Frequency-resolved pump-probe for ultrashort pulse characterization

Baltuška, A.; Pshenichnikov, M.S.; Kane, D.J.

Published in:
Conference on Lasers and Electro-Optics, 2000. (CLEO 2000)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Baltuška, A., Pshenichnikov, M. S., \& Kane, D. J. (2000). Frequency-resolved pump-probe for ultrashort pulse characterization. In Conference on Lasers and Electro-Optics, 2000. (CLEO 2000) (pp. 585-586). University of Groningen, The Zernike Institute for Advanced Materials.

[^0]The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
the pump spectrum with randon phase added and convergence was obtained after less than 100 iterations of the $M A^{\prime} I^{\prime} A B$ retrieval program. ligure 2 shows the measured and recon structed intensity antocorrelation of the pump) pulse (a) and the measured and retrieved idler spectrum (b). The algorithm correctly retrieved the idler bandwidth and the pamp auwoorcelation profile and, as expected, shows both pulses to be dominated by positive linear chirp (ligures 2(c) and (d)). Analysis of the trace marginals confimed that bandwidth of the crystal was adecpuate for this measurencul and this was consistent with phasematching adceptance-bandwidth calculations. We will present luther details of the results summarized here and will discuss extensions of the technicue lo longer mid-infrated wavelengerths.
I. D.J. Kane and R. 'Trebino, "Chamaterisation of arbitatry femtosecond pulses using frequency-resolved optical gating," Hilit: J. Quantim. Blectron. 29, 571 579(1993).
2. 1).J. Kane, (i. Rodrigue», A.J. Taylor and T.S. (lement, J. Opt. Soc. Aut. B. 14, 933 . 943 (1997).

CFE3

8:30 am
Chirp investigation of monolithic mode locked laser diode pulses with a spectral domain interference method
M. Kwakernaak, R. Schreieck, A. Neiger, 1). Sirmi, Il. Jackel, I. (iini, ${ }^{*}$ Ilans Melchiot,* I:lectronics Lab., Swiss Jecteral Inst. of T'ech. 1/urich, (iloriastrasse 35, 8092 \%urich,
Swizerland; limail:
kwakernatak(wife ee ethr.ch
The knowledge of the phase of mode locked semiconductor laser pulses is of prime importance since applications in optical telecomme nications require chitp free, transform limited pulses. Pulse phase measurements have attracted considerable interest and have been applied to external cavity mode locked taser diodes.' We extend an interferometric setup proposed by to a highly sensitive and realtime method and apply it for the first time to pulses from a monolithic hybrid mode locked laser diode (MI,I,I)).

The bulk adive layer rib) [nCaAsP MI, I, $)$ with a $1000 \mu \mathrm{~m}$ long anplifier and a $20 \mu \mathrm{~m}$ long saturable absorber section is monolithically integrated with a passive wavegride section extending the cavity to 4 mon. 'I he MIILD is hybridly mode locked by modulating the absotber with a sine signal at frequency $f_{t}=$ 10.2 ($\mathrm{il} 1 \mathrm{\%}$
the phase of the pulses is measured with the setup shown in lig. I. Amplitude modulation of the pulse traingenerates two replicas in the optical spectrum: one up shifted and one down-shifted by the modudation freguency

Clas Fig. l. Setup for phase measurements on mode locked laser diodes.

