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In this paper we consider the Sturm{Liouville operator d2 =dx2 1=x on the interval
[a; b], a < 0 < b, with Dirichlet boundary conditions at a and b, for which x = 0 is a
singular point. In the two components L 2(a; 0) and L 2(0; b) of the space
L 2(a; b) = L 2 (a; 0) © L 2(0; b) we de¯ne minimal symmetric operators and describe all
the maximal dissipative and self-adjoint extensions of their orthogonal sum in
L 2(a; b) by interface conditions at x = 0. We prove that the maximal dissipative
extensions whose domain contains only continuous functions f are characterized by
the interface condition limx ! 0+ (f 0 (x) f 0 ( x)) = ® f (0) with ® 2 C + [ R or by the
Dirichlet condition f (0+) = f (0 ) = 0. We also show that the corresponding
operators can be obtained by norm resolvent approximation from operators where
the potential 1=x is replaced by a continuous function, and that their eigen and
associated functions can be chosen to form a Bari basis in L 2 (a; b).

1. Introduction

In this paper we consider the di¬erential expression

l[f ](x) := f 00(x)
f(x)

x
(1.1)

and the corresponding di¬erential equation

f 00(x)
f(x)

x
¶ f (x) = 0 (1.2)

¤Dedicated to Professor Boele Braaksma on the occasion of his 65th birthday, in friendship.
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on the interval [a; b], where a < 0 < b, with the boundary conditions

f (a) = f (b) = 0: (1.3)

Since the potential is not summable at x = 0, it is not a classical Sturm{Liouville
problem. We associate with this boundary eigenvalue problem two minimal oper-
ators in the spaces L 2([a; 0)) and L 2((0; b]). Since these operators are in the limit
case at x = 0, they are not self-adjoint and their direct sum operator S in the space
L 2([a; b]) is symmetric with defect index (2; 2). It is the aim of this paper to describe
all self-adjoint and maximal dissipative extensions of S in L 2([a; b]). Recall that an
operator A in some Hilbert space H is called dissipative if Im(Af; f ) > 0 for all
f 2 H and maximal dissipative if it does not have a proper dissipative extension.
In particular, we also describe those extensions among them for which the domain
consists only of continuous functions. This set turns out to be a one-parameter
family of operators T ® , ® 2 C + [ f1g, which are de­ ned by the interface condition

lim
x ! 0+

(f 0(x) f 0( x)) = ® f (0) if ® 2 C;

and by

f (0+) = f (0 ) = 0 if ® = 1:

The problem (1.1) has been studied by several authors [4,8,12]. In [4] the potential
x 1 is replaced by the regular potential (x i") 1 and the resulting operator for

" ! 0 is considered. This operator is the extension T ® with ® = i º (see Remark
5.2). In [8] the operator T 1 is studied: it is the direct sum of two self-adjoint oper-
ators on [a; 0) and (0; b], respectively, with Dirichlet boundary conditions. Gunson
treats the operators T iº [12, theorem 2.6 and eqn (2.13)] and T 1 [12, theorem 2.2
and eqn (2.1)] as well as T0, where the potential x 1 is considered in the distri-
butional sense as the Cauchy principal value [12, theorem 2.4 and eqn (2.9)]. This
self-adjoint operator is also studied in [1] from the viewpoint of quasi-derivatives.
We mention that the operators T ® considered here have discrete spectrum. The
case where the interval [a; b] is replaced by the real axis is also considered in [12].
In this case the corresponding operators Ti ³ with 0 < ³ < º also have an abso-
lutely continuous spectrum and Ti º has only absolutely continuous spectrum. For a
more recent discussion about the potential x 1 in the physics literature, we refer
to [14,17,18,20], and the references therein.

In x 2 we introduce the symmetric operator S. In x 3 all self-adjoint and maximal
dissipative extensions of S are described by an interface condition at 0. Here we use
essentially the fact that all these extensions are contained in S ¤ . There also exist
extensions of S in L 2([a; b]) with a non-empty resolvent set which are not contained
in S ¤ [3]. The extensions T ® , ® 2 C [ f1g, are described in x 4. By a method
already used in [12] it is shown that the extensions T ® for ® 2 C can be obtained
as norm resolvent limits of operators generated by regular potentials. An analogous
result for the case ® = 1 can be found in [3]. In x 5 we express the solutions
of equation (1.2) by Whittaker functions in order to get information about the
characteristic determinant and the asymptotics of the eigenvalues. This is used in
x 6, where we prove that the system of root vectors of the operator T ® forms a Bari
basis in L 2([a; b]). Finally, the Fourier coe¯ cients of the corresponding expansions
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are expressed by inner products in L 2([a; b]) with the complex conjugate functions
of the root functions (which are the root functions of the adjoint operator).

2. The symmetric operator S

Let a < 0 < b. We consider the di¬erential expression l[f ] from (1.1) on the intervals
I := [a; b], I := [a; 0) and I+ := (0; b]; at the endpoints a and b we always impose
the Dirichlet boundary conditions (1.3). In the space L 2(I§) a minimal operator
L§ and a maximal operator L ¤

§, which is the adjoint of the minimal operator in
L 2(I§), are associated with the di¬erential expression l. The domain of the maximal
operator L ¤

+ is

D(L ¤
+ ) := ff 2 L 2(I + ) : f; f 0 2 AC loc(I+ ); f (b) = 0; l[f ] 2 L 2(I+ )g

and L ¤
+ f = l[f ] if f 2 D(L ¤

+ ). Here, for example, AC loc(I + ) is the set of locally
absolutely continuous functions on I+ . The set D(L ¤ ) and the operator L ¤ are
de­ ned correspondingly. To describe the domains of the minimal operators L§, we
introduce for f; g 2 D(L ¤

§) and x; x1; x2 2 I§ the sesquilinear forms

[f; g]x := f (x)g0(x) f 0(x)g(x); [f; g]x2
x1

:= [f; g]x2 [f; g]x1 : (2.1)

Then Green’s formula becomes

[f; g]x2
x1

=

Z x2

x1

(l[f ](x)g(x) f (x)l[g](x) dx: (2.2)

It implies that the limits limx ! 0§[f; g]x =: [f; g]0§ exist and are ­ nite and that
the sesquilinear forms [¢; ¢]x2

x1
are continuous on D(L ¤

§) with respect to the L ¤
§-

graph norms. The domains of the minimal operators can be described as follows [7,
theorem 2.3]:

