

 University of Groningen

Computing a Canonical Polygonal Schema of an Orientable Triangulated Surface
Lazarus, Francis; Pocchiola, Michel; Vegter, Gert; Verroust, Anne

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lazarus, F., Pocchiola, M., Vegter, G., & Verroust, A. (2001). Computing a Canonical Polygonal Schema of
an Orientable Triangulated Surface. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli
Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/a9cbd0c9-be9b-4931-bd86-8625d390d52f

Computing a Canonical Polygonal Schema of an
Orientable Triangulated Surface

Francis Lazarus
�

Michel Pocchiola
y

Gert Vegter
z

Anne Verroust
S

ABSTRACT
A closed orientable surface of genus g can be obtained
by appropriate identi�cation of pairs of edges of a 4g-
gon (the polygonal schema). The identi�ed edges form
2g loops on the surface, that are disjoint except for their
common end-point. These loops are generators of both
the fundamental group and the homology group of the
surface. The inverse problem is concerned with �nding a
set of 2g loops on a triangulated surface, such that cut-
ting the surface along these loops yields a (canonical)
polygonal schema. We present two optimal algorithms
for this inverse problem. Both algorithms have been im-
plemented using the CGAL polyhedron data structure.

1. INTRODUCTION
Let Mg be a regular 4g{gon, whose successive edges

are labeled a1; b1; a1; b1; � � � ; ag; bg ; ag ; bg. Edge x is di-
rected counterclockwise, edge x clockwise. The space
obtained by identifying edges x and x, as indicated by
their direction, is a closed oriented surface; See e.g. [8,
Chapter 1.4]. This surface, called orientable surface of
genus g, is homeomorphic to a 2{sphere with g han-
dles. E.g., M1 is the torus; See Figure 1. The labeled
polygon Mg is called the canonical polygonal schema of
Mg.
It is easy to see that all vertices are identi�ed to a single
point p0 of the surface. After identi�cation in pairs, the

�CNRS and University of Poitiers, France.
E-mail: lazarus@sic.sp2mi.univ-poitiers.fr
yD�ept d'Informatique, Ecole Normale Sup�erieure, Paris,
France. E-mail: Michel.Pocchiola@ens.fr
zDept. of Math. and CS, University of Groningen, The
Netherlands. E-mail: gert@cs.rug.nl
SINRIA Rocquencourt, France.
E-mail: Anne.Verroust@inria.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’01, June 3-5, 2001, Medford, Massachusetts, USA.
Copyright 2001 ACM 1-58113-357-X/01/0006 ...$5.00.

a1

a1

b1

b1

Figure 1: From polygonal schema to orientable
surface: the torus.

edges of the polygonal schema form 2g curves on Mg,
which are disjoint, except for their common endpoint
p0. These 2g loops are generators of the fundamental
group of Mg (and of the �rst homology group). In the
sequel we drop the dependence on the genus from our
notation, i.e., M denotes a closed orientable surface of
genus g.
In this paper we consider the inverse problem: Given

a combinatorial (triangulated) surface, �nd a canonical
set of PL-curves (generators) such that, after cutting
the surface along these generators, we obtain a canoni-
cal polygonal schema for the surface. A PL-curve is an
alternating sequence of edges and vertices, where edges
connect two successive vertices that lie in the same face,
either in its interior or on the interior of one of its bound-
ary edges.
In [10] an algorithm is sketched that constructs a

canonical set of generators in optimal time and space.
In this paper, we present in detail a simple optimal al-
gorithm; we call this the incremental method, since we
construct the generators while traversing all triangles of
the surface. Our main result is

80

Theorem 1. A canonical set of PL-generators for
an orientable closed surface of genus g, with a total of
n vertices, edges and faces, can be computed in O(gn)
time and space, which is worst-case optimal. Each PL-
generator consists of O(n) edges and vertices.

. . .
...

...
.
.
.

Figure 2: A surface with two groups of dg=2e
and bg=2c handles, separated by a thin tunnel
of size
(n). Regardless of the position of the
base-point p0, at least half of this tunnel must
be crossed by at least bg=2c generators.

Optimality is easy to establish; See Figure 2.
Furthermore, we show how to turn Brahana's method [2]

into a second algorithm computing a canonical set of
generators in optimal time and space. We have imple-
mented both methods using the C++ library CGAL. For
comments on these implementations, and their perfor-
mance, we refer to Section 6.
There are several reasons for presenting these algo-

rithms here: (i) our algorithms greatly simplify the method
of [10], (ii) full details are presented for the �rst time,
(iii) the algorithms have been implemented, and (iv) the
algorithms can be used to solve several other problems
in computational topology. Among the applications are
the construction of PL-homeomorphisms between sur-
faces, and the construction of (a part of) the universal
covering space of the surface. A similar, non-canonical
polygonal schema has been used in [6] to decide whether
two PL-curves on a surface are homotopic. A di�erent
algorithm for the latter problem, based on methods from
combinatorial group theory, and abandoning universal
covering spaces, is presented in [4]. Other applications
are conceivable in connection with morphing, where a
suitable parametrization of 2-manifolds is provided by
the disk obtained by cutting along the canonical gener-
ators.
For general background material on computational

topology, also in connection with applications, we re-
fer to the surveys [5] and [9].

