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FAST MORPHOLOGICAL ATTRIBUTE OPERATIONS USING
TARJAN’S UNION-FIND ALGORITHM

MICHAEL H. F. WILKINSON and JOS B. T. M. ROERDINK
Institute for Mathematics and Computing Science,
University of Groningen, P.O. Box 800, 9700 AV, Groningen,
The Netherlands

Abstract. Morphological attribute openings and  closings  and  related operators are general-
izations of the area opening and closing, and allow filtering of images based on a wide variety
of shape or size based criteria. A fast  union-find  algorithm for the  computation of these
operators is presented in this paper. The new algorithm has a worst case time complexity of
O(N log N ) where N is the image size, as opposed to O ( N 2 log N ) for the existing algorithm.
Memory requirements are O (N) for both algorithms.

Key words: Area Operators, Attribute Operators, Granulometries, Union-find Algorithm.

1. Introduction

Morphological attribute openings, thinnings and granulometries were intro-
duced by Breen and Jones [1] as a generalization of morphological area opera-
tors proposed by Vincent [8, 9]. Attribute openings are most easily understood
in the binary case. Unlike structural openings, attribute openings are shape
preserving, because they simply test whether a connected component satisfies
some increasing criterion T. If it does, it is retained, if not, it is removed. In
the case of the area opening, the area of each component is compared to some
threshold value λ , and if the area of the component is larger, it is retained.
The flexibility of this methodology is shown in Figure 1. In this figure a binary
image of bacteria is filtered using three attribute openings, each of which would
remove all squares smaller than 11 x 11 pixels. The first is the area opening,
with λ = 121. All small bacteria have been removed in the resulting image. By
contrast, the attribute opening using the criterion that the moment of inertia
I must be larger than λ = 11 4 /6, removes most of the smaller components,
but not the elongated ones. Attribute opening using the length of the diagonal
of the minimum enclosing rectangle as criterion, with λ = , has similar
results.

The algorithm Breen and Jones derive for their wider class of operators is
based on Vincent’s pixel queue algorithm for area operators. Recently, a new
algorithm for area openings and closings has been developed [5], which is based
on Tarjan’s union-find algorithm [7]. It was found that the union-find based
algorithm was between 2 and 10 times faster than the original algorithm on the
images tested. Furthermore, the computational burden of the new algorithm
was practically independent of the size criterion λ  used, or the image content.
By contrast, Vincent’s algorithm is particularly sensitive to the presence of
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Fig. 1. Attribute openings of an image of bacteria: (a) a binary image of 256 x 256 pixels;
attribute using (b) area A ≥ 121; (c) Moment of inertia I ≥ 1 14 /6, corresponding to that
of an 11 × 11 square, and (d) length of diagonal of minimum enclosing rectangle D ≥
Structural opening of (a) by an 11 × 11 square structuring element removes all objects.

linear structures in the image, in which case the computing time rises almost
linearly with λ.

In this paper we extend the union-find algorithm to the wider class of at-
tribute openings and closings. Later work will focus on extension to thinnings
and thickenings, and granulometries or size distributions.

2. Attribute Morphology: Theory

The theory of attribute operators is given only briefly here. For a more thor-
ough discussion the reader is referred to [1]. Here we will first discuss binary
attribute openings and closings, and then the extension to the grey scale case.
Binary attribute openings are based on binary connected openings. Let the set
X ⊆ M denote a binary image with domain M. The binary connected opening
Γ x (X) of X at point x ∈ M yields the connected component of X containing
x if x ∈ X , and otherwise. Thus Γ x extracts the connected component to
which x belongs, discarding all others. Breen and Jones then use the concept
of trivial openings ΓT , which use an increasing criterion T to accept or reject
connected sets. A criterion T is increasing if the fact that C satisfies T implies
that D satisfies T for all D ⊇ C. The trivial opening Γ T of a connected set
C with increasing criterion T is just the set C if C satisfies T , and is empty
otherwise. Furthermore, ΓT The binary attribute opening is defined
as follows.

Definition 1 The binary attribute opening Γ T of set X with increasing crite-
rion T is given by

(1)

It can be shown that this is an opening because it is increasing, idempotent,
and anti-extensive [1]. The attribute opening is equivalent to performing a
trivial opening on all connected components in the image.