D(L ) = ff 2 D(L ¤ ) : [f; g]0a = 0 for all g 2 D(L ¤ )g; (2.3)

D(L + ) = ff 2 D(L ¤
+ ) : [f; g]b0+ = 0 for all g 2 D(L ¤

+ )g; (2.4)

and Green’s formula (2.2) implies that the operators L§ are symmetric.
Consider on the interval [a; b] the functions

u(x) = x and v(x) = 1 x ln jxj:

We choose numbers "1; "2 : 0 < "1 < "2 < minf a; bg and twice continuously
di¬erentiable functions u§ on I§ with the properties

u + (x) :=

(
u(x) if 0 < x < "1;

0 if "2 < x < b;
u (x) :=

(
0 if a < x < "2;

u(x) if "1 < x < 0;

and, analogously, functions v§. For x in a neighbourhood of 0,

l[u§](x) = 1; l[v§](x) = ln jxj;

hence l[u§], l[v§] 2 L 2(I§) and u§; v§ 2 D(L ¤
§). Further,

[v ; v ]0a = lim
x! 0

(v (x)v0 (x) v0 (x)v (x)) = 0; (2.5)

[u ; v ]0a = lim
x! 0

(u (x)v0 (x) u0 (x)v (x)) = 1; (2.6)
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and, analogously,

[u ; u ]0a = [v + ; v + ]b0+ = [u + ; u + ]b0+ = 0;

[v ; u ]0a = [v + ; u + ]b0+ = [u + ; v + ]b0+ = 1:

)

(2.7)

The sesqilinear forms [¢; ¢]0a and [¢; ¢]b0+ vanish on D(L ) and D(L + ), respectively;
see equations (2.3) and (2.4). Therefore, the functions u§ and v§ are linearly
independent modulo D(L§). Since l is a second-order di¬erential operator and
boundary conditions at a and b have been ­ xed, the dimension of the factor space
D(L ¤

§)=D(L§) is at most 2, and we ­ nd

D(L ¤ ) = D(L ) _+ spanfu ; v g; D(L ¤
+ ) = D(L + ) _+ spanfu + ; v + g: (2.8)

Now we consider in the Hilbert space

L 2(I) = L 2(I ) © L 2(I+ ) (2.9)

the operator S := L © L + . Evidently, S ¤ = L ¤ © L ¤
+ and on D(S ¤ ) we de­ ne the

sesquilinear form

[f; g] := [f ; g ]0a + [f+ ; g + ]b0+ ; f; g 2 D(S ¤ ); (2.10)

where f = f + f + and g = g + g + are the decompositions of the elements f and
g with respect to (2.9). Relation (2.2) implies the Green’s formula

[f; g] = (S ¤ f; g) (f; S ¤ g); f; g 2 D(S ¤ ); (2.11)

and the sesquilinear form on the left-hand side is again continuous in the S ¤ -graph
norm on D(S ¤ ).

We extend the functions u§ and v§ to the whole interval [a; b] as follows:

~u (x) :=

(
u (x) if x 2 [a; 0);

0 if x 2 (0; b];
~u + (x) :=

(
0 if x 2 [a; 0);

u+ (x) if x 2 (0; b];

and ~v§ are de­ ned analogously. All these extended functions belong to D(S ¤ ). On
f 2 D(S ¤ ) the following functionals

u
§;

v
§ are de­ ned:

u
f := [f; ~u ];

u
+ f := [f; ~u + ];

v
f := [f; ~v ];

v
+ f := [f; ~v + ]: (2.12)

From (2.3) and (2.4) it follows that the functionals
u

§;
v

§ vanish on D(S), and the
de­ nition of the functions ~u§; ~v§ yields for f 2 D(S ¤ ) the relations

u
§f = ¨f (0§);

v
§f = § lim

x ! 0§
(f 0(x) + f(x)(1 + ln jxj)); (2.13)

where we have used that the functions f 2 D(S ¤ ) satisfy the relation

f 0(x) = O(ln jxj) for x ! 0; (2.14)

see [8, lemma 2.2]. Since the operators L§ are symmetric, also S is a symmetric
operator and we have

D(S) = ff 2 D(S ¤ ) :
u

f =
u

+ f =
v

f =
v

+ f = 0g (2.15)
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and

D(S ¤ ) = D(S) + spanf~u ; ~u + ; ~v ; ~v + g: (2.16)

Therefore, the defect index of the operator S is (2; 2).

Lemma 2.1. If f 2 D(S), it holds that

f (x) = o(x); f 0(x) = o(1) for x ! 0; (2.17)

and

D(S) = ff 2 D(S ¤ ) : f; f 0 are continuous in 0 and f (0) = f 0(0) = 0g: (2.18)

Proof. If f 2 D(S), then (2.15) and the ­ rst relation in (2.13) imply, for x ! 0,

f (x) = o(1): (2.19)

Now relation (2.14) yields the sharper estimate

f (x) =

Z x

0

f 0(t) dt = O(x ln jxj); (2.20)

and if we observe that
v

§f = 0, it follows by (2.15) and the second relation in
(2.13) that

f 0(x) = (1 + ln jxj)O(x ln jxj) + o(1) = o(1)

and ­ nally

f (x) =

Z x

0

f 0(t) dt = o(x):

Thus the relations (2.17) and the inclusion

D(S) » ff 2 D(S ¤ ) : f; f 0 are continuous in 0 and f (0) = f 0(0) = 0g

are proved. The equality sign in (2.18) follows now from (2.16) and the fact that
no linear combination f of the functions u§; v§, except the trivial one, has the
property that f and f 0 are continuous and ful­ l f (0) = f 0(0) = 0.

3. The self-adjoint and the maximal dissipative extensions of S

The symmetric operator S in L 2(I) with defect index (2; 2), which was associated
with the di¬erential expression l from (1.1) and the Dirichlet boundary conditions
(1.3), has self-adjoint and maximal dissipative canonical extensions; here canoni-
cal means that these extensions act in the originally given space L 2(I). We shall
characterize these extensions by interface conditions at 0.