2. SURFACES WITH COLLARS
Triangulated surfaces will be represented by Doubly-

Connected Edge List, a data structure for representing
subdivisions of surfaces. We refer to [3, Chapter 2] for
details on this data structure. Note that every undi-
rected edge of the triangulation corresponds to exactly
two half-edges. The incremental algorithm starts with
the open surface S = M n ft0g, where t0 is an arbi-
trary (closed) triangle, eventually containing the com-
mon base point of the constructed generators. Initially,
the topological boundary B of S is the boundary of t0.

The algorithm proceeds by visiting triangles incident to
B along at least one edge, and cutting these (closed)
triangles from S. Note that the non-visited part of M
is an open subset of M. The topological boundary B
is adjusted accordingly. It is represented as a circular
sequence of half-edges, oriented in such a way that the
triangle to the left of a half-edge belongs to S. We say
that a vertex occurs in B if it is the origin of a half-edge
in B.
As we will explain in more detail, the boundary B may

become non-regular during this process, in the sense
that a vertex occurs multiply in B, or it contains both
a half-edge and its opposite partner (called its Twin
in [3]). See Figure 3 (Bottom). Yet, the irregularity
of B, and hence of the surface S, is restricted. This is
made more precise by introducing the notion of a collar
of an open surface.

Definition 2. A surface with collar in M is a pair
(S; c), where S is an open submanifold of M, and c :
S
1� [0; 1] !M is a continuous map, such that

1. c(S1� (0; 1]) � S, and the restriction c jS1�(0;1]: S
1�

(0; 1]! S is an embedding;
2. c(S1� f0g) �Mn S;
3. The topological boundary of S (viz S nS) is the image
of the closed curve c : S1� f0g !M.

Observe that the curve c : S1� f0g ! M is in general
not an embedding. The curve c : S1�f1g !M, which
is an embedding, may be considered as a `regularization'
of the { perhaps non-regular { boundary of S. We refer
to the half-open strip c(S1 � (0; 1]) as the collar of S.
This collar has attachment curve c(S1� f0g), and free
boundary c(S1�f1g). Note that every continuous curve
connecting a point in S with a point inMnS intersects
the collar of S.

B

p1

p2

p3

p4

Figure 3: Collars. Top: a PL-collar is obtained
by inserting vertices near the tail of half-edges
incident to B, or in a corner of a triangle. Bot-
tom: a collar on a singular curve B.

A collar S has a straightforward representation in the

81

PL-setting. To this end, we insert a vertex near the tail
of each half-edge in S emanating from a vertex of B.
Note that in this way an edge with both endpoints on
B obtains two vertices. Furthermore, if two successive
half-edges of B, sharing a common vertex v, are incident
to the same triangle t of S, there is no half-edge of S
emanating from v. In this case, we insert a vertex in
the interior of t (e.g., on the bisector of the angle of t
at v). Connecting the sequence of inserted vertices by
edges we obtain a PL-collar of S; See Figure 3. This
type of collar will be used in Section 4.
As usual, the Euler characteristic �(S) of S is the

alternating sum of the numbers of vertices, edges and
faces of S. Cutting the surface along B we obtain a
boundary of S consisting of a cyclic sequence of half-
edges (where some pairs of half-edges may correspond
to the same undirected edge ofM). Gluing a disk along
this cyclic sequence of half-edges yields a closed ori-
entable surface. By de�nition, the genus g of S is the
genus of the latter surface. It is straightforward to check
that �(S) = 1 � 2g.

3. OUTLINE OF THE ALGORITHM
We now describe the algorithm that visits all triangles

of M, starting from a single triangle. This algorithm is
the backbone for the construction of a canonical system
of generators, to be described in Section 4. Globally
speaking the algorithm proceeds as follows. The algo-
rithm ConnectedSum, which is called on the comple-
ment S of the initial triangle, visits a triangle t incident
upon the topological boundary B of S, updates S and
B, and calls itself recursively on the updated version
of S. (As we shall explain at the end of this section,
the algorithm in fact decomposes the surface M as a
connected sum of tori, whence its name.) During this
recursive process, S may become disconnected, in which
case ConnectedSum is called recursively on each con-
nected component. It may also happen that S is not
disconnected, but is not a surface with collar either (it
will turn out that in the latter case the collar is split).
Before we present the algorithm in full detail in Figure 5,
we �rst specify the input of the algorithm.
Precondition of ConnectedSum. Algorithm Con-
nectedSum takes as input a pair (S; g), where S is a
surface with collar, which has positive genus g.
In particular, the condition g > 0 guarantees that

ConnectedSum will not be called on disks, which will
be crucial in the analysis of the time complexity. The
process of visiting triangle t, incident upon the topolog-
ical boundary B, is called an extension. We distinguish
two types of extensions.
Regular Extension: Triangle t shares either two ver-
tices and one half-edge h1 (Figure 4, top), or three ver-
tices and two half-edges h1, h2 (Figure 4, bottom), with
B.
We update B in the former case by replacing the half-

edge h1 with the two-chain h2; h3, in the latter case
by replacing the two-chain h1; h2 with the half-edge h3.
Note that the topological types of B and the collar do
not change upon a regular extension. In particular,

=)

=)

h1

h1
h2

h2

h3

h3

Figure 4: A regular extension.