A generalization to grey scale can be made by first defining thresholded
images Xh (ƒ),

(2)
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Fig. 2. One dimensional discrete image with grey levels h > h' > h" to illustrate the def-
initions of level components, regional maxima, peak components, and the threshold images:
(a) double arrows indicate three level components and ; the former two are also
both peak components and and regional maxima at level h ; a further peak component

at level h' is also shown; (b) shows the threshold sets Xh , X h´ , and Xh" in relationship
to the grey scale image.

where the grey scale image ƒ is a mapping from the image domain M t o

Definition 2 The grey scale attribute opening γT of image ƒ with increasing
criterion T is given by

(3)

Grey scale attribute closings can easily be defined by a duality relationship
with the grey scale attribute openings [5].

3 . Algorithms

Before going into the details of the algorithms, we first define a level component
Lh at level h of a grey scale image ƒ as a connected component of the set of
pixels A regional maximum Mh at level h is a level com-
ponent no members of which have neighbors larger than h. A peak component
P h at level h is a connected component of X h (ƒ). At each level h there may
be several such components, which will be indexed as a n d , respec-
tively, with i , j , and k from some index set. It can be seen that any regional
maximum is also a peak component, but the reverse is not true. Examples
of these three types of components, and of the threshold sets Xh (ƒ) are given
in Figure 2.

All level components at level h are of course subsets of some peak com-
ponent at the same level h. However, for a given criterion T , not
necessarily all , because not all need meet the criterion T. I t
can be seen from (3), that not all level components are necessarily affected by
a grey scale attribute opening. Only those which are not subsets of a peak
component which meets the criterion T must be changed in grey level by
γ T . In other words, all must be left unaltered. If
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Fig. 3. Processing nested maxima by the pixel queue algorithm, assuming only the peak
at full width meets the criterion: (a) original image; (b-f) situation after processing the
first, second, third, fourth, and fifth maximum from the left. At each stage the pixels
indicated by the double arrows have been inspected. After visiting the current maximum, the
algorithm first inspects the pixels to the left of the maximum, because the valley to the right
is lower. This results in a frequent rescanning of pixels of the left-most regional maxima. (g)
16 × 16 pixel image showing nested maximum structure on which the computational burden
is expected to be O ( N 2 log N ) .

we assume that the peak component in Figure 2 meets the criterion, the
level component labeled in the same figure will remain unaltered. This is
because h" < h' , so that (the latter is not shown in the figure), and
since T must be increasing in the case of a grey scale attribute opening,
must meet T. By contrast, assume that does not meet the
criterion, and therefore since Then the grey level
of must be altered to h ' , because is the smallest peak component
containing which meets T.

3.1. THE P IXEL QUEUE ALGORITHM

The pixel queue based algorithms for morphological area and attribute oper-
ators are given in some detail elsewhere [l, 5, 8, 9], so we will describe them
only briefly. The source code of our implementations is available on request.

Briefly, the image is first scanned using a pixel queue to create a list of all
regional maxima After this, all are processed sequentially. This is
done by growing a peak component around a seed pixel within the
maximum using a priority queue. As each pixel is added to the growing
region, its neighbors which do not (yet) belong to the region are put in the
priority queue, from which they are retrieved in reverse grey level order. The
process of adding pixels pauses whenever the next pixel taken from the priority
queue has a grey level h" different from the current level h'. If h" > h ' , the
region grown so far is not a peak component at level h'. All the grey levels
of pixels found so far are set to h', and the maximum from which the region
was grown is removed from the list. If h" < h ' , the region grown so far is a
peak component at h ' , which is subsequently checked against the criterion. If
the criterion is met, the grey level of all pixels are set to h' , and i s
removed from the list. Otherwise, the routine continues adding new pixels at
level h". The algorithm terminates when all maxima have been processed.