To this end, we ­ rst observe that all symmetric and dissipative canonical exten-
sions of S are restrictions of the adjoint S ¤ (see [11, theorem 3.1.3] and [15, the-
orem 1.3.7]). Relation (2.15) implies that such an extension is determined by a
linear relation between the functionals

u
§;

v
§, which are de­ ned on D(S ¤ ). Let

b
: D(S ¤ ) ! C4 be the mapping

b
:=

u v u
+

v
+

¢T
; (3.1)
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by J0 we denote the 2 £ 2 matrix

J0 =

³
0 i

i 0

´
(3.2)

and by J the 4 £ 4 matrix

J =

³
J0 0

0 J0

´
:

Proposition 3.1. The linear mapping
b

from (3.1) has these properties:

(i) R(
b

) = C4,

(ii) ker
b

= D(S),

(iii)
(S ¤ f; g) (f; S ¤ g)

i
= (

b
g) ¤ J

b
f; f; g 2 D(S ¤ ):

Proof. The de­ nitions (2.12) and the relations (2.5), (2.6) and (2.7) imply

b
~u =

0
BB@

0

1

0

0

1
CCA ;

b
~v =

0
BB@

1

0

0

0

1
CCA ;

b
~u + =

0
BB@

0

0

0

1

1
CCA ;

b
~v + =

0
BB@

0

0

1

0

1
CCA ; (3.3)

and (i) follows. Statement (ii) is a consequence of (2.15).
In order to prove (iii), we observe that, according to (2.16), each f 2 D(S ¤ ) is a

linear combination of an element f0 2 D(S) and ~u§; ~v§. Relations (2.5), (2.6) and
(2.7) imply that f = f0 + f1 with f0 2 D(S) and

f1 := (
u

f )~v (
v

f )~u (
u

+ f )~v + + (
v

+ f )~u + :

With an analogous decomposition of g 2 D(S ¤ ) it follows from (2.11), (2.3) and
(2.4) that

(S ¤ f; g) (f; S ¤ g)

i
=

[f1; g1]

i
:

By means of (2.11), (2.5), (2.6) and (2.7) we ­ nd for the expression on the right-
hand side the form

(
b

g) ¤ J
b

f;

and relation (iii) is proved.

We equip the space C4 with the inner product generated by J : (Jx; y) := y ¤ Jx.
Then a subspace U of C4 is called J -non-negative (J -neutral, respectively) if
(Jx; x) > 0 (= 0, respectively) for all x 2 U .

Corollary 3.2. The operator T is a (maximal) dissipative canonical extension of
S if and only if U = fb

f : f 2 D(T )g is a (maximal) J-non-negative subspaces of
C4, and T is a (maximal) symmetric canonical extension of S if and only if this
subspace is (maximal) J-neutral.
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Indeed, it follows from statement (iii) of proposition 3.1 that the operator T » S ¤

is, for example, dissipative if and only if, for all f 2 D(T ), it holds that

0 6 2 Im(T f; f ) =
(T f; f) (f; T f )

i
=

(S ¤ f; f) (f; S ¤ f )

i
= (

b
f ) ¤ J

b
f:

The other claims follow in the same way.
In the sequel, B denotes a complex 2 £ 4 matrix, which we write also as a block

matrix

B = (C D)

with two 2 £ 2 matrices C and D; J0 is the matrix de­ ned in (3.2). Since the
eigenvalues of the matrix J are §1, each of multiplicity 2, the maximal J -non-
negative subspaces of C4 are of dimension 2.

Theorem 3.3. The operator T is a maximal dissipative canonical extension of S
if and only if

D(T ) = ff 2 D(S ¤ ) : B
b
f = 0g; (3.4)

where the 2 £ 4 matrix B = (C D) is such that its rank is 2 and the inequality

CJ0C ¤ 6 DJ0D ¤ (3.5)

holds; T is a self-adjoint canonical extension of S if and only if the rank of the
matrix B in (3.4) is 2 and the relation

CJ0C ¤ = DJ0D ¤ (3.6)

holds.

Proof. By corollary 3.2, T is maximal dissipative if and only if U = fb
f : f 2

D(T )g = ker B is maximal J -non-negative. This is the case if and only if U ? =
R(B ¤ ) is maximal J -nonpositive, which is equivalent to (3.5) and rank B = 2. The
proof of the second statement of the theorem is similar.

If we write the matrices C and D in the form

C =

³
c11 c12

c21 c22

´
; D =

³
d11 d12

d21 d22

´
;

the interface condition B
b

f = 0 in (3.4) becomes

c11f(0 ) c12 lim
x ! 0

(f 0(x) + (1 + ln jxj)f (x))

d11f (0+) + d12 lim
x ! 0+

(f 0(x) + (1 + ln jxj)f (x)) = 0;

c21f(0 ) c22 lim
x ! 0

(f 0(x) + (1 + ln jxj)f (x))

d21f (0+) + d22 lim
x ! 0+

(f 0(x) + (1 + ln jxj)f (x)) = 0: (3.7)
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4. Continuity at the origin

In this section we consider those maximal dissipative canonical extensions T of the
symmetric operator S for which the functions f 2 D(T ) are continuous at zero.
Continuity of f at zero means that f(0 ) = f (0+), which according to (2.13) is
equivalent to

u
f +

u
+ f = 0. Therefore, these extensions are described by a matrix

B with the property

c11 = d11 6= 0; c12 = d12 = 0;

and we can assume that

C =

³
1 0

c21 c22

´
; D =

³
1 0

d21 d22

´
:

Condition (3.5) is equivalent to

c22 = d22 and
c21c22 c22c21

i
6 d21d22 d22d21

i
: (4.1)

If c22 = d22 = 0, matrix B can be supposed to have the form

B =

³
1 0 1 0

0 0 1 0

´
:

If c22 = d22 6= 0 we can assume that this number is 1, and inequality (4.1) becomes
Im c21 6 Im d21. By subtracting a multiple of the ­ rst row of B from the second
row, we arrive at the following result.

Theorem 4.1. The functions in the domain of the maximal dissipative canonical
extension T of S are continuous in 0 if and only if the matrix B in (3.4) can be
chosen as

B ® =

³
1 0 1 0

0 1 ® 1

´
with Im ® > 0; (4.2)

or as

B1 =

³
1 0 1 0

0 0 1 0

´
: (4.3)

This extension T is self-adjoint if and only if in (4.2) Im ® = 0 or if B is of the
form (4.3).

The extension T of S having the form (3.4) with B = B ® is denoted by T ® ,
® 2 C + [ f1g. It is easy to see that also for ® 2 C an extension T ® is de­ ned by
the same interface conditions; then the operator T ® is maximal dissipative.

In order to write the boundary conditions for the extension T ® in a more explicit
form than (3.7), we need a lemma.

