vector rl,a(vj ) (translated to the point
C) and the vector OC. Then h(P, rl, a(vj ))"d

j
cos(t

j
(a)),

where d
j
"DOCD. Thus

<(P, rl,a(Q), rl,a(Q))"
1

3

nQ
+
j/1

d
j
a(v

j
)cos(t

j
(a)).

If the origin is chosen inside polyhedron P, then
Dt

j
(a)D(n/2. Now cos(t

j
(a)) is a concave function of a for

every j, as follows from Lemma A.1 which is proven in
Appendix A. Hence one gets that <(P, rl,a (Q), rl,a (Q)) is
a concave function of a3(a@

k
, a@

k`1
), since it is the sum of

concave functions. Thus we arrive at the following result.

Proposition 5.10. Given an axis of rotation l, the mixed
volume of the convex polyhedra P and Q, i.e. <(P,
rl,a (Q), rl,a (Q)), is a function of a which is piecewise con-
cave on [0,2n), i.e., concave on every interval (a@

k
, a@

k`1
),

for k"1,2,2,N and a@
N`1

"a@
1

. Here 0)a@
1
(a@

2
(

2(a@
N
(2p are the l-critical angles of Q with respect to

P for mixed volume.

It is clear that the proposition is true for the mixed
volume <(P, P, rl,a (Q))"<(Q, Q, r~1l,a (P)) as well, pro-
vided the l-critical angles of P with respect to Q are used,
i.e., polyhedron Q is considered to be "xed and polyhed-
ron P is rotated about the axis l in a clockwise direction.

Next consider the volume <(P=rl,a(Q)). Now the l-
critical angles of polyhedron Q w.r.t. P for volume, as
introduced in De"nition 5.4, play a decisive role. From
(6) and Proposition 5.10 one derives the following result.

Proposition 5.11. Given an axis of rotation l, the volume
<(P=rl,a (Q)) of the convex polyhedra P and Q is a function
of a which is piecewise concave on [0, 2p), i.e., concave on
every interval (aH

k
, aH

k`1
), for k"1, 2,2,K and aH

K`1
"

aH
1

. Here 0)aH
1
(aH

2
(2(aH

K
(2p are the l-critical

angles of Q w.r.t. P for volume.

It follows from Propositions 5.10 and 5.11 that in order
to minimize one of the functionals <(P, rl,a (Q),
rl,a (Q)), <(P, P, rl,a(Q)) and <(P=rl,a (Q)) for any xxed
axis of rotation l it is enough to compute this functional
only at a "nite number of l-critical angles.

5.4. Minimization for varying rotation axis

Since our interest is to "nd the minimum of objective
functionals for all possible axes of rotation, we have to
know which axes have to be checked. If for a "xed
position of polyhedron Q@"rl1,a1 (Q) there exists an axis
l@ such that Q@ is not l@-critical w.r.t. P, then the mixed
volume <(P, Q@, Q@) is not a minimum of the mixed vol-
ume functional <(P, rl,a(Q), rl,a(Q)), because a smaller
value of the functional can be found by rotating polyhed-
ron Q@ about the axis l@. This property, which is true for
other objective functionals as well, will be used to reduce
the set of axes to be checked.
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Whenever we speak of critical rotations of Q w.r.t.
P below, we mean critical rotations of Q w.r.t. P for mixed
volume or volume, respectively, depending on the objec-
tive functional under consideration.

5.4.1. Simply critical rotations

Lemma 5.12. If (l
1
, a

1
) is a simply critical rotation of

Q w.r.t. P, then the objective functionals do not have
a minimum at the relative conxguration of polyhedra P and
Q determined by (l

1
, a

1
).

Proof. Let a spherical point v@"rl1 , a1 (v) in the SDR of
rl1 , a1 (Q) intersect an arc (u

1
, u

2
) in the SDR of P for

a simple l
1
-critical angle a

1
. Denote the polyhedron

rl1 , a1 (Q) by Q@ and the axis which passes through the
point v@ by l@, cf. Fig. 7. Then rotation of Q@ about the axis
l@ allows us to "nd a smaller functional value, since Q@ is
not l@-critical w.r.t. P. h

Therefore the conclusion is that only doubly or multi-
ply critical rotations have to be checked.