One problem which occurs is that pixels may be visited more than once
if nested maxima exist, especially if the attribute threshold λ is large. This
effect can be seen in Figure 3. In this one-dimensional example, the algorithm
processes the maxima from left to right, and each time only detects that the
growing region is not a peak component after having re-visited all pixels visited
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by the previous region-growing loop. If λ is chosen so that the entire image (of
N pixels) is the smallest set satisfying the criterion, it is possible to construct
an image in which each pixel is processed O ( N ) times. A two-dimensional
example can be seen in Figure 3g. At each visit a pixel has to be inserted
into and retrieved from a priority queue of length of order . In that case
we arrive at a worst case running time of O ( N 2 log N ). Strictly speaking, this
effect is due to awkward arrangement of the depths of the valleys between
the maxima, not to the heights of the maxima. Had all the maxima in figure
3(a) been given the same height (as is the case in figure 3(g)), the problem
still remains. Processing the maxima in order of grey level does not solve the
problem.

The algorithm requires a label image of N pixels, and a (priority) queue also
of N pixels in the worst case. Therefore its memory requirements are O (N ).

3 .2 . THE UN I O N -FIND ME T H O D

Tarjan [7] presents the union-find algorithm which provides a general method
for keeping track of disjoint sets. It allows performing set-union operations on
sets which are in some way equivalent, while ensuring that the end product
of such a union is disjoint from any other set. Since connected components
and level components in an image are by definition disjoint sets, the union-
find algorithm lends itself to any image processing method which is defined by
such image components. Dillencourt et al. [2] have shown that the union-find
algorithm can be used for efficient connected component labeling of arbitrary
image representations. Fiorio and Gustedt propose a similar algorithm [3], and
Meijster and Roerdink [4] adapted the algorithm to level-component labeling.
Since attribute openings and closings are connected filters, their operation can
be defined directly in terms of connected components in the binary case and
level components in the grey scale case. This means Tarjan’s algorithm can
be adapted to attribute openings. This is born out by the application of the
algorithm to area openings [5].

Tarjan uses tree structures to represent sets. Each non-root node in a tree
points to its parent, while the root is flagged in some way. Two objects x and
y are members of the same set if and only if x and y are nodes of the same
tree, which is equivalent to saying that they share the same root. There are
four important operations.
– Makeset (x): Create a new singleton set {x}.
– FindRoot (x): Return the root element of the set containing x.
– Union(x,y): Compute the union of the two sets containing x and y.
– Equiv (x, y): determine whether x and y satisfy some equivalence criterion.

For level component labeling the algorithm becomes:

for pixels p do
{ MakeSet (p) ;

for all neighbors n<p do
if ( Equiv( n, p ) )

Union( n, p ) ;
}
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Note that in this context the condition n<p means that n is a pixel which has
been processed before p. In this case Equiv(n,p) is true if the image value I[n]
equals I[p]. Union calls FindRoot internally to determine the root nodes of
the trees containing n and p. After this scan, a second “resolving” scan assigns
each root pixel a unique label, and to each non-root pixel the label of its root.

Before going into the details of the attribute opening algorithm itself, we
will discuss the general framework for storing the disjoint sets, and the auxiliary
functions needed for attribute openings and closings.

The disjoint sets we have to find are all level components
which are not altered by the attribute opening γT , and, for all other the
smallest peak component which meets T. Each of these sets is
represented as a tree, with each pixel containing a pointer to its parent pixel.
To store the trees for the entire image, we use an integer array parent of the
same size as the image (i.e., N ), in which parent[p] is the parent of pixel p.
Pixels are stored as width*y+x,with x and y the pixel’s x and y coordinates,
and width the image width. If a pixel is a root of a tree, i.e. it has no parent, we
flag this by setting parent[p] < 0. If p is the root of a peak component which
does not meet the criterion, we call the pixel an active root , which is flagged
by parent[p] = ACTIVE< 0. All other roots are labeled INACTIVE (< 0). An
array auxdata of N void pointers is used to store pointers to any auxiliary
data about the peak component (e.g., area size, centroid location, etc.) needed
for computation of the attribute. Only if p is an active root does auxdata[p]
point to valid data. This allows us to process different extrema simultaneously,
rather than sequentially.

To perform any kind of attribute opening using a single routine, pointers to
four functions must be passed to the attribute opening procedure:
� NewAuxData, which initializes the auxiliary data,
� DisposeAuxData, which discards them,
� MergeAuxData, which merges two sets of auxiliary data,
� Attribute, which computes the attribute based on the auxiliary data.