Lemma 4.2. If f 2 D(S ¤ ) and f(0+) = f (0 ), then

lim
x ! 0+

(f (x) f ( x))(1 + ln jxj) = 0: (4.4)



Dissipative eigenvalue problems 1245

Proof. If f 2 D(S), the claim follows from (2.17). So it remains to consider linear
combinations

f = ¬ ~u + ­ ~v + ¬ + ~u + + ­ + ~v + ;

for which, because of the continuity of f at 0, also ­ = ­ + =: ­ . Hence f has the
form

f = ¬ ~u + ¬ + ~u + + ­ v;

and relation (4.4) follows easily from the de­ nition of functions ~u§ and v.

Theorem 4.3. The extension T ® , ® 2 C[f1g; of S is given by interface conditions
of the form

f (0 ) = f (0+); lim
x ! 0+

(f 0(x) f 0( x)) = ® f(0) if ® 2 C; (4.5)

and by the Dirichlet interface conditions

f (0+) = f(0 ) = 0 if ® = 1: (4.6)

T ® is self-adjoint if and only if ® 2 R [ f1g.

Proof. If the matrix B = B ® given by (4.2), then the interface conditions at 0 for
f 2 D(T ) » D(S ¤ ) are f (0 ) = f(0+) and

lim
x ! 0

(f 0(x) + (1 + ln jxj)f(x)) + lim
x ! 0+

(f 0(x) + (1 + ln jxj)f(x)) = ® f (0+):

(4.7)

By lemma 4.2, relation (4.7) is equivalent to relation (4.5). If the matrix B = B 1
given by (4.3), we obtain the Dirichlet interface conditions.

For the canonical extensions of S which were considered in [12], it was shown there
that they are norm resolvent limits of Sturm{Liouville operators with a regular
potential. We show by the same method as in [12] that this is true for all the
operators T ® , ® 2 C. To this end, we de­ ne for ® 2 C and " > 0 the Sturm{
Liouville operators T ® ;" as follows:

D(T ® ;") := ff 2 L 2(I) : f; f 0 2 AC loc(I); f 00 2 L 2(I); f (a) = f (b) = 0g;

(T ® ;"f )(x) := f 00(x)
1

2

³
1 + ® =iº

x + i"
+

1 ® =i º

x i"

´
f(x):

Theorem 4.4. For ® 2 C, the operator T ® is the norm resolvent limit of the oper-
ators T ® ;" if " ! 0+.

Proof. On the set

D := ff 2 AC loc(I) : f 0 2 L 2(I); f (a) = f(b) = 0g
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we consider the following sesquilinear forms:

l0[f; g] :=

Z b

a

f 0(x)g0(x) dx;

q"[f; g] :=

Z b

a

f (x)g(x)

x + i"
dx; if " 6= 0; q0[f; g] := P

Z b

a

f (x)g(x)

x
dx;

b[f; g] := f(0)g(0);

where P denotes the Cauchy principal value. The form l0 is closed and non-negative;
the forms q0 and b are symmetric and l0-bounded with relative bound zero [12,
lemmas 2.3 and 2.5]. Hence, according to [13, theorem VI.1.33],

t® := l0 + q0 + ® b

is a closed sectorial form on D. By the second representation theorem [13, theorem
VI.2.1], there exists an m-sectorial operator Tt ® such that

1. D(Tt ® ) » D;

2. t® [f; g] = (Tt ® f; g); f 2 D(Tt ® ); g 2 D;

3. D(Tt ® ) is a core of t® ;

4. if f 2 D; y 2 L 2(I) such that the equality t® [f; g] = (y; g) holds for all g in a
core of t® , then f 2 D(Tt ® ) and Tt ® f = y.

We shall show that Tt ® = T ® . Theorem 4.3 implies D(T ® ) » D, and for f 2 D(T ® )
and g 2 D it holds that

(T ® f; g) =

³Z 0

a

+

Z b

0

´³
f 00(x)

f (x)

x

´
g(x) dx

= lim
" ! 0+

³Z "

a

+

Z b

"

´³
f 00(x)

f (x)

x

´
g(x) dx

= P

Z b

a

³
f 0(x)g0(x)

f(x)g(x)

x

´
dx + lim

"! 0+
(f 0(")g(") f 0( ")g( "))

= l0[f; g] + q0[f; g] + lim
"! 0+

(f 0(")g(") f 0( ")g( "))

= t® [f; g] + lim
"! 0+

(f 0(")g(") f 0( ")g( ")) ® f (0)g(0): (4.8)

If g 2 D, we have

jg(x) g(0)j 6
Z x

0

jg0(s)j ds 6
p

jxjkg0(s)k:

Therefore, relation (2.14) yields, for f 2 D(T ® ),

lim
x ! 0+

(f 0(x)g(x) f 0( x)g( x)) ® f (0)g(0)

= lim
x ! 0+

(f 0(x) f 0( x) ® f (0))g(0) = 0:
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Hence (4.8) becomes

(T ® f; g) = t® [f; g]; f 2 D(T ® ); g 2 D;

which implies T ® » Tt ®
. Since, on the other hand, T ® or T ® is a maximal dissipative

operator, in this inclusion the equality sign must prevail.
The di¬erential operator T ® ;" is associated with the sesquilinear form

t® ;" = l0 +
º i + ®

2º i
q" +

º i ®

2 º i
q ";

which is also de­ ned on D. As in the proof of [12, theorem 3.3], for f; g 2 D it
follows that

jq§"[f; g] (q0[f; g] ¨ º ib[f; g])j = o(1)l0[f; g] + o(1)(f; g); " ! 0+;

and we get

t® ;"[f; g] t® [f; g] = o(1)l0[f; g] + o(1)(f; g); " ! 0+:

Now the resolvent convergence of the operators T ® ;" to T ® follows from [13, theorem
VI.3.6].

