

 University of Groningen

Connectionist lexical processing
Stoianov, I

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Stoianov, I. (2001). Connectionist lexical processing. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/cc5034b4-2467-4e10-a7ad-cb4c6319e0e0

Part III

HOLISTIC LANGUAGE

MODELLING

153

Chapter 6

RECURRENT

AUTOASSOCIATIVE

NETWORKS

6.1 Introduction

Chapters 4 and 5 presented a work on two lexical problems, where the words

were represented as sequences built out of letters or phonemes. Fortunately,

there are only 26 Latin letters and some 44 phonemes used to represent

the sounds of the Dutch language, and those could nicely be encoded either

with a properly selected feature set, or simply by assigning one neuron to

each of them. Unfortunately for connectionist natural language processing,

however, natural languages consist not only of letters/phonemes and words,

but also of more complex items such as phrases, sentences, paragraphs,

stories, etc. Phrases are built out of words; sentences in turn are built out

of phrases, etc. To make the picture even more di�cult, the items at each of

those levels, including the lexical one, are associated with a variety of other

representations (meanings). The idea of sequential association, exploited in

Chapter 5 on Grapheme-to-Phoneme Conversion, works to some extent, but

it is unlikely that very complex sequences would be dynamically associated

with other events spanning a long period (Thornton 1996). It is simply more

e�cient to develop representations of less complex dynamic objects, which

can be included in more complex sequences.

Therefore, natural language modeling, and more generally, cognitive

modeling, needs an adequate hierarchical system of representations that

can represent a system of such (external) structured dynamic objects {

155

156 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

words, sentences, but also movements, actions, etc., in the extra-linguistic

domain. What we distinguish as letters, words, sentences, etc., need to be

encoded in a proper and systematic manner, permitting direct, \holistic"

operations over the resultant abstract representations rather than over their

external sequential forms (Chalmers 1990, Blank, Meeden & Marsgall 1991,

Hammerton 1998b). Operations on complex (symbolic) objects are regarded

as holistic if they do not rely on a prior analysis of the external form of the

objects, but act upon their internal (holistic) representations. It will be fur-

ther required that representations be static, unique characterisations of the

original objects. They should allow holistic transformations and associations

to representations of other modalities { visual, e�ectual, etc.

It is common in connectionist natural language modeling to use localistic

and hand-crafted feature-based encoding (Seidenberg & McClelland 1989,

Elman 1988, Plaut et al. 1996, Henderson & Lane 1998), which restricts the

capacity of the processing system. It would be preferable that representa-

tions evolve in the course of experiencing the language (data) in its external

sequential form, which would also be in accordance with our capacity to

learn any language without any prior knowledge of it, as well as any other

system.

A �rst attempt to build such representations was suggested by Pollack

(1990). He extended the static Multilayered Perceptron (Rumelhart, Hin-

ton & Williams 1986) to the Recursive Auto-Associative Memory (RAAM)

model, which develops compact distributed representations of static input

patterns through autoassociation. The RAAM was further extended to a

Sequential RAAM (SRAAM) for sequential processing. However, the imple-

mentations of the latter model have had variable success even when applied

to trivial data (Chalmers 1990, Blank et al. 1991, Blair 1997, Kwasny &

Kalman 1995, Hammerton 1998b).

The development of global-memory recurrent neural networks, such as

the Jordan Recurrent Networks (Jordan 1986) and the Simple Recurrent

Networks (SRN) by Elman (1988) stimulated the development of models

that gradually build representations of their sequential input in this global

memory. The Sentence Gestalt Model (St. John & McClelland 1990) grad-

ually encodes the input words into a gestalt and questions it further for roles

with another static neural network. A similar architecture, known under the

name \Movie Description Network", was trained to gather representations

of a sequential visual input (a movie) and to describe it with some simple

language (Cottrell, Bartell & Haupt 1990). A more recent implementation

of the SRAAM also employs SRNs in order to build representations of the

sequential input (Kwasny & Kalman 1995) .