5.4.2. Doubly critical rotations
For the case of doubly critical rotations, we next show

that only the ones of type point-double may correspond
to minima of the objective functionals.

Lemma 5.13. If (l
1
, a

1
) is a doubly critical rotation then

the objective functionals may have a minimum at the rela-
tive conxguration of polyhedra P and Q determined by
(l

1
, a

1
) only if the critical rotation is of type point-double.

Proof. We only consider the case, appropriate for
<(P, rl,a (Q), rl,a(Q)), when two spherical points of poly-
hedron rl1 , a1 (Q) intersect two spherical arcs of polyhed-
ron P. For other possible functionals the proof goes
along the same lines. We show that this relative con"g-
uration does not correspond to a minimum of the objec-
tive functional.

Let two spherical points v@
1
"rl1 , a1 (v1) and v@

2
"

rl1 , a1 (v2 ) in the SDR of polyhedron Q@"rl1 , a1 (Q) inter-
sect spherical arcs (u

1
, u

2
) and (u

3
, u

4
) in the SDR of P,

respectively, see Fig. 8. Denote by s
1

and s
2

the lines
through the origin which are orthogonal to the planes of
the great circles containing spherical arcs (u

1
, u

2
) and

(u
3
, u

4
), respectively. First assume s

1
Os

2
. Consider now

two planes through v@
1
, s

1
and v@

2
, s

2
, respectively, inter-

secting the sphere in two great circles. These circles either
intersect in two points or coincide. Let s be a point of
their intersection and l@ be the axis through the coordi-
nate origin and s. Rotating polyhedron Q@ about the axis
l@ allows us "nd a smaller value of the objective func-
tional since Q@ is not l@-critical w.r.t. P. The trajectories of
spherical points v@

1
and v@

2
under this rotation are small

Fig. 7. Polyhedron Q@"rl1 , a1 (Q) is l
1
-critical, but not l@-criti-

cal, w.r.t. P, where the axis l@ passes through the point v@ on the
spherical arc (u

1
, u

2
).

Fig. 8. The line s
1
, c.q. s

2
, is orthogonal to the plane of the great

circle containing (u
1
, u

2
), c.q. (u

3
, u

4
). Axis l@ is the intersection

of the planes through v@
1
, s

1
and v@

2
, s

2
, respectively.

circles which, although touching the arcs (u
1
, u

2
) and

(u
3
, u

4
), do not intersect them. If s

1
"s

2
, then (u

1
, u

2
)

and (u
3
, u

4
) are on the same great circle; taking

l@"s
1
"s

2
, the trajectories under rotation about l@ are

on this great circle, so that also in this case Q@ is not
l@-critical w.r.t. P. h

Remark 5.14. In the doubly critical case of type point-
double, there are two further situations where objective
functionals, say mixed volume, will not have a minimum.
The "rst case occurs when the two spherical points
v@
1

and v@
2

are antipodes on the sphere, because rotation
about the axis through these two spherical points allows
one to "nd a smaller value of the functionals, cf. the proof
of Lemma 5.12. The second case requires that one of the
points, say v@

1
, coincides with a spherical point of P and

the other point v@
2

is in the interior of a spherical arc
(u

1
, u

2
) of P, with the additional condition that the axis l@

through the origin and the point v@
1

lies in the plane

990 A.V. Tuzikov et al. / Pattern Recognition 33 (2000) 979}995



through the origin and v@
2

which is orthogonal to the
plane of the great circle containing the spherical arc
(u

1
, u

2
) on which v@

2
is located. Looking back at the proof

of Lemma 5.13 it is clear that Q@"rl1 , a1 (Q) is not l@-
critical w.r.t. P in this case as well.

5.4.3. Strongly critical rotations
The results so far imply that candidate minima of

objective functionals only have to be searched among
the strongly critical rotations of De"nition 5.8 (note how-
ever the exceptions for doubly critical rotations in
Remark 5.14; similar exceptions for the multiply critical
case can easily be constructed).