5. Representation of the solutions by Whittaker functions

In this section we express the resolvents of the extensions T ® from x 4 by means of
Whittaker functions. We ­ rst recall Whittaker’s di¬erential equation [2,5,16,21]:

d2f(z)

dz2
+

³
1

4
+

µ

z
+

1 · 2

4z2

´
f (z) = 0: (5.1)

Two linearly independent solutions of this di¬erential equation are the Whittaker
functions

M µ ;· (z)=2 = z(1+ · )=2e z=2 © ( 1
2(1 + · ) µ; 1 + · ; z);

W µ ;· (z)=2 = z(1+ · )=2e z=2 ª ( 1
2 (1 + · ) µ; 1 + · ; z);

where © is the con®uent hypergeometric function. In the following we use the func-
tion ã (z) := 0(z)= (z), and for complex numbers ¬ and ­ and an integer k the
symbols

( ¬ )k := ¬ ( ¬ + 1) ¢ ¢ ¢ ( ¬ + k 1); dk( ¬ ; ­ ) := ã ( ¬ + k) ã (1 + k) ã (­ + k):

Then the function © is given by the relation

© ( ¬ ; ­ ; z) =

1X

k = 0

( ¬ )k

(­ )k

zk

k!
;
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and in the case that ­ is a positive integer, ª ( ¬ ; ­ ; z) admits the following repre-
sentation [2, x 6.1, x 6.7, formula (13)]:

ª ( ¬ ; ­ ; z) =
( 1)­

(­ ) ( ¬ ­ + 1)

³
© ( ¬ ; ­ ; z) ln z +

1X

k = 0

( ¬ )kdk( ¬ ; ­ )zk

(­ )kk!

´

+
(­ 1)

( ¬ )

­ 2X

k = 0

( ¬ ­ + 1)kzk ­ + 1

(2 ­ )kk!
: (5.2)

If we make the substitution

· = 1; µ =
i

2
p

¶
; z =

x

µ
= 2i

p
¶ x;

equation (5.1) becomes equation (1.2): l[f ] ¶ f = 0. Therefore, two linearly inde-
pendent solutions of (1.2) are the functions

fM (x; ¶ ) = Mi=2
p

¶ ;1=2( 2i
p

¶ x);

fW (x; ¶ ) = (1 i=2
p

¶ )Wi=2
p

¶ ;1=2( 2i
p

¶ x);

9
=

; (5.3)

see also [4,8]. The function fM is entire in x, whereas fW has a logarithmic branch
point at x = 0. The function fW is understood as the principal branch, which is
obtained from the principal branch of the logarithm in (5.2).

With the functions fM (x; ¶ ) and fW (x; ¶ ) we form for ¶ 6= 0 the solutions

f (x; ¶ ) :=

8
<

:

fM(a; ¶ )fW (x; ¶ ) fW (a; ¶ )fM (x; ¶ )

fM (a; ¶ )f 0
W (a; ¶ ) fW (a; ¶ )f 0

M (a; ¶ )
if x < 0;

0 if x > 0;

(5.4)

f+ (x; ¶ ) :=

8
<

:

0 if x < 0;
fM(b; ¶ )fW (x; ¶ ) fW (b; ¶ )fM (x; ¶ )

fM (b; ¶ )f 0
W (b; ¶ ) fW (b; ¶ )f 0

M (b; ¶ )
if x > 0:

(5.5)

They satisfy for x 6= 0 the di¬erential equation l[f ] ¶ f = 0 and the boundary
conditions

f (a; ¶ ) = 0; f 0 (a; ¶ ) = 1;

f + (b; ¶ ) = 0; f 0
+ (b; ¶ ) = 1:

If x 6= 0 is ­ xed, f§(x; ¶ ) are entire functions in ¶ . Further, we introduce the kernel

K(x; ¹ ; ¶ ) :=

8
>>>>><

>>>>>:

fM ( ¹ ; ¶ )fW (x; ¶ ) fW ( ¹ ; ¶ )fM(x; ¶ )

fM ( ¹ ; ¶ )f 0
W ( ¹ ; ¶ ) fW ( ¹ ; ¶ )f 0

M( ¹ ; ¶ )
if ¹ 6 x < 0;

fM ( ¹ ; ¶ )fW (x; ¶ ) fW ( ¹ ; ¶ )fM (x; ¶ )

fM ( ¹ ; ¶ )f 0
W ( ¹ ; ¶ ) fW ( ¹ ; ¶ )f 0

M ( ¹ ; ¶ )
if 0 < x 6 ¹ ;

0 otherwise:

It satis­ es for x 6= 0 and x 6= ¹ the di¬erential equation

@2K

@x2
(x; ¹ ; ¶ )

K(x; ¹ ; ¶ )

x
= ¶ K(x; ¹ ; ¶ )
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and the boundary conditions

@K

@x
( ¹ +; ¹ ; ¶ ) = 1 if ¹ < 0;

@K

@x
( ¹ ; ¹ ; ¶ ) = 1 if ¹ > 0:

We introduce the following operators K ¶ , ¶ 2 C, in L 2(I):

(K ¶ f)(x) :=

Z b

a

K(x; ¹ ; ¶ )f ( ¹ ) d ¹ ; f 2 L 2(I):

Then K ¶ f 2 D(S ¤ ) and (S ¤ ¶ )K ¶ f = f for arbitrary f 2 L 2(I). This implies
for functions f 2 D(S ¤ ) that K ¶ (S ¤ ¶ )f = f + g with g 2 ker(S ¤ ¶ ). If f
vanishes identically near a and b, then also K ¶ (S ¤ ¶ )f does. In this case g = 0,
and K ¶ (S ¤ ¶ )f = f , which yields ~u§; ~v§ 2 R(K ¶ ) and further

R(
b

K ¶ ) = C4: (5.6)

The functions f (¢; ¶ ) and f + (¢; ¶ ) span the kernel ker(S ¤ ¶ ). For given f 2 L 2(I)
the equation

(T ® ¶ )f = y (5.7)

is satis­ ed if and only if f = c f + c + f+ + K ¶ y with numbers c and c + such
that B®

b
(c f + c + f + + K ¶ y) = 0. Relation (5.6) implies that the latter equation

has a unique solution for arbitrary y 2 L 2(I) if and only if the 2 £ 2 matrix

M ® ( ¶ ) := (B®
b

f (¢ ; ¶ ) B ®
b

f+ (¢; ¶ )) (5.8)

is invertible, and the solution of equation (5.7) can be written as

f (x) = (K ¶ y)(x) f (x; ¶ ) f+ (x; ¶ )
¢
M ® ( ¶ ) 1B ®

b
(K ¶ y): (5.9)

For the following theorem see [19, I x 2].

Theorem 5.1. Suppose ® 2 C and let M ® ( ¶ ) be the matrix function from (5.8).
Then ¶ 2 » (T ® ) if and only if det M ® ( ¶ ) 6= 0, and in this case the resolvent (T ®

¶ ) 1 is given by (5.9): (T ® ¶ ) 1y = f . The eigenvalues of T ® are geometrical ly
simple, and the length of the Jordan chain of T ® at an eigenvalue ¶ equals the order
of the zero ± = ¶ of the function det M ® ( ± ).