6.1. INTRODUCTION 157

In this chapter, I present another connectionist architecture designed

to build and process a hierarchical system of static distributed represen-

tations of complex sequential data, which I proposed earlier in (Stoianov

1999, Stoianov 2000b). It follows the idea of building complex static repre-

sentations of the input sequence, but has been extended with the ability to

reproduce those static representations into their original form by building

unique representations for every input sequence. The architecture consists

of sequential autoassociative modules { Recurrent Autoassociative Networks

(RANs). Each of these modules learns to reproduce a set of input sequences

and, as a side e�ect, develops static distributed representations of those se-

quences. The complete architecture for processing sequentially represented

hierarchical input data consists of a cascade of RANs.

A RAN-cascade encodes structured sequences and decodes their static

representations in the following way: During sequence encoding, each RAN

gradually gains in its context layer a representation of the incoming tokens

until a proper delimiter marker is received. The input data at the lowest-

level RAN module may be sequences of percepts from the external world.

Every other higher-level RAN module receives as input sequences of static

representations that the RAN module from the immediate lower level has

produced. To decode a static representation, it is set to the hidden layer

of the correspondent encoding RAN. Then, this RAN starts to cycle { pro-

ducing patterns at the output layer and copying the hidden layer to the

context one { until an end-of-sequence token is produced. If the current

RAN operates at a higher level, its output could be sent to the hidden layer

of the immediate lower level RAN, and sequentially decoded. Otherwise,

the output of this RAN is also the output of the cascade. The output of

the lowest-level module can also be associated with an e�ector. Then, given

a static representation set to an RAN hidden layer in this cascade, the at-

tached e�ector would sequentially receive commands during the unpacking

process.

As we see, the RAN is a recurrent neural network which conforms to

the dynamics of natural languages. Also, RANs both produce representa-

tions of sequences and interpret them by unpacking back to their sequential

form. The more extended architecture { a cascade of RANs { resembles the

hierarchical structure in natural languages.

Furthermore, given a representative training environment, this architec-

ture has the capacity to develop distributed representations in a systematic

way. The question whether connectionist models can develop systematic

representations has been discussed ever since the challenge put by Fodor

& Pylyshyn (1988) that only classical symbolic systems can guarantee sys-

158 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

tematicity (see Aydede (1997) for review). Connectionist systems claimed

to meet this challenge are the (S)RAAM, and the Smolensky's tensor prod-

ucts (Smolensky 1990), among others. Later in this chapter I will argue

that the RANs also provide an account of systematicity and will present

a number of experiments testing this thesis. Therefore, I believe that the

RAN and the RAN cascade can participate in a more explanatory cognitive

model, where the distributed representations they produce are extensively

transformed and associated. Chapter 7 will elaborate this problem more

extensively, presenting experiments on Holistic Computations.

This chapter continues with a discussion of the hierarchy in dynamic

data in the next section. There follows a review of connectionist sequen-

tial processing, after which the RAN model is presented in detail in section

6.4. In the same section, the RAN model is illustrated with two exam-

ples: developing representations of syllables and developing representations

of numbers. The cascade architecture is given in section 6.5, where a two-

level representation of words is presented too. Next, I discuss some cognitive

aspects related to the RANs and how this architecture might provide some

answers for cognitive modeling. After a discussion of the RAN capacities

and the representations it develops in section 6.7, the chapter will �nish with

a conclusion.

6.2 Sequences, Hierarchies and Representations

Static objects and dynamic processes are mutually interconnected. On one

hand, dynamic processes are ultimately composed of sequences of static ob-

jects but on the other hand, the same dynamic processes are generated by

single objects and might be represented by these objects. This is more ex-

plicit in discrete dynamic objects, such as sequences composed of discrete

data. The sequences consist of strings of tokens, but these sequences are

entities by themselves too and they might build even more complex se-

quences. Therefore, sequential data might have some underlying structure

more complex than linear, that is, there might be some hierarchy within

long sequences composed out of basic tokens.