S 0 = S n t is a surface with collar (to guarantee that
S 0 is an open subset of M, we consider the triangle t to
be closed). Therefore, ConnectedSum is called recur-
sively on S 0. It is obvious that the Euler characteristic,
and hence the genus, does not change under regular ex-
tension.
Splitting Extension: Triangle t shares three vertices
and one half-edge with B (Figure 6, upper part).
The vertex of t, not adjacent to the common half-edge

of B and t, is called the split vertex, and is denoted by
vs. Let the vertices of t be v1, v2 and v3, such that
v1v2 is a half-edge of B, and hence v3 = vs. Let L be
the part of B between v3 and v1, and let R be the part
between v2 and v3. Then B is split into Bl = v1v3L and
Br = v3v2R. We distinguish two sub-cases:
S n t is not connected. In this case S n t consists of two
connected components, Sl and Sr say, with topological
boundary Bl and Br, respectively. Both Sl and Sr are
surfaces with collars, with attachment curves Bl and Br,
respectively.
S n t is connected. In this case the topological boundary
of S n t is Bl [Br, so S n t is not a surface with collar.
In particular, ConnectedSum does not accept S n t as
input. To remedy this situation, let be a simple edge-
path in S n t connecting Bl and Br, called a join-path
(of Bl and Br). See Figure 6, where vl 2 Bl and vr 2 Br

are the extremal vertices of .
The following result, whose (straightforward) proof is

omitted from this version of the paper, guarantees that
in case of a splitting extension the ConnectedSum can
be called recursively:

Lemma 3. Suppose processing t causes a splitting ex-
tension.
1. If Snt is connected, and is a join-path, then Sn(t[)
is a surface with collar, having genus g � 1.
2. If S n t is not connected, its connected components
Sl and Sr are surfaces with collar. Moreover, if their
genuses are gl and gr, respectively, then g = gl + gr.

The algorithm that constructs a canonical set of gen-
erators is presented in Figure 5. Checking whether the
current extension is regular (line 2) can be done in O(1)
time, by setting a mark bit for each visited vertex. To
determine whether S 0 = S n t is connected, we try to
construct a join-path by performing a breadth-�rst
search on the 1-skeleton of S 0 (we have to say more

82

ConnectedSum(S)
1 Let t be a triangle of S incident to collar(S)
2 if t causes regular extension
3 then ConnectedSum(S n t)
4 else � collar(S n t) is disconnected
5 if S n t is connected
6 then construct PL-path joining

components of collar(S n t)
7 construct pair of generators along

and part of collar(S n t)
8 if genus(S) > 1
9 then ConnectedSum(S n (t [))
10 else let Sl and Sr be the components of S n t
11 if genus(Sl) > 0 then ConnectedSum(Sl)
12 if genus(Sr) > 0 then ConnectedSum(Sr)

Figure 5: Algorithm ConnectedSum

about this presently). Depending on whether we suc-
ceed in connecting the two components Bl and Br of
the topological boundary of S 0, we decide whether S 0 is
connected or not. If S 0 is connected, a pair of generators
is constructed (details are presented in Section 4), and
ConnectedSum is recursively called on S n (t [), if
g0 = g� 1 > 0. If S 0 is not connected, ConnectedSum
is recursively called on the connected components Sl, if
gl > 0, and Sr, if gr > 0.

Lemma 4. 1. If S n t is connected, establishing con-
nectedness and computing a join-path can be performed
in time proportional to the size of S.
2. If S n t has two connected components, establish-
ing non-connectedness and computing the genuses of the
connected components can be performed in time propor-
tional to the size of the smaller connected component.

We only give a sketch of the proof. When a split oc-
curs, we try to construct the join-path by means of a
tandem search traversing the edges of the surface in par-
allel, starting from the sources Bl and Br. Then either
the tandem search succeeds in connecting Bl and Br by
the join-path , or it detects that S n t has two con-
nected components Sl and Sr by exhausting the smaller
of these two components. In the latter case we compute
the genus of the smaller component by determining the
number of vertices, edges and faces. Lemma 4, part 2,
gives the genus of the other connected component.
Lemma's 3 and 4 allow us to analyze the time complex-
ity of the traversal of the initial surfaceM. To this end,
let t0 be an arbitrary triangle of M.

Corollary 5. The call of ConnectedSum on the
surface with collar S0 = M n t0 is executed in time
O(gn), plus the time needed to construct the g pairs
of (line 7) generators upon a non-disconnecting split.
Here g is the genus of M and n is the total number of
vertices, edges and triangles in M.