Proof. If det M ® ( ¶ ) 6= 0, the resolvent (T ® ¶ ) 1 exists and is given by (5.9).
Now suppose that det M ® ( ¶ ) = 0. Then the non-zero 2-vector (c ; c + )T belongs
to ker M ® ( ¶ ) if and only if the function f (x) := c f (x; ¶ ) + c + f+ (x; ¶ ) ful­ ls the
interface condition B ®

b
f = 0 and hence is an eigenfunction of T ® at ¶ . Since all

eigenfunctions of T ® at ¶ are of this form and the matrix M ® ( ¶ ) is not the zero
matrix, the geometric multiplicity of the eigenvalue ¶ equals one.

Suppose now that ¶ is a zero of order m of the function det M ® ( ± ). Then (5.9)
implies that the length of the Jordan chain of T ® at ¶ is at most m. A chain of
length m can be obtained as follows. Since

M ® ( ± ) =

³
m ® ;11( ± ) m ® ;12( ± )

m ® ;21( ± ) m ® ;22( ± )

´
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is not the zero matrix, at least one entry does not vanish. Suppose, for example,
that this is m ® ;11( ¶ ); the other cases can be treated similarly. With the matrices

E( ± ) =

0
@

1 0
m ® ;21( ± )

m ® ;11( ± )
1

1
A ; F ( ± ) =

0
@1

m ® ;12( ± )

m ® ;11( ± )
0 1

1
A

we get

E( ± )M ® ( ± )F ( ± ) =

0
@

m ® ;11( ± ) 0

0
det M ® ( ± )

m ® ;11( ± )

1
A :

Therefore, the analytic family of vectors
³

c ( ± )

c + ( ± )

´
= F ( ± )

³
0

1

´

ful­ ls for ± ! ¶ the relations
³

c ( ± )

c + ( ± )

´
6! 0;

³
d ( ± )

d + ( ± )

´
= M ® ( ± )

³
c ( ± )

c + ( ± )

´
= O(( ± ¶ )m):

Then (3.3) and (5.8) give

f(¢; ± ) = c ( ± )f (¢; ± ) + c + ( ± )f + (¢; ± ) d ( ± )~v (¢) d + ( ± )~u + (¢) 2 D(T ® );

and the relation (T ® ± )f(¢; ± ) = O(( ± ¶ )m) implies that the functions

fi(¢; ¶ ) :=
@f (¢; ¶ )

@¶ i
; i = 0; 1; : : : ; m 1;

form a Jordan chain at ¶ .

In the following we need some asymptotic properties of the eigenvalues of the
operators T ® . To this end, we study the asymptotic behaviour of the functions fM

and fW . The relations (5.3) imply the following asymptotics. If ¶ 2 Cnf0g is ­ xed,
then for x ! 0,

fM (x; ¶ ) = 2i
p

¶ x + O(x2); (5.10)

fW (x; ¶ ) = e z=2 µze z=2((1 + O(z) ln z + d0(1 µ; 2) + O(z))

= 1 + i
p

¶ x ln z d0(1 µ; 2)x + O(x2 ln x)

= 1 x ln jxj + c ¶ (x)x + O(x2 ln x); (5.11)

where

c ¶ (x) := i
p

¶ d0

³
1

i

2
p

¶
; 2

´
+ ln jxj ln( 2i

p
¶ x): (5.12)

Note that c ¶ (x) does not depend on jxj, hence it is bounded if x ! §0. Further, it
holds that

c ¶ (+1) c ¶ ( 1) = ln(2i
p

¶ ) ln( 2i
p

¶ ) = iº : (5.13)
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Relations (5.10) and (5.11) imply

fW (0 ; ¶ ) = fW (0+; ¶ ) = 1; fM (0 ; ¶ ) = fM (0+; ¶ ) = 0 (5.14)

and

lim
x ! 0

(f 0
M (x; ¶ ) + (1 + ln jxj)fM (x; ¶ )) = 2i

p
¶ ;

lim
x! 0

(f 0
W (x; ¶ ) + (1 + ln jxj)fW (x; ¶ )) = c ¶ ( 1);

lim
x ! 0+

(f 0
W (x; ¶ ) + (1 + ln jxj)fW (x; ¶ )) = c ¶ (+1);

9
>>>=

>>>;
(5.15)

where c ¶ (x) is given by (5.12).

Remark 5.2. Boyd [4] considered the boundary value problem (1.1) with boundary
conditions (1.3), replacing the potential x 1 ­ rst by (x i") 1 with " > 0 and
letting " ! 0. He required the eigenfunctions to admit an analytic continuation
onto the lower half-plane. This requirement speci­ es an interface condition in x = 0,
which, however, turns out not to be self-adjoint. Indeed, the solutions of (1.1) which
admit an analytic continuation onto the lower half-plane are linear combinations of
the functions fM (x; ¶ ) and ~fW (x; ¶ ), where ~fW (x; ¶ ) equals the function fW (x; ¶ )
for positive real x, and with the branch cut at arg x = º =2. This corresponds
to a branch cut in the logarithm in the de­ nition of the function ª in (5.2) at
arg z = arg

p
¶ . For real x and º < arg ¶ 6 º , this means

~fW (x; ¶ ) =

8
<

:
fW (x; ¶ ) if x > 0;

fW (x; ¶ )
ºp
¶

fM (x; ¶ ) if x < 0:

Now it follows from (5.13), (5.14) and (5.15) that

b
fM (¢; ¶ ) =

0
BB@

0

2i
p

¶

0

2i
p

¶

1
CCA ;

b ~fW (¢; ¶ ) =

0
BB@

1

c ¶ (1) i º

1

c ¶ (1)

1
CCA :

These vectors span the kernel of the 2 £ 4 matrix B iº . Therefore, the operator
which was considered in [4] is (up to its sign) T iº .