Clt3 Fig. 2. Left: Pulse spectrum (solid) and time delay (dashed). Right: Measured interferometric autocorrelation trace (dots) and envelope of the interferometric autocorrelation derived from spectral interference measurements (dashed).
$f_{\text {mreft }}: \quad\left(f_{l} \Delta f\right) / 2$. The upper and the lower product of two neighboring fundamental lines end up separated by the offset frequency Δt^{i} (100 kLL). Such a pair is selected with a monochronator and prodaces the beat signal $I_{p d} \times$ $\Lambda_{k-1}, A_{k} \cos \left(2 \pi \Delta j t-1 \cdot \phi_{k-1,} \phi_{k}\right)$ in the detector. λ_{k} and ϕ_{k} are the amplitude and phase of the k-th optical spectral component. A two channel lock-in amplifier at the reference frequency Δ detects the beat signal phase ($\left.\right|_{k}, \phi_{k}$) which is directly related to the relative delay of the spectral components $\tau_{d_{k}},=\left(d_{k-1}, \phi_{k}\right) /$ $\left(2 \pi / f_{l}\right)+\tau_{0}$ to the drive signal. τ_{11} is a constant offset. There is no second harmonic generafion, the complete setup is all in fibers without moving parts and no retrieval algorithms are requited resulting in a very sensitive, extremely stable and fast $(\leqslant 2 s)$ method.

The spectrom and the directly measured relative spectral time delay T_{d} of the MITLD) pulses at 100 mA and 0.5 V amplifier current and absorber bias, respectively are shown in Fig. 2 (left). Big. 2 (right) compares the interferometric antocorrelation trace directly measured to a trace calculated fiom the inverse foutier transform of the measurement on the left (intensity correlation width: 3.1 ps). The mismateh in the wings of the antocorrelation trace is due to pulse slape fluctations.
lig, 3 shows the relative time delay τ_{d} of the average pulse energy to the drive siegnal and the linear part of the chirp ($\partial \tau_{d} / \partial \lambda$) at different amplifier currents and absorber voltages. Increasing the amplifier curtent and decreasing, the reverse absorber voltage turns the pulses from blue ituto red chirped and delays the pulse. We explaia this dependence, supported by simulations, by the increase of the absorber saturation and thes stronger shaping of the leading edge at higher pulse energies.

In summary we have analyzed a monolithic

Clit3 Fig. 3. Relative pulse position (solid) and chiep (dashed). 'The absorber bias and amplitier carrent is fixed at 0.5 V (lefi) and 100 mA (right) respectively.
bulk InCraAsl' MIII) which produces pulses with low chiep of booth sigus depending on the bias conditions and achieved chirp free pulses. We measured the spectral phase with an interference technigue which proved to be well sulted for low power, fiber based systems where an electrical reference is available. *Swiss Federal Inst. of lech. Zurich, Switzerland 1. P.J. Delfyett, Il, Shi, S. (iee, I. Nitta, J.C.. Connolly, (i.A. Alphonse "Joint Lime-. frequency measurements of mode locked semiconductor diode lasers and dynamics using, frequency-resolved optical gating" IEIS: J. Quantum lilectron. 35, 487-500 (1999).
2. J. Debeant, B. Kowalski, and R. Boittin, "Simple method for the complete claracterization of an oplical pulse" Opt. I.ctt. 23, 1784-1786 (1998).

CFE4

8:45 am
Frequency-resolved pump-probe for ultrashort pulse characterization
A. Baltuška, M.S. Bshenichnikov,
D.A. Wiersma, D.J. Kanc, ${ }^{*}$ Ultrafast laser and Speciroscopy Lab., Univ. of Croningen, Nijenborgh 4, 9747 AG (jroningen, The Netherlands; Ei-mail: A.Balusku(öchem.rug.nl
In recent years, frequency-resolved optical gating (FROG) technicue has been widely applied for ultrashort pulse chatacterization. ${ }^{1}$ A number of outstanding qualities such as experimental simplicity, uniqueness of the retrieved amplitude and phase, and independent data checks make BRO (i an invaluable tool in ultriafust spectroscopy.

Most varicties of the EROC; technique utilize homodyne detection that recpuires appreciable pulse intensily. 'This demand may not be met in many spectroscopic experiments, where the high transition dipole moment and thermal load on the sample inpose the power limitations. Another consequence of the ho-

CFE4 Fig. 1. Schematic of frequencyresolved pump-probe technique.
modyne detection is that the PROG signal is none-negative and the presence of noise background on experimental traces negatively influences the precision of amplitude-phase retrieval. ${ }^{2}$ It has been shown ${ }^{3}$ that optically heterodyne-detected (OIID) liROG has a number of advantages over homodyne-based FROCischemes.