Let us examine the problem of minimization of
<(P, rl, a(Q), rl,a (Q)). Let u

i
, v

i
, i"1,2,2 be spherical

points in the SDR of polyhedra P and Q, respectively. To
"nd all strongly critical rotations the following procedure
can be applied.

Let u@ be a spherical point belonging to the boundary
of a spherical polygon in the SDR of P, i.e., u@ is either
a spherical point corresponding to a facet of P or an
internal point of a spherical arc in the SDR of P. Let l be
the axis through the origin and u@. There exists a rotation
h@ of polyhedron Q, such that u@"h@(v

i
) for a chosen

spherical point v
i
of the SDR of Q. Now one can "nd all

l-critical angles of h@(Q) w.r.t. P. If u@ is a spherical point
corresponding to a facet of P then every l-critical angle
will be at least point-double. So by performing the above
procedure for all spherical points of Q and P we "nd all
critical rotations where at least one spherical point of
Q coincides with a spherical point of P.

What remains is to "nd those multiply critical rota-
tions where three spherical points intersect the interior of
three spherical arcs. That corresponds to the case that the
point u@ de"ned above is an internal point of an arc, and
we have to "nd l-critical rotations with two spherical
points di!erent from v

i
intersecting spherical arcs of P.

This also has to be performed for all points u@ from the
boundary of spherical polygons in the SDR of P, and all
spherical points v

i
in the SDR of Q.

Remark 5.15. Note that if the objective functional is the
volume <(P=rl,a (Q)), then the strongly critical rotations
of Q w.r.t. P for volume have to be considered, which
implies that the set of critical rotations to be checked is
larger than when minimizing mixed volume.

5.5. Finiteness of the set of critical rotations

There remains the question of how many critical rota-
tions exist: is their number "nite or in"nite? The number
of critical rotations of type point-double is certainly
"nite: for the number of axes to be checked and the
number of critical angles per axis l, a bound can be given
depending on the number of vertices of P and Q. Every
critical rotation of type point-double can be represented

as a composition rl, a{r, where r is a rotation such that
some faces of polyhedra P and Q@"r(Q) have the same
orientation, say the same normal vector u. Axis l is
chosen along the vector u and a@ is an l-critical angle of
Q@ w.r.t. P. Since "nding l-critical angles is reduced to
solving quadratic equations, checking all point-double
rotations can be done e$ciently.

For the multiply critical rotations the answer depends
on the question in how many ways a given triple of
spherical points in the SDR of Q can be made to coincide
with three edges of the SDR of P by rotation: that is, how
many solutions exist for the system of conditions

rl,a (v1 )3(u
1
, u

2
), rl,a(v2 )3(u

3
, u

4
), rl,a (v3 )3(u

5
, u

6
), (25)

for given spherical points v
1
, v

2
, v

3
in the SDR of Q and

spherical arcs (u
1
, u

2
), (u

3
, u

4
), (u

5
, u

6
) in the SDR of P. It

is clear that the system of conditions (25) may have no
solutions at all, only one solution, or two solutions (it is
easy to "nd an example).

The question can be formulated in an equivalent way
as follows. Suppose that a spherical triangle nv

1
v
2
v
3

is
inscribed in a spherical triangle nu

1
u
2
u
3
. The question is

how many other positions of the triangle nv
1
v
2
v
3

(de-
noted by nv@

1
v@
2
v@
3
, see Fig. 9) exist, such that it is in-

scribed into nu
1
u
2
u
3

and v@
1
3(u

1
, u

2
), v@

2
3(u

2
, u

3
),

v@
2
3(u

3
, u

2
).

For the case of planar triangles there exists no more
than one other position [27]. It is natural to suppose that
the same should be true for the case of spherical triangles,
although we have no proof of this at the moment. How-
ever, what we can show is that, given nu

1
u
2
u
3

and
nv

1
v
2
v
3
, there is only a "nite number of axes of rotations

through the center of the sphere, carrying nv
1
v
2
v
3

to
another inscribed triangle nv@

1
v@
2
v@
3

of nu
1
u
2
u
3
, cf.