Again the proof is straightforward, except for a minor
subtlety. If all recursive calls either result in the con-

vl

vl

vl

vr

vr

vr

v1

v1

v1

v2

v2

v2

v3

v3 = vs

v3 = vs

Figure 6: A splitting extension.

struction of a pair of generators (line 5{9), or in re-
cursive calls of ConnectedSum on collared surfaces of
lower genus (i.e., gl > 0 and gr > 0), the total time
complexity obviously is O(gn) (since the total number
of calls is g in this lucky case).
However, ConnectedSum may be called recursively

on a collared surface of the same genus as S in case
the genus of Sl or Sr is zero. Note that in this case
the component with genus zero is discarded. Since the
algorithm spends time proportional to the smaller of the
sizes of Sl or Sr, we charge the cost of the recursive call
to the discarded component. Therefore, the total cost
of calls of this type is O(n).

4. CONSTRUCTING GENERATORS
It remains to �ll in the details of the construction of

a pair of generators, cf Figure 5, line 7. These genera-
tors will be routed along an approach path AP, which
connects the base point with the boundary of the non-
visited part of the surface. As the algorithm proceeds,

83

we should take care that generators we are about to
complete do not intersect already constructed genera-
tors. Yet, we allow already constructed generators to
intersect the non-visited part of the surface, although
possible intersections should be con�ned to the collar of
the non-visited part.
More precisely, let t0 be the �rst triangle visited, and

let the base-point p0 be an interior point of t0. We
�rst extend the precondition, introduced in Section 2
for calling ConnectedSum on a non-visited surface S
with collar. To this end, we assume from now on that a
collar is piecewise linear, as described in Section 2 (See
also Figure 3). In particular, a collar of S only intersects
edges and faces of S incident upon the attachment curve
B, and such edges are intersected in interior points. Fur-
thermore, we require that the attachment curve B of S
has a distinguished half-edge hAPA, satisfying the fol-
lowing conditions:
(AP1) The base-point p0 is connected by a PL-curve
AP to hAPA; apart from p0, this approach path is dis-
joint from S, and it does not share any point with al-
ready constructed generators and approach paths;
(AP2) The terminal point of AP on hAPA can be con-
nected to the free boundary of the collar of S by a line
segment inside the face of S incident upon hAPA, which
does not intersect any of the generators constructed so
far;
(AP3) No already constructed generator intersects the
free boundary of the collar of S. No already constructed
approach path intersects S.

The distinguished edge hAPA is called the approach path
aperture of S. The existence of the line segment, ref-
ered to in condition AP2, will allow us to extend the
approach path when visiting new triangles.

Lemma 6. The main procedure ConnectedSum can
be enhanced in such a way that:
1. It maintains the invariants (AP1), (AP2) and (AP3)
2. If visiting a triangle t causes a splitting extension such
that S n t is connected (Figure 5, line 5{7), it constructs
a pair of generators in O(n) time.

Proof. Before describing the actual enhancement of
ConnectedSum, we impose some restrictions on the
traversal and the approach paths, and introduce some
primitive operations that facilitate the description of the
algorithm.
We require that, during the traversal of the surface,

the next triangle visited in a call of ConnectedSum on
S is incident upon the approach path aperture hAPA,
contained in the boundary B of S. Furthermore, we
require that approach paths do not intersect vertices of
M.
A basic operation is that of cloning an approach path.

Cloning an approach path AP, directed from p0 to its
terminal vertex on the approach path aperture hAPA,
amounts to constructing a PL-path from p0 to hAPA,
with the same combinatorial structure as AP (i.e., in-
tersecting the same sequence of edges and faces of M).
This clone should not share any point with already con-
structed approach paths or generators, apart from p0.

To avoid ambiguities, we assume that a clone runs to
the left of its original. In view of condition (AP1), any
approach path can be cloned, and cloning can even be
repeated on clones.
Furthermore, we employ the notion of routing a PL-

curve along (part of) the free boundary of a PL-collar.
This operation is similar to cloning, in that we con-
struct a PL-curve inside the PL-collar, which has the
same combinatorial structure as (a sub-path of) the free
boundary of the collar. We require this curve to be dis-
joint from already constructed generators and approach
paths, which is possible in view of conditions (AP1) and
(AP3).
Now consider a regular extension. Set the approach