In this contribution we introduce a new member of the FROG family: frequency-resolved pump-probe (HRPJ), Unlike Olli $\mathrm{FRO}\left(1,{ }^{3}\right.$ which requires additional polarizers, FRPP cm^{2} ploys unmodified pump-probe geometry widely used in ultrafast spectroscopic experiments. Furthermore, a FRPP' tace carries both positive and negrative values, which should substantially improve the noise stability of the retrieval procedure. Additionatly, for the vast majority of experiments in the liquid phase, which involve the use of transparent solvents with Gast electronic response, trRPP pulse characterization can be conducted on bare solvent prior to introducing the sample molecules into it. Since not even a change of nonlinear meditum is involved, one can be assured that the learned pulse parameters are retained in the spectroscopic measurements that follow. We demonstrate the application of the novel R RPP echnique to characterization of 15-fs pulses generated by a ti:sapphire oscitlator.
'The schematic of the lRPP' arangement is presented in litg. L. Two replicas of the iuput pulse, delayed by the time τ, are crossed in medium with instantancous $3^{\text {rid }}$-order nonlinearity. Behind the medium, one of the beams is detected by an OMA that registers the IRPP' signal related to both pulses (c.g., employing a lock-in or synchronous detection). ${ }^{4}$

$$
\begin{equation*}
S_{H_{R P P} P}(\Omega, \tau)=\operatorname{Im}\left\lfloor E^{*}(\Omega) E_{s}(\Omega, \tau)\right\rfloor \tag{1}
\end{equation*}
$$

CFEA Fig. 2. Fxamples of FRPP traces: spectrum-limited pulse (a), quadratic posilive (b) and negative (c); cubic negative (d); quartic negative (e) spectral phases and self-phase modulation case (f). White curves, drawn along the respective group delays, demonstrate the intuitiveness of IID EROG techniguc. The amplitude of the traces changes from negative (white color) to positive (black color) values.

CFE4 lig. 3. Experimental (a) and reconstructed (b) FRLP traces for a pulse the intensity and phase of which are shown in (c). The gray scale in (a), (b) is identical to that in Fig. 2. White line marks the recovered group delay.
where $B(\Omega)$ denotes the pulse spectrum, and the signal generated due to nonlincar interaction, is given by

$$
\begin{equation*}
E_{s}(\Omega, \tau)-i \int|E(t+\tau)|^{2} E(t) e^{i \Omega t} d t \tag{2}
\end{equation*}
$$

Higure 2 presents several examples of FRPי ${ }^{1}$ traces of different pulses. As it is usually the case for the $\chi^{(3)}$-based technigues, the traces in general are not symmetric around $\tau=0$ and therefore the direction of time flow is unambiguously determined. Furthemore, the FRPP traces are highly intuitive: a curve drawn along crests and valleys follows the group delay (white curves in lig. 2). In particular, the trace corresponding to a spectral-limited pulse, consists of four distinct quadrants with welldefined bounclaties (lig. 2a). Vice versa, the latter can serve as a sensitive indication of high compression quality.

The essential feature of the FROG technique is the ability to check experimental data via the so-called marginals. FRPP is no exception in this respect. The peculiarity of IRP'P lics in the fact that both temporal and spectral marginals are equal to \%ero. 'I he time marginal indicates whether spectral filtering has occurred in recording the FRPP trace, while the frequency marginal is an extremely sensitive tool to verify the instantancous nature of the nonlincarity.