Theorem B.1 in Appendix B. Clearly, when nu
1
u
2
u
3
,

nv
1
v
2
v
3

and a rotation axis l are given, nv@
1
v@
2
v@
3

is
uniquely determined. Therefore the number of triangles,
obtained from nv

1
v
2
v
3

by rotation and inscribed in
nu

1
u
2
u
3
, is "nite as well.1

Hence, the following result has been established.

Theorem 5.16. The number of strongly critical rotations, to
be checked in computing the minimum of the objective
functionals, is xnite.

Suppose, for example, one wants to compute p
3

for
H"S

`
, the group comprising all rotations and multipli-

cations. One easily derives that

p
3
(P, Q)"

1

2
sup
h|RH A

<(P)2@3<(Q)1@3

<(P, P, h(Q))
#

<(P)1@3<(Q)2@3

<(P, h(Q), h(Q))B,
where RH are the strongly critical rotations.

1Recently it was shown that this number is at most 8 [28].
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Fig. 9. Di!erent positions of the inscribed spherical triangle.

6. Discussion

In this paper, we have discussed similarity measures
for convex polyhedra based on Minkowski addition and
the Brunn}Minkowski inequality, using the slope dia-
gram representation of convex polyhedra. All measures
considered are invariant under translations; furthermore,
some of them are also invariant under rotations, multipli-
cations, re#ections, or the class of all a$ne transforma-
tions. For the case of rotation invariance, we proved that
to obtain the measures based on (mixed) volumes it is
su$cient to compute objective functionals only for
a "nite number of critical rotations.

Numerical implementations of the proposed approach
have not been discussed in this paper. Recent results
show that the rotation axes are determined by the roots
of a polynomial equation of degree eight, which can be
easily computed numerically [28]. Therefore, the subject
of current research is to develop (numerical) methods for
the e$cient computation of all critical rotations.

7. Summary

Shape comparison is one of the fundamental problems
of machine vision. Shape similarity is usually measured in
the literature either by a distance function or a similarity
measure. In practice it is usually important for the result
of comparisons to be invariant under some set of shape
transformations, leading to the necessity of solving com-
plicated optimization problems. On the other hand, one
is always interested to compare shapes in an e$cient
way. Since this is not possible in general, it is important
to study and describe shape classes and transformation
sets for which a compromise between generality and
e$ciency can be found.

In this paper we introduce and investigate similarity
measures for convex polyhedra based on Minkowski
addition and inequalities for the mixed volume and
volume related to the Brunn}Minkowski theory. All

measures considered are invariant under translations;
furthermore, some of them are also invariant under sub-
groups of the a$ne transformation group. For the case of
rotation and scale invariance, we prove that to obtain the
measures based on (mixed) volume, it is su$cient to
compute certain functionals only for a "nite number of
critical rotations. The paper presents a theoretical frame-
work for comparing convex shapes and contains a
complexity analysis of the solution. Numerical imple-
mentations of the proposed approach are not discussed.
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Appendix A. Concavity property

Consider two unit vectors

a"(a
1
, a

2
, a

3
)"(sin h cos /, sin h sin /, cos h),

b"(b
1
, b

2
, b

3
)"(sin h

1
, 0, cos h

1
)

in R3, with 0)h)p, 0)h
1
)p, 0)/)2p. Here the

projection of vector b on the xy-plane is directed along
the x-axis. Denote by b(a) the rotation of vector b about
the z-axis by an angle a, 0)a)a

1
, i.e., b(a)"r

z, a(b).
Here b(0)"b. Denote by t(a) the angle between vectors
a and b(a); see Fig. 10.

Lemma A.1. Suppose that Dt(a)D(p/2 for all a, 0)
a)a

1
. Then cos(t(a)) is a concave function of a3[0, a

1
].

Proof. The vector b(a) equals r
z,a (b), i.e.,

b(a)"(sin h
1

cos a, sin h
1

sin a, cos h
1
).