path aperture h0APA of S 0 = S n ftg to one of the half-
edges in the boundary of t, not incident upon B (e.g. h3
in Figure 4). According to (AP2), there is a line segment
s = pp0 connecting the terminal vertex p of AP with a
point p0 inside t and on the free boundary of the collar
of S. Let q be a point on h0APA not belonging to the
collar of S. Such a point exists, since h0APA does not
belong to B, and since the PL-collar of S only intersects
faces incident upon B. Extending AP with pp0 and
p0q, we obtain an approach path 0AP for S 0 satisfying
(AP1). Furthermore, since q does not belong to the
collar of S there is a line segment qq0, with q0 on the free
boundary of the collar of S 0, that is disjoint from the
collar of S. In other words, (AP2) holds for S 0. Since
we do not complete any generators, (AP3) also holds
for S 0. The enhanced version of a regular extension
obviously takes O(1) time. It remains to consider a
splitting extension. If S 0 = S n ftg is disconnected, and
both gl and gr are positive, we construct a clone 0AP
of the approach path AP. Now we extend 0AP to the
half-edge v1vs of Bl, and we extend AP to the half-edge
vsv2 of Br (the notation is as in Section 2); See Figure 7,
Top. Arguing as in the case of a regular extension, we
conclude that conditions (AP1), (AP2) and (AP3) hold
for the connected components Sl and Sr of S 0, with
approach path apertures v1vs and vsv2, respectively. If
gl or gr is zero, we just extend the approach path to the
non-visited part of positive genus in O(1) time. Cloning
only needs to be done in case the genus of both non-
visited parts is less than the genus of S, which happens
at most g � 1 times. Therefore, the overall complexity
of all splitting extensions of this type is O(gn).
Finally, consider a splitting extension in which S 0 =

S n ftg is connected. Now we construct four disjoint
clones 1, 2, 1 and 2 of AP, whose respective end-
points p1, p2, p1 and p2, occur in this order on the
approach path aperture hAPA between v1 and the end-
point of AP. The approach path AP is now extended to
the half-edge vsv2, see Figure 7, Bottom. As before, we
can do this in such a way that (AP1), (AP2) and (AP3)
holds for S 0. Finally, we complete a pair of generators
by connecting the end-points of 1 and 2 with the end-
points of 1 and 2, respectively, by two curves �1 and
�2; See Figure 7, Bottom. More precisely, let F and F 0

be the free parts of the collars of S and S 0. Then �1 is
a PL-curve obtained by connecting p1 to a point near
v1 on v1vs by a curve inside t, and subsequently routing

84

v1 v2

vs

vl vr

v1 v2

vs

vl vr

AP

0AP AP

Figure 7: Splitting extensions upon visit of tri-
angle t = v1v2v3. Top: S n ftg is not connected.
Bottom: S n ftg is connected, so a pair of gener-
ators is constructed.

it along the part of F near v1
�

! vl
�

! vs and along the

part of F 0 near vs
�

! v1, and, �nally, connecting it to p1.
Furthermore, �2 is a PL-curve obtained by connecting
p2 to a point near v1 on v1vs, and subsequently routing

it along the part of F 0 near pv1
�

! vl
�

! vr, then along

the part of F near vl
�

! vs, letting it traverse t near vs,

then routing it along the part of F 0 near vs
�

! v1, and,
�nally, connecting it to p2 by a curve inside t. Obviously,
�1 and �2 do not intersect the free boundary of the
collar of S 0. Furthermore, it is easy to see that these
curves can be constructed in such a way that they are
disjoint from any generators or approach paths already
constructed.
The time complexity of this splitting operation is O(n),

since the generators share only a constant number of
edges and vertices with each edge and face of M. Since
there are exactly g splitting extensions of this type, the
overall time complexity is O(gn).

Observe that ConnectedSum constructs pairs of gen-
erators that are not interleaved near the base point. In
other words, the g pairs of generators form a canonical
set. Theorem 1 is now a straightforward consequence of
Corollary 5 and Lemma 6.

Remark: connected sums. In fact, ConnectedSum
rewrites the initial surfaceM as a connected sum (cf [1,
Chapter 7]) of g tori. To see this, let S denote the closed

orientable surface obtained by gluing a disk along the
boundary of a collared surface S.
The algorithm maintains the surface M as a con-

nected sum of the form M = S1] � � �] Sk; where Si is
a collared surface, gi := genus(Si) > 0, and

Pk

i=1 gi =
g. Here] denotes the connected sum-operator. Ini-
tially, k = 1 and S1 = M n t0. Consider a recursive
call of ConnectedSum on S = Si. If a pair of gen-
erators is constructed (line 7), S is rewritten as S =

S n (t [)] T2, where T2 is a 2-torus. If, on the other
hand, Snt is disconnected, S is rewritten as S = Sl] Sr.
In the latter case, we only make progress if neither Sl
nor Sr are topological disks. This corresponds to the
subtlety discussed at the end of Section 3.

5. BRAHANA’S ALGORITHM
The inverse of a path p is denoted by {(p) or p�1, and

for a set of paths S we denote the set S [{(S) by Ŝ.
LetG be a maximal subgraph of the vertex-edge graph

of M such that M n G is connected, and let TG be a
tubular neighbourhood of G in M. By construction,
M n TG is a topological disk and G is a deformation
retract of TG. Therefore a set of generators of the fun-
damental group �(G;x) of G at x is also a set of gener-
ators of the fundamental group �(M; x) of M at x. We
can decompose our method into three steps:
1. First we construct a set G of (2g) generators of �(G;x),
associated with a set E of (2g) directed edges of M un-

der a bijection ` : E ! G, and a cycle � of Ê such that
for e 2 Ê:

`(�(e))`(�2(e)) : : : `(�4g(e)) � �x (�)
in �(M; x). Here �x is the trivial path at x.
2. Secondly, we transform in O(gn) time the set G into a
set H of generators xi; yi of �(G; x), each of linear com-
plexity, such that a loop in H is homotopic (in G) to

the concatenation of O(g) loops in Ĝ, and the relation
satis�ed by the xi; yi in �(M; x) is in 'canonical form',
i.e.