Higure 3 shows the experimental and reconstructed IRRPP traces obtained from a $100-\mu \mathrm{m}$ water sample. 'the temporal intensity and phase of -15 -fs pulses used in the experiments are given in lig. 3c. Since the overall water response is extremely fast and dominated by electronic hyper-polarizability, ${ }^{5}$ it is well justified to treat the wonlinearity as instantancous. As am be judged from ligg, 3, the reconstructed FRPP' trace reproduces fairly well the essential features of the experimental pattern.
*Southwest Sciences, Inc., USA; li-mail: djkane (iswsciences.com

1. K.W. Del.ong, R. Trebino, J. Itunter, and W.l:. White, "Prequency-resolved optical
gating with the use of second-harmonic generation," J. Opt. Soc. Am. 13 11, 22062215 (1994).
2. D.N. Fittinghoff, K.W. Delong, R. 'I'rebino, and C.L.. Ladera, "Noise sensitiv-ity in frequency-resolved optical-gating measurements of ultrashort polses," J. Opt. Soc. Am. B12, 1955-1967 (1995).
3. R, Trebino, K.W. Delong, "Method and apparatus for measuring the intensity and phase of oue or more ultashort light pulses and for measuring optical properties of naterials," US Patent $\$ 5,530,544$.
4. M.1). Levenson and S.S. Kano, Introduction to Nonlinear Laser Spectroscopy (Acadennic Press, New York, 1988).
5. Li.W. Castner, Y.J. Chimg, Y.C. Chu, (i.1: Walrafen, "The intermolecular dynamics of liquid water" I. Chem. Phys. 102, 653 (1994).

Carrier-phase measurement of subharmonic optical pulses

Y. Kobayashi, K. 'Iorizuka, Electrotectmical Lab., 1-1-4 Umezono, Tsukuba, 305-8568 Japan; E-mail: yoheioletl.go.jp
Recently, it has made possible to obtain pulse width within two-optical-cycles using ' It : sapphire lasers. In this region, a carrier phase is important for the phase sensitivity of nonlincar-optical interaction. A subfemtosecond pulse train genecation by a Fourier synthesis of sublarmonics has been proposed. ${ }^{2}$ In this case, catrier phase shift between different wavelengths has to be controlled when the pulsed lights are superposed.

In this report, we have developed subharmonic generator by using the fentosecond OPO and observed phase relation between three pulses. Wavelengths of the pump, signal and the idler are $850 \mathrm{~nm}(3 \omega), 1275 \mathrm{~nm}(2 \omega)$ and $2550 \mathrm{~mm}(\omega)$, respectively by using $\mathrm{K}^{\prime} \mathrm{IIOP}_{4}\left(\mathrm{KTP}^{\prime} \mathrm{P}^{2}\right)$ with $0=71.5$-deg. phasematching angle. Two pulses, second harmonic of the signal and sum-frequency between the pump and the idler, are generated from the K'IP at the same time with same wavelength ($4 \omega: 638 \mathrm{~nm}$) and their phases are transferred from the signal and the idler, respectively. Then the phase relationship between the pump, signal and the ieller can be observed by measuring the beat sigual of these two pulses without extra frequency conversion.
lixperineental setup is shown in Fig. 1. The puntp is a $1.2 \mathrm{~W}, 50-\mathrm{fs}$, 'litsapphire laser in a 72-Mly\% train. The OPO cavity is linear, group-velocity-dispersion compensated by two-chirped mirrors. The opo produces as much as 80 mW of power in the signal with the pulse duration of about 40 fs , and produces 70 mW of power in the idler branch. Two red lights (4ω) are collimated by a Jons and are taken apart from the pump or the idler by a prism and detected by a photo-multiplier (PM) and analyzed by a spectrom analyzer.
ligure 2 (a) shows the beat signal of the red lights changing the OpO cavity lengths. the stable peaks around 72 ML \% represent the repctition rate (F). The measured beat frequency (f) varies in accordance with $f=\cdots \Delta l / \lambda s \times L^{1}$,

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