In order to study the asymptotic behaviour of the functions fM and fW for
¶ ! 1, we use the following relations [2, 6.13(1) and (2)] [16, 4.7(2){(4)]:

© ( ¬ ; ­ ; z) =
(­ )e ¬ i º s gn Im z

(­ ¬ )
z ¬ +

(­ )

( ¬ )
ezz ¬ ­

+ O(z ¬ 1) + O(ezz ¬ ­ 1); (5.16)

ª ( ¬ ; ­ ; z) = z ¬ + O(z ¬ 1) (5.17)

if z ! 1. The expansion (5.16) holds in the sector º < arg z < º , the expansion
(5.17) in the sector 3º =2 < arg z < 3 º =2. If x 2 Rnf0g is ­ xed, then for µ ! 0,

(1 § µ) = 1 + O(µ); e§iº (1 µ ) = 1 + O(µ); z µ = eµ (ln x ln µ ) = 1 + O(µ ln µ);
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and we ­ nd the following asymptotics for ¶ ! 1 in the sector º < arg ¶ < º :

fM (x; ¶ ) = e i
p

¶ x ei
p

¶ x + O

³
ln ¶p

¶
ejx Im

p
¶ j

´
; (5.18)

fW (x; ¶ ) = ei
p

¶ x + O

³
ln ¶p

¶
ei

p
¶ x

´
: (5.19)

Theorem 5.3. If ® 2 C, then the spectrum ¼ (T ® ) consists of isolated normal eigen-
values ¶ n, n 2 N, of geometric multiplicity one, and all but ¯nitely many of them
are simple. If they are numbered according to non-decreasing absolute value, then
the following asymptotic formula holds:

¶ n =
º 2n2

(b a)2
+ O(ln n) for n ! 1: (5.20)

In the proof of the theorem we use the following lemma.

Lemma 5.4. An entire function F (z) of the form

F (z) = sin z + O

³
ln z

z
exp j Im zj

´
for jzj ! 1

has in¯nitely many zeros and all but ¯nitely many of them are simple. For n 2 Z
with jnj su± ciently large, there is a disc of radius

» n = O

³
ln jnj

n

´
for jnj ! 1;

around the point nº which contains exactly one zero of F (z); outside these discs lie
only ¯nitely many zeros of F (z).

Proof. Since F (z) is entire and does not vanish identically, its zeros are countable
and have no accumulation point in C. We consider the zeros only in the right half-
plane; the zeros in the left half-plane can be treated similarly. There exist positive
real numbers r; C1; C2 such that for the zeros ± = s + it, with j ± j > r,

j sinh tj 6 j sin ± j 6 C1

­­­­
ln ±

±

­­­­exp jtj 6 2C1

­­­­
ln ±

±

­­­­(j sinh tj + 1):

Hence

1 +
1

j sinh tj
> 1

C2

­­­­
±

ln ±

­­­­; j± j > r;

which implies that all zeros ± lie in a strip jtj 6 C with C > 0, and with C3 =
C1 exp C,

j sin ± j 6 C3

­­­­
ln ±

±

­­­­; j ± j > r:

Denote by Rn, n 2 N, the rectangle

nº º =2 6 Re z 6 nº + º =2; C 6 Im z 6 C:

Then
m := min

z 2 @Rn

j sin zj > 0
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and for su¯ ciently large n, say n > n0,

jF (z) sin zj < m 6 j sin zj; z 2 @Rn:

Rouch́e’s theorem implies that F (z), like sin z, has exactly one zero in Rn for n > n0

and that this zero is simple. We now claim that for n su¯ ciently large, the zero of
F (z) in Rn lies in a circle of radius » n = O(n 1 ln n) around the zero z = nº of
sin z. To prove the claim, ­ rst choose » > 0 such that the inequality

j sin zj > 1
2
jz º nj

holds for all n 2 N and jz º nj 6 » . Then choose C4 such that

jF (z) sinzj <
C4

2

³
ln n

n

´
; z 2 Rn; n > 2:

Finally, choose n1 > max(2; n0) so large that » n := C4(n 1 ln n) < » for all n > n1.
Then, for n > n1 and jz º nj = » n,

jF (z) sin zj < 1
2 » n = 1

2
jz º nj 6 j sin zj:

The claim now follows again from Rouch́e’s theorem.

Proof of theorem 5.3. We consider the matrix B® from (4.2) and the corresponding
2 £ 2 matrix function M ® de­ ned by (5.8). Since M ® ( ¶ ), ¶ 2 C, is never the zero
matrix, the geometric multiplicity of the eigenvalues of T ® is one; see theorem 5.1.
A straightforward calculation shows that, up to a non-zero factor, the determinant
det M ® ( ¶ ) equals

­­­­
fM (a; ¶ ) fM (b; ¶ )

2i
p

¶ fW (a; ¶ ) + (i º c ¶ (1))fM (a; ¶ ) 2i
p

¶ fW (b; ¶ ) + ( ® c ¶ (1))fM (b; ¶ )

­­­­

=

­­­­
fM(a; ¶ ) fM (b; ¶ )

2i
p

¶ fW (a; ¶ ) + i º fM (a; ¶ ) 2i
p

¶ fW (b; ¶ ) + ® fM (b; ¶ ):

­­­­

Now, relations (5.18) and (5.19) imply that this determinant for ¶ ! 1 asymptot-
ically behaves like

2i
p

¶

­­­­
fM (a; ¶ ) fM(b; ¶ )

fW (a; ¶ ) fW (b; ¶ )

­­­­+ O(ej(b a) Im
p

¶ j)

= 2i
p

¶

­­­­­
e i

p
¶ a ei

p
¶ a e i

p
¶ b ei

p
¶ b

e i
p

¶ a e i
p

¶ b

­­­­­+ O(ej(b a) Im
p

¶ j ln ¶ )

= 4
p

¶ ((b a)
p

¶ ) + O(ej(b a) Im
p

¶ j ln ¶ ):

If we put ± = (b a)
p

¶ , apply lemma 5.4, and observe again theorem 5.1, then the
claim follows.
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6. Basis properties of the root vectors of T°

Recall that a sequence (fn), n 2 N, of elements of a separable Hilbert space H is
called a basis of H if each y 2 H has a unique representation

y =

1X

n = 1

cnfn; with cn 2 C; n 2 N;

where the sum converges in the norm of H. The basis (fn), n 2 N, of H is called
a Bari basis if it is quadratically close to an orthonormal basis fen : n 2 Ng of H,
which means that

1X

n= 1

kfn enk2 < 1:

For this notion and its properties, see, for example, [9, ch. VI]. We use the following
criterion about the existence of a Bari basis [9, theorem VI.4.1]:

Criterion. Let T be a bounded dissipative operator in a Hilbert space such that
T T ¤ is compact. Denote by · n, n 2 N, the mutually di® erent eigenvalues of T
and by ln the geometric multiplicity of · n, and suppose that

X
min(ln; lm)

Im · n Im · m

j · n · mj2 < 1; (6.1)

where the sum runs over all n; m 2 N such that n 6= m and Im · n 6= 0, Im · m 6= 0.
If we choose in each eigenspace of T an orthonormal basis, then the sequence of all
these basis elements forms a Bari basis in its closed linear hull.