Fig. 10. De"nition of the angle t(a) between the vector
b(a)"r

z,a(b) and an axis a with spherical angles (h, /).
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So

cos(t(a))"Sa, b(a)T

"sin h sin h
1
(cos / cos a#sin / sin a)

#cos h cos h
1

"sin h sin h
1

cos (/!a)#cos h cos h
1
.

Now, the angle between the projection of two vectors is
not larger than the angle between the original vectors, so
D/!aD)Dt(a)D(p/2. Since also sin h sin h

1
*0, we get

that cos(t(a)) is a concave function of a. h

Appendix B. Inscribed spherical triangles

Consider the following problem. On a sphere, a tri-
angle with vertices A, B, C is given. In this triangle are
inscribed two spherical triangles with vertices D, E, F and
D

1
, E

1
, F

1
, respectively, which can be transformed into

one another by rotation about an axis through the center
of the sphere. The question is in how many ways this can
be achieved.

We prove the following theorem.

Theorem B.1. Let two spherical triangles nDEF and
nD

1
E
1
F
1

be inscribed in a spherical triangle nABC, such
that D

1
and D are on the arc AC, E and E

1
are on the arc

AB, F and F
1

are on the arc BC. Let nDEF be xxed and
assume nD

1
E
1
F
1

is the result of a 3D rotation of nDEF
about an axis through the center of the sphere. Then the
number of possible orientations of the rotation axis is xnite.

Proof. In the proof we make use of the following result
for planar triangles [27, Chapter 1, Section 6]. When two
planar triangles nD@E@F@ and nD@

1
E@
1
F@
1

are inscribed in
a triangle nA@B@C@, such that D@

1
and D@ are on the side

A@C@, E@ and E@
1

are on the side A@B@, F@ and F@
1

are on the
side B@C@, with nD@

1
E@
1
F@
1

resulting from a 2D rotation of
nD@E@F@, then the center of rotation O must be the
similarity point of nD@E@F@ with respect to nA@B@C@. That
is, O is the intersection of the circumscribed circles of the
triangles nA@D@E@, nC@D@F@ and nB@E@F@. The limiting
case when the circles are tangent to one another corres-
ponds to the situation that nD@E@F@ and nD@

1
E@
1
F@
1

are
identical.

Now consider the case of spherical triangles. If A, B, C
are on a great circle, then all involved triangles are in the
same plane, so that the result for planar triangles applies.
Therefore assume that A, B, C are not on a great circle,
meaning that A, B, C are all on one side of some equato-
rial plane of the sphere.

Let n be the axis of the 3D rotation carrying nDEF to
nD

1
E
1
F
1
. Let O be a point on this axis, not equal to the

center ¹ of the sphere. Consider the plane < through

Fig. 11. Spherical triangle nABC with inscribed triangle nDEF
centrally projected from ¹ on a plane orthogonal to the rotation
axis ¹O.

O orthogonal to the axis n. Now from the center ¹ of the
sphere carry out a central projection of the spherical
triangles on the plane <, resulting in planar triangles
nA@B@C@, nD@E@F@ and nD@

1
E@
1
F@
1
. Then, since< is ortho-

gonal to the axis n, nD@
1
E@
1
F@
1

is the result of a rotation of
nD@E@F@ around the point O. Hence, from the case of
planar triangles we know that O is the intersection of the
circumscribed circles of the triangles nA@D@E@, nC@D@F@
and nB@E@F@, cf. Fig. 11. (We may assume that nD@E@F@
and nD@

1
E@
1
F@
1

are distinct.)
So we know that the points A, D, E are on a cone

K
ADE

whose axis n is orthogonal to the plane of its base
circle. Similarly, the sets C, D, F and B, E, F are on cones
K

CDF
and K

BEF
, respectively, with the same axis n,

orthogonal to the planes of the base circles of K
CDF

and
K

BEF
. The question now is in how many ways the axis

n can be chosen.
First we consider a single cone K

ABC
through three

points A, B, C (not on the same great circle) on a sphere
with radius 1. The axis of the cone is de"ned by a unit
vector n, and the ray through the center of the base circle
by m, satisfying the orthogonality relation Sn, mT"1,
see Fig. 12. If r is an arbitrary point on the cone, it has to
satisfy the equation

DDr!Sr, nTmDD2"DDSr, nTm!Sr, nTnDD2,

which after some simpli"cation reduces to

DDrDD2!2Sr, nTSr , mT#(Sr, nT)2"0 (B.1)

This equation is subject to the conditions

Sn, mT"1, Sn, nT"1. (B.2)
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Fig. 12. Cone with axis n orthogonal to the plane of its base
circle with center m.