[x1; y1] � � � [xg; yg] � �x: (��)
As usual, [xi; yi] is the commutator xiyix

�1
i y�1i , and �

denotes path-homotopy.
3. Finally, we show how to construct in O(gn) time a
canonical set of generators x�i ; y

�

i of �(M; x) such that
xi � x�i and yi � y�i in TG.
Step 1. We construct a spanning tree T of G rooted
at x. Let E denote the set of non-tree edges in G; Each
edge in E is oriented arbitrarily and each edge in T
is oriented towards the root. Without loss of general-
ity we assume for convenience that there is only one
edge esink of the tree incident upon x: For each (di-

rected) edge e 2 Ê we consider the shortest edge-path
e = ee1e2 � � � esink from e to x in T . By construc-
tion, for e 6= e0 the paths e and e0 coincide only on
a proper suÆx sub-path, i.e., both paths can be de-
composed as e = �e;e0e;e0 and e0 = �e0;ee0;e, where
e;e0 = e0;e and �e;e0 and �e0;e are disjoint except at
their sink v(e; e0). One can check that the relation on

the edges in Ê de�ned by e � e0 if the sink edges of
�e;e0 , �e0;e and the source edge of e;e0 are in counter-
clockwise order around their common endpoint v(e; e0)

85

| with respect to the choice of an orientation of the
surface M | is a transitive relation.
Let now `(e) be the loop with basepoint x obtained

by concatenation of the loops {(e) and {(e), removing

one of the two occurrences of e�1, i.e., `(e) = {(e){(e):
Note that `({(e)) = {(`(e)): The set G := `(E) is a set of
(2g) generators of �(G;x), and consequently of �(M; x).
Furthermore, the unique relation in �(M; x) satis�ed by
these generators is (�), where the operator � is de�ned
by �(e) = Æ {(e). Here (e) is the successor of e with

respect to the circular order on Ê, induced by the linear
order � :
Step 2. We use a sequence of Brahana transforma-
tions, cf [10]. Let `i = `(�i(e)) for some e 2 Ê, and let
M be the loop `1 � � � `4g: The loopM can be decomposed

into aX1bX2a
�1X3b

�1X4; where a and b are loops in Ĝ,
and X4 is nonempty (unless X1; X2 and X3 are empty,
in which case we are done). If X1; X2; X3 are not all
empty we replace the loops a and b by the loops x =
aX1bX2a

�1 (consequently b�1 = X2a
�1x�1aX1) and

y = X3X2a
�1 (a = y�1X3X2) to obtain successively

M �

xz }| {
aX1bX2a

�1X3b
�1X4 � x

y
z }| {
X3X2a

�1 x�1aX1X4

� [x; y]X3X2X1X4 � X3X2X1X4[x; y].
If X1; X2; X3 are all empty, then we simply set x =
a, y = b. In both cases M � M 0[x; y] where M 0 is

the concatenation in some order of the loops in Ĝ n
fa; a�1; b; b�1g, and where x and y are loops composed

of O(g) generators in Ĝ: The loops a and b and their

corresponding edges in Ê are said to be converted. Af-
ter j such transformations we have converted a set Gj
of 2j generators in G into a set Hj of 2j generators
x1; y1; x2; y2; : : : ; xj ; yj , such thatM �Mj [x1; y1] � � � [xj ; yj]:
HereMj is the concatenation in some order of the loops

in Ĝ n Ĝj . For j = g we obtain generators which satisfy
(��), but whose total complexity is only in O(g2n:)
We now explain how to reduce the complexity of these

loops by homotopy to O(gn): First we examine how the
relation � = Æ { is tranformed. For j � 0 and for
e 2 Ê n Êj we de�ne j(e) to be the �-successor of e

in Ê n Êj , and �j(e) to be the edge e0 such that the
successor of `(e) in Mj is `(e

0):

Lemma 7. �j(e) = j Æ {(e).

Proof. We prove the result by induction. The case
j = 0 follows from the de�nition of �. Let a and b
be the loops converted at step j + 1: One has Mj =
aX1bX2a

�1X3b
�1X4 and Mj+1 = X3X2X1X4. Let

e0 = �j+1(e). If e0 = �j(e), then e0 = j({(e)) =
 j+1({(e)), since e and e

0 are not converted at step j+1:
Assume now that e0 6= �j(e), and let eki for k = 1; 2 and
i = 1; 2; 3; 4 be de�ned by Xi = `(e1i)X

0

i`(e
2
i) if Xi is

non empty. The pair (e; e0) coincides with one of the
pairs (e2k; e

1
k0) where k precedes k0 in the order 3,2,1,4.