We also use the well-known result of Lidskiµ ± [9, theorem V.2.3]:

Result. A dissipative trace class operator has a complete system of root vectors.

If ® is real or 1, then the operator T ® is self-adjoint. By an argument as in the
proof of the following theorem, it follows that its resolvent is a trace class operator.
Hence T ® , ® 2 R [ f1g, has an orthonormal basis of eigenfunctions. The main
result of this section is the following theorem.

Theorem 6.1. If ® 2 C + [ C , then the root vectors of T ® can be chosen to form
a Bari basis of L 2(I).

Proof. Let l 2 » (T ® ) \ » (T0) be a real number. The spectral mapping theorem and
theorem 5.3 imply that the eigenvalues ² n, n 2 N, of (T ® l) 1 satisfy the relation

² n =
1

cn2 + O(ln n)
=

1

cn2
+ O

³
ln n

n4

´
for n ! 1 (6.2)

with c := º 2(b a) 2. By theorem 4.3, T0 is self-adjoint, hence also (T0 l) 1 is self-
adjoint, and since its eigenvalues satisfy relation (6.2), it is a trace class operator.
If ® 6= 0, the di¬erence (T ® l) 1 (T0 l) 1 is one-dimensional and therefore also
(T ® 1) 1 is a trace class operator.

In order to prove that the root vectors of T ® form a Bari basis, we suppose that
® 2 C + ; the case ® 2 C can be treated analogously. The operator (T ® l) 1 is



Dissipative eigenvalue problems 1255

dissipative and a trace class operator. Therefore, the closed linear span of its root
vectors is the whole space L 2(I). Next we verify that the eigenvalues of (T ® l) 1,
which we denote by ² n, satisfy condition (6.1). Since the algebraic multiplicity of
all but ­ nitely many eigenvalues is one by theorem 5.3, this condition simpli­ es to

X

16m<n

Im ² m Im ² n

j ² m ² nj2 < 1: (6.3)

Relation (6.2) implies for 1 6 m < n and suitable constants C1, C2, C3 that

Im ² m Im ² n

j² m ² nj2 6 C1
ln m ln n

j(n m)(n + m) C1(ln m + ln n)j2
6 C3

(ln(m + n))2

(n m)2(n + m)2
;

here we have used the inequalities ln n; ln m 6 ln(n + m) and the fact that

(n m) 1(n + m) 1(ln m + ln n) ! 0 if m < n; n ! 1:

Since for su¯ ciently large x the function x 1 ln x is decreasing, then with k = n m
and some constant C4, we ­ nally obtain

1X

m = 1

1X

k = 1

(ln(2m + k))2

k2(2m + k)2
6 C4

1X

n = 1

(ln 2m)2

(2n)2

1X

k = 1

1

k2
< 1:

If ® 2 C + [ C , then T ® or T ® is dissipative and it is easy to see that the
relation

T ¤
® = T ®

holds. Denote by ( ¶ )n, n 2 N, the sequence of (mutually di¬erent) eigenvalues of
T ® , and denote by

gn;1; gn;2; : : : ; gn;mn

a basis of the root subspace of T ® corresponding to ¶ n, such that the system of all
elements gn;k, k = 1; 2; : : : ; mn, n 2 N, is a Bari basis of L 2(I). Then the complex
conjugate functions

gn;1; gn;2; : : : ; gn;mn

form a basis of the root subspace of T ® = T ¤
® corresponding to ¶ n. We introduce

for n 2 N the mn £ mn matrix

Gn :=

0
B@

(gn;1; gn;1) : : : (gn;mn
; gn;1)

...
...

(gn;1; gn;mn ) : : : (gn;mn ; gn;mn )

1
CA :

The root subspaces of T ® at ¶ n and of T ¤
® at ¶ m are orthogonal if m 6= n, and are

in duality if m = n. Hence the matrix Gn is invertible. For y 2 L 2(I) we de­ ne
numbers cn;k, k = 1; 2; : : : ; mn, n 2 N, by the relation

0
B@

cn;1(y)
...

cn;mn (y)

1
CA := G 1

n

0
B@

(y; gn;1)
...

(y; gn;mn )

1
CA : (6.4)
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Theorem 6.2. If ® 2 CnR, then each element y 2 L 2(I) admits the following
unique expansion,

y =

1X

n= 1

lnX

k = 1

cn;k(y)gn;k; (6.5)

where the left sum converges in the norm of L 2(I).

Proof. For y = gn0;l with 1 6 l 6 mn0 , the expansion (6.5) follows from the
de­ nitions of the matrix Gn and of the coe¯ cients cn;k(y) and from the fact that
cn;k(gn0;l) = 0 if n 6= n0. For arbitrary y 2 L 2(I) it is now a consequence of the
properties of a Bari basis.

If the elements gn;k, k = 1; 2; : : : ; mk, which span the root subspace of T ® at ¶ n

are chosen to form a Jordan chain:

(T ® ¶ n)gn;1 = 0; (T ® ¶ n)gn;2 = gn;1; (T ® ¶ n)gn;mn = gn;mn 1 ;

then the elements gn;k, k = 1; 2; : : : ; mn, form a Jordan chain of T ¤
® at ¶ n and we

get

(gn;k; gn;l) = ((T ® ¶ n)mn kgn;mn ; (T ¤
® ¶ n)mn lgn;mn )

= ((T ® ¶ n)2mn (k + l)gn;mn ; gn;mn ):

Therefore, the matrix Gn is now a Hankel matrix and right lower triangular. Since
Gn is invertible, the numbers (gn;k; gn;l) with k + l = mn are not zero. Now it is
easy to see that the Jordan chain gn;k, k = 1; 2; : : : ; mn, can be modi­ ed such that
the matrix Gn becomes (gn;1; gn;nm ) times the mn-sip matrix ( ¯ k;mn l + 1)mn

k;l = 1 [10,
theorem I.3.3]. Indeed, replace the Jordan chain gn;k by a Jordan chain g0

n;k, the last
element of which has the form g0

n;k =
Pmn

k = 1 ¬ kgn;k, and determine the ¬ k such that
(g0

n;k; g0
n;l) = ¯ k;mn l + 1, k; l = 1; 2; : : : ; mn. With this choice of the Jordan chains

at all the eigenvalues ¶ n of T ® , expansion (6.5) simpli­ es to

y =
1X

n= 1

mnX

k = 1

(y; gn;mn k + 1)gn;k:
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