Let a, b, c be the three linearly independent unit vectors
corresponding to the three points A, B, C on the sphere.
Then these satisfy Eq. (B.1), yielding three equations
linear in m. In matrix form this system of equations reads

A
Sn, aTaT

Sn, bTbT

Sn, cTcTBm"

1

2A
1#(Sn, aT)2

1#(Sn, bT)2

1#(Sn, cT)2B.
The solution for m is

m"

1

2Sa, b]cT Gb]c
1#(Sn, aT)2

Sn, aT
#c]a

1#(Sn, bT)2

Sn, bT

#a]b
1#(Sn, cT)2

Sn, cT H,
assuming that Sn, aT, Sn, bT, Sn, cT are not zero. Impos-
ing the condition Sn, mT"1 yields

2Sa, b]cT"Sn, b]cT
1#(Sn, aT)2

Sn, aT

#Sn, c]a T
1#(Sn, bT)2

Sn, bT

#Sn, a]b T
1#(Sn, cT)2

Sn, cT
(B.3)

By construction, the system of three vectors v
1
"a,

v
2
"b, v

3
"c is biorthogonal to the system w

1
"(b]c)/

Sa, b]cT, w
2
"(c]a)/Sa, b]cT, w

3
"(a]b)/Sa, b]cT:

Sv
i
, w

j
T"d

i,j
. Therefore any vector r has the expansion

r"
1

Sa, b]cT
M(b]c)Sr, aT#(c]a)Sr, bT

#(a]b)Sr, cTN.

Applying this formula to the vector n, and using the
normalization condition Sn, nT"1, one "nds the ident-
ity

1"
1

Sa, b]cT
MSn, b]cTSn, aT

#Sn, c]aTSn, bT#Sn, a]bTSn, cTN. (B.4)

Combining Eq. (B.3) with Eq. (B.4) gives

1"
1

Sa, b]cTG
Sn, b]cT

Sn, aT
#

Sn, c]aT
Sn, bT

#

Sn, a]bT
Sn, cT H

or

Sn, aTSn, bTSn, cTSa, b]cT

"Sn, b]cTSn, bTSn, cT#Sn, c]aTSn, cTSn, aT

#Sn, a]bTSn, aTSn, bT. (B.5)

Note that if n is a solution of Eq. (B.5), then jn is also
a solution for any j. Therefore Eq. (B.5) represents a
cubic cone. The cross section of this cone with any plane
not through the origin will be a polynomial curve of
degree three.

Returning now to the original problem, we have to "nd
three cones K

ADE
, K

CDF
and K

BEF
with a common axis

n orthogonal to the planes of their base circles. The axis
has to satisfy three equations of the form (B.5). For
completeness we give them here explicitly:

Sn, aTSn, dTSn, eTSa, d]eT

"Sn, d]eTSn, dTSn, eT#Sn, e]aTSn, eTSn, aT

#Sn, a]dTSn, aTSn, dT

Sn, cTSn, dTSn, fTSc, d]fT

"Sn, d]fTSn, dTSn, fT#Sn, f]cTSn, fTSn, cT

#Sn, c]dTSn, cTSn, dT,

Sn, bTSn, eTSn, fTSb, e]fT

"Sn, e]fTSn, eTSn, fT#Sn, f]bTSn, fTSn, bT

#Sn, b]eTSn, bTSn, eT.

Also, the normalization condition DDnDD"1 has to be
imposed. If solutions exist, they can be found by inter-
secting the algebraic surfaces corresponding to the three
cubic cones with a unit sphere, and looking for common
intersection points of the resulting three (non-identical)
algebraic curves. The number of such intersections is
"nite, therefore the number of solutions for the axis n is
"nite as well. h
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