The pseudo-code for the MakeSet, FindRoot, Equiv, and Union routines is
shown in Figure 4. In this case, as in the case of the area opening [5], the
Equiv and Union routines are asymmetrical. This is done to ensure that if the
set we are dealing with is a peak component Ph at level h , the root element
r has a grey level I[r] = h. Therefore, we process the pixels in decreasing
grey level order, and always make the last pixel processed the root of the new
tree. We do this by radix-sorting the pixels, and storing the coordinates in an
array Sortpixels of length N. Pixels of the same grey level are processed in
scan line order. Scanning of peak components from high to low grey levels is
guaranteed, without finding regional maxima explicitly.

As each pixel p is processed, we first check whether its grey level I[p] is
different from its predecessor’s greylevel I[p-]. If so, all active roots with
grey level I[p-] q are inspected, checking whether Attribute(auxdata[q])
≥ λ . If so, they are labeled as INACTIVE and their auxiliary data are discarded.
After this clean up, the MakeSet routine labels p as a singleton set, setting
parent[p] to ACTIVE, and calling NewAuxData, passing the pixel p to it (see
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void MakeSet ( int x )
{ parent[x] = ACTIVE;

NewAuxData(x);
}

void Link ( int x, int y )
{ if ( (parent [y] == ACTIVE) and (parent[x] == ACTIVE) )

{ auxdata[y] = MergeAuxData(auxdata[x] , auxdata[y]);
DisposeAuxData(auxdata[x]);

}
else if (parent[x] = ACTIVE)

DisposeAuxData(auxdata[x]);
else

{ DisposeAuxData(auxdata[y]);
parent [y] = INACTIVE; }

parent[x] = y;
}

int FindRoot ( int x )
{ if ( parent[x] >=O )

{ parent[x] = FindRoot( parent[x] );
return parent[x] ;

}
else return x;

}

boolean Equiv ( int x, int y )
{ return ( (I[x] == I[y]) or (parent[x] == ACTIVE) );
}

void Union ( int n, int p )
{ int r = FindRoot(n);
if (r !=p)

if ( Equiv(r, p) )
Link( r, p );

else if (parent[p] == ACTIVE)
{ parent[p] = INACTIVE;

DisposeAuxData(auxdata[p]); }
}

Fig. 4. The basic operations for attribute openings and closings using the union-find method.
The negative constants ACTIVE or INACTIVE flag active and inactive roots in the parent
array, and auxdata[p] contains pointers to auxiliary data. The variable lambda is equal to
the parameter λ. The parameters of Equiv must be root nodes. Linking is done if either the
image values I[x] and I[y] are identical, or if x is a root of an active peak component.
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figure 4). The Union procedure is now called for each neighbor n which has
already been processed. We briefly describe this procedure here. Since the p
is always a root, FindRoot is only called to find the root pixel r of n. Next,
Equiv is called with r and p as parameters. If the grey level I[r] of r is equal
to that of p or if r is active, Equiv returns “true” and the two trees are merged
using the Link routine (see figure 4). If Equiv returns “false”, a neighbor has
a root grey level higher than I[p] and is inactive, so
Therefore, p is set to inactive, and its auxiliary data are discarded. The Link
routine always assigns p to parent[r] . Before that, Link inspects both roots.
If both r and p are active, MergeAuxData is called on the auxiliary data of r
and p, storing the result in the auxiliary data of p, and discarding the auxiliary
data of r. If either r or p are inactive, the active root is set to inactive, and its
auxiliary data are discarded.

In pseudo code this part of the algorithm now becomes:

for pixels p do
{ if ( I [p] != I [p–] )

for all pixels q with I [q]==I [p–] do
if ( ( parent [q] == ACTIVE ) and

( Attribute(auxdata[q]) >= lambda ) )
{ parent [q] =INACTIVE;

DisposeAuxData(auxdata [q] ) ;
}

MakeSet (P) ;
for all neighbors n<p do

Union, (n, p ) ;
}

Here p– denotes the pixel processed immediately before p. This part of the
algorithm requires O ( N log N ) operations in the worst case [5, 7].