For example if e = e23 and e0 = e12 then j({(e
2
3)) =

�j(e
2
3) = {(b) and j({(b)) = �j(b) = e12 = e0. There-

fore, j+1({(e)) = e0. The other cases are similar.

We are now ready to decrease in optimal time the

complexity of the loops xi; yi: Assume that

xj = `(a)`(b) � � � `(z)

and let sc(xj) be the loop de�ned by

{(a)`({(a); b)`({(b); c) � � � `({(y); z){(z);

where `(e; e0) is the concatenation of the two paths �e;e0
and {(�e0;e): Clearly x � sc(x), and the size of sc(x), i.e.,
its number of edges in M, is in O(n). Starting from
its source e, we can visit the edges of `(e; e0) in time
proportional to its size if we can determine eÆciently
the vertex v(e; e0). In view of Lemma 7 this can easily
be done in O(1) time, provided we maintain for each
node v of the tree T the �-ordered list Lj(v) of edges

e 2 Ê whose corresponding loops have non yet been
converted, and whose associated paths e lie along v.
The lists L0(v) are easily created in O(gn) time, and
updated in O(n) time, each time an edge is converted
by a traversal of the corresponding loop.
Step 3. Omitted from this version.

6. IMPLEMENTATION
We have implemented both the incremental and Bra-

hana's algorithm in C++, using the CGAL [7]1 polyhe-
dron data structure. Both source codes are approxi-
mately 3,000 lines long. The remaining issue in the
implementation is the representation of loops. In prac-
tice, a PL-loop is speci�ed by the list of edges it crosses.
Also, each edge of the combinatorial surface points to
the list of loops it is crossed by. See Figure 8. In order

Figure 8: The loops data structure.

to visualize the PL-loops, we uniformly insert in each
edge a number of points equals to the size of its list.
We then link these points according to each loop list.
In Section 4 we always visit a triangle incident upon

the approach path aperture. In practice, we can choose
any triangle incident to the boundary and keep the same
complexity. In our implementation we use a `potato
peeling' traversal. This heuristic produces nicer loops.
We run our programs on a test suite of threads of tori

with various lengths (Figures 9 and 10).
Figure 11 shows the genus 3 torus and its system of

loops computed by each method. Results for the test
suite are reported Table 1. Times were obtained with
the CGAL::Real timer class. For both algorithms times

1http://www.cgal.org/

86

Table 1: Statistics for the incremental and Brahana's algorithms
time incremental method Brahana's method

Object genus #faces for reading time total size time total size
in sec. in sec. of loops in sec. of loops

torus 10 10 408 0.006 0.014 2,687 0.015 2,232
torus 20 20 808 0.01 0.04 9,472 0.04 7,527
torus 50 50 2,008 0.03 0.16 53,827 0.24 40,812
torus 100 100 4,008 0.06 0.52 207,752 1.17 154,287
torus 200 200 8,008 0.12 1.93 815,602 6.71 598,737
torus 500 500 20,008 0.43 213.3 5,039,152 - -
torus 3 3 128 0.002 0.004 320 0.003 255
torus 3 1 3 384 0.006 0.01 542 0.009 673
torus 3 2 3 1,152 0.02 0.03 1,168 0.03 1,144
torus 3 3 3 3,456 0.06 0.09 2,064 0.1 1,906

Figure 9: All tori were obtained by gluing trans-
lated copies of this genus 1 torus.

Figure 10: A genus 3 torus with various subdi-
visions.

include reading input �les, computing the canonical sys-
tem of loops with the data structure mentioned above
(with the uniform embedding). They do not include,
however, time for writing the resulting PL-loops into
a �le. Tests were all run on a Pentium III, 800 MHz
with 256 Mb RAM. For all the tori we used base-point
with index 0 near one extremity of the threads. Note
that the tori present a worst case con�guration (See
also Figure 2). As asserted by Theorem 1, time is
roughly proportional to the product gn of the genus by
the surface complexity. This is also the case for the to-
tal size of the loops. For the torus with genus 500 and
up timings are not representative as a large amount of
memory swapping is involved. Table 2 shows the in-
uence of the choice of the base-point on the torus 10

Figure 11: Results of the incremental (top) and
Brahana's (bottom) methods for a genus 3 torus.

example. Points 0 and 184 ly approximately at the two
extremities of the thread while point 92 is in the mid-
dle. A closer look at the execution pro�le of Brahana's
method shows that most of the time is spent at trans-
forming the initial system of loops into a canonical one.
This holds particularly when the initial set of generators
satis�es a relation `close' to the other canonical form:
a1b1a2b2 : : : agbga1b1 : : : agbg. In this case, the �nal gen-
erators are indeed expressed as
(g2) initial generators.
The construction of the maximal subgraph G and the
choice of the base-point have great inuence on the re-