At the end of this part of the algorithm, we have found two kinds of disjoint
sets: (i) those with constant grey level, which are level components

and (ii) those with varying grey level, which are peak components
with h the maximum grey value for which the criterion is satisfied. Because

the root r of these peak components is always the last pixel processed, its grey
level in the input image satisfies ƒ( r ) = h. Therefore, if we set the grey level
of each pixel in the output image to that of its root in the input image, all

remain unchanged, whereas all are filled uniformly with a
grey level of h, as in the previous algorithm. Assigning all pixels the grey level
of the root of their component can be done in linear time [5]. The simplest
approach is to store the output image in the parent array:

For each pixel p in reverse sort order do
if (parent [p] < 0) then

parent [p] = I [p] ;
else

parent [p] = parent [parent [p] ] ;
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Fig. 5. Timing of algorithms for mean and pathological cases: (a) Mean CPU times and
standard deviations of moment of inertia closings as a function of λ for the union-find (solid
line) and pixel queue (dashed line) algorithms, for 20 natural images of 256 x 256 pixels; (b)
log-log plot of timing results as a function of image size N for both algorithms, for the case
shown in Figure 3a, showing at least O (N 2) complexity for the pixel queue method (dashed),
versus O (N) for union-find (solid).

Thus, each pixel which has a negative parent[p] is a root, and is assigned
its image value. Every image value which is not a root has a parent[p] which
always points to a pixel which was processed later in the first phase of the
algorithm, and which will therefore always have been assigned the correct image
value before the current pixel in the reverse order scan. At the end of this phase,
the array parent contains the output image.

It might be thought that finding all components as well as
those which need to be changed is wasteful, compared to the region-growing
phase of the pixel queue approach, which only grows the peak components,
without visiting those which need not be altered. However, during the
phase in which the maxima are sought, the pixel queue algorithm also visits all

regardless of whether they should be altered or not.

4. Timing Results

To compare the computational complexities of both algorithms on real images
as a function of the attribute threshold λ, we computed moment of inertia
openings with increasing λ for 20 natural images of 256 x 256 pixels, including
microscopic images, buildings, portraits, aerial photographs and astronomical
images. The results are shown in figure 5a. Similar results were obtained
using the diagonal of the minimum enclosing rectangle as attribute (data not
shown). As in the case of area openings and closings [5], CPU times for the
pixel queue algorithm depend strongly on λ, and on image content; hence the
large standard deviations of the timings. The union-find approach is faster in
all cases, except for small λ in a few images. The coefficient of variance of
the timings is also much smaller, indicating a far smaller dependence on image
contents.

A far more dramatic difference in CPU times was observed in a set of ar-
tificial images, designed to demonstrate the O (N 2 log N) worst case behavior
of the pixel queue algorithm. The images consist of maxima nested in such a
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way that each time a new maximum is flooded, all previously processed pixels
must be visited again, in a two-dimensional variant of the case shown in Figure
3. A 16 x 16 pixel image from this set is shown in figure 3g. A log-log plot
of CPU times versus image size for both algorithms for images ranging from
16 x 16 up to 128 x 128 pixels is shown in figure 5b. The pixel queue algorithm
shows a quadratic dependency of CPU time on image size, and at a size of
256 x 256 the CPU time was 4340 s. By contrast, the union-find algorithm
shows a linear dependency on image size, and needs only 0.7 s for an image
of 256 x 256 pixels. It appears that the pixel queue approach does not handle
nested extrema efficiently, contrary to what has been claimed [l, 8, 9].

5. Conclusions

It has been shown that the union-find algorithm is a fast method for computing
attribute openings, especially at high values of λ . Its theoretical worst case is
an order of magnitude smaller than that of the pixel queue algorithm, though
it may require more memory, depending on the attribute used. However, both
algorithms require O ( N ) memory in the worst case (apart from the image
itself).

Further work is in progress to extend the algorithm to computation of at-
tribute granulometries. It is expected that the speed gains will be considerable,
since the pixel queue methods are particularly slow when large connected com-
ponents must be scanned, i.e. at large λ. The union-find algorithm does not
suffer from this drawback. A comparison to the MAX-tree approach for com-
putation of anti-extensive connected filters [6] must also be made.
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