87

Table 2: Inuence of the base-point
base-point Size of loops Size of loops
index for incremental for Brahana
0 2687 2232
2 2060 4693
91 2177 2004
92 1611 4334
93 2248 3409
100 1631 4157
150 2190 5176
184 2380 6725

sults. In order to construct G we use a spanning tree
on the dual graph of faces. The edges in the dual graph
are in 1-1 correspondence with the edges of the surface.
G is composed of the surface edges not in the span-
ning tree. We have tested two traversals to construct
the dual spanning tree: a peeling traversal - a speci�c
depth-�rst search - and a breadth-�rst search. Figure 13
illustrates the resulting loops on a simple torus example.
Breadth-�rst search always gave much shorter loops on
our examples. This �gure and the following Figures 14
and 15 were obtained by running our algorithm on the
combinatorial surfaces with the subdivision shown in
Figure 12 after identi�cation of the boundary sides in
a canonical order. However, as on this Figure, we kept
a planar embedding for the vertex coordinates, faking
a attening of the cut open surfaces. These attenings
obviously correspond to particular canonical schemata
which are a priori not related to the computed canonical
system of generators.

a

ab

b

a

a

b

b
a

b a

p

p

0

0

p
0

p
0

p
0

p
0

p
0

p
0

p
0

p
0

p
1

1
1

11

1

1 1

1

2

22

2

b

0
p

p
0

Figure 12: Left: torus subdivision. Right: dou-
ble torus subdivision.

We comment on Brahana's algorithm applied to the
double torus example on the left Figure 12 with base
point p0.
The initial loop M (beginning of step 2 in Brahana's

algorithm) turns out to be:

(+0)(�3)(�1)(+2)(�0)(+1)(�2)(+3)

In the notation of Section 5, the algorithm takes a =
(+0) and b = (�3). The �rst part of the Brahana trans-
formation is:

x = aX1bX2a
�1 = (+0)(�3)(�1)(+2)(�0)

Figure 13: The shown loops, dark and light grey,
were computed with Brahana's method and cen-
ter base point p1 using a peeling traversal (left)
and a breadth-�rst traversal (right).

so X1 = �, X2 = (�1)(+2), X3 = (+1)(�2) and X4 = �
Thus M becomes:

(+3)(+1)(�2)(�1)(+2)(�0)(�3)(+0)

The second part of this Brahana transformation corre-
sponds to the choice
y = X3X2a

�1 = (+1)(�2)(�1)(+2)(�0), and M be-
comes

(+x)(+y)(�x)(�y)(+1)(�2)(�1)(+2)

Figure 14 shows the initial loops, while Figure 15 shows
the converted canonical set of loops. In order to help
visualization, each pair of generators is �rst drawn sep-
arately.

Figure 14: Upper left: Pair (0,3) of initial loops.
Upper right: Pair (1,2). Bottom: The initial set
of loops.

88

Figure 15: Left: pair (x, y) replaces pair (0,3).
Right : the canonical set of loops (pair (1,2) is
left unchanged).

7. FINAL REMARKS
We have presented two algorithms for computing a

canonical set of PL-generators on an orientable triangu-
lated surface. Both algorithms are worst-case optimal.
Note that Brahana's algorithm can actually be applied
to any combinatorial surface, not necessarily triangu-
lated. It seems that this algorithm could also be ap-
plied to non orientable surfaces but loosing the O(gn)
complexity. It is not clear whether one of the two al-
gorithms generally produces better results in terms of
the loops complexity. In any case the obtained PL-
loops look much too jaggy and complex to be of any use
for practicle applications such as morphing. More work
needs to be done in this direction taking into account
the \geometry" of the surface.

8. REFERENCES
[1] M. Armstrong. Basic Topology. Undergraduate

Texts in Mathematics. Springer Verlag, Berlin,
1983.

[2] T. Brahana. Systems of circuits on 2-dimensional
manifolds. Ann. Math., 23:144{168, 1921.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
Berlin, 1997.

[4] Dey and Guha. Transforming curves on surfaces.
JCSS: Journal of Computer and System Sciences,
58:297{325, 1999.

[5] T. Dey, H. Edelsbrunner, and S. Guha.
Computational topology. In Advances in Discrete
and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 109{143, 1999.

[6] T. Dey and H. Schipper. A new technique to
compute polygonal schema for 2-manifolds with
application to null-homotopy detection. Discrete
and Computational Geometry, 14:93{110, 1995.

[7] L. Kettner. Using generic programming for
designing a data structure for polyhedral surfaces.
Computational Geometry: Theory and
Applications, 13:65{90, 1999.

[8] J. Stillwell. Classical Topology and Combinatorial
Group Theory. Springer-Verlag, New York, 1993.

[9] G. Vegter. Computational topology. In J. E.
Goodman and J. O'Rourke, editors, Handbook of
Discrete and Computational Geometry,
chapter 28, pages 517{536. CRC Press LLC, Boca
Raton, FL, 1997.

[10] G. Vegter and C. K. Yap. Computational
complexity of combinatorial surfaces. In Proc. 6th
Annu. ACM Sympos. Comput. Geom., pages
102{111, 1990.

89