Let us consider, for example, the organisation of the natural languages.

As discussed earlier in Chapter 2, there are basic tokens { phonemes or

letters; next, there are words consisting of sequences of letters or phonemes,

phrases consisting of sequences of words, and so on (6.1). That is, in natural

languages, sequential objects are part of other, more complex sequences.

(6.1) ((J o h n) ((l o v e s) (M a - r y)))

6.2. SEQUENCES, HIERARCHIES AND REPRESENTATIONS 159

Hierarchical objects are better suited than linear objects to represent,

process and transmit information, which is apparently shown by evolution:

natural languages are hierarchically organised. Firstly, components of the

structures can be referred to, which allows natural compression of the trans-

mitted information. Next, since the sub-components of a given component

of the structure are more frequently used together (e.g. the letters 'J', 'o',

'h', 'n' of the word \John"), that is, there is certain redundancy in the

exchanged information, the receiver can predict the latter sub-components

(e.g., 'h' and 'n') given certain initial left context ('J' and 'o' for this exam-

ple), which in turn makes the transmission of the information content of the

sequences more reliable.

Sequential data that have such composite structure might have very long

external representations, that is, representations consisting of rows of lowest

level tokens. In natural languages, for example, an average sentence might

have some 50 characters, and one paragraph might consist of more than 200

characters. This data is di�cult to represent and process in this external

form. It has a structure, and we organise and remember the language we

experience in accordance with this structure.

Simple evidence in support for this idea comes from the natural language

mechanisms for referring to linguistic elements presented earlier in the course

of the speech act, e.g., the use of pronouns (this, that, he, she, it) to refer

to phrases. When it comes to referring to already presented structures, we

prefer to use links to them instead of repeating their external forms. The

de�nite noun phrases and pronouns are just simple external expressions

of the links to the internal representations of earlier structures, and we

use them very often. This makes speech communication easier and faster,

although there might be some di�culties in resolving such links (so-called

anaphora resolution).

In addition, single internal representations are more economical to use

when associating linguistic expressions with visual objects, actions, etc.

Such associations could be made by using the internal representations of

complex objects instead of using their external linguistic representations.

Therefore, if we want to model a cognitive system dealing with a large

variety of multi-modal data, this data should be properly organised in a

hierarchical system of such internal representations.

Similar systems of representations naturally occur in symbolic modeling:

external terminal tokens are organised in a system of rules with the help of

internal non-terminal nodes, which in turn are similar to the internal static

representations discussed. People still argue that because of this organisa-

tion of the symbolic approach and its unlimited representational capacity,

160 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

cognitive modeling should be based on the classical \Language of Thought"

(Fodor & Pylyshyn 1988), which makes use of syntactically structured rep-

resentations and rules de�ned over those representations.

Connectionists object to this approach, mainly because of the so-called

symbol grounding problem { the problem of explaining the relations between

symbols and complex percepts representing objects from the environment

where cognitive agents exists (Searle 1984, Dor�ner 1991). Connectionist

architectures are particularly good at associating low level data { percepts or

commands to e�ectors { to higher-level tokens. Therefore, more recent works

suggest cognitive modeling with hybrid systems, instead, which combine

symbolic systems dealing with high-level symbolic tokens and connectionist

models that ground (associate) those tokens to low-level data (Harnad 1990).

Another problem concerning symbolic approaches is related to the \hard-

ness" of the rule-based logical computations they are based on (Smolensky

1991). Models should accommodate the \softness" of cognition as connec-

tionism does, by processing data in a fuzzier, stochastic manner.

Nevertheless, for proper high-level cognitive modeling, connectionism is

still looking for an answer to the question of how to organise the information

coming from external sensors. The available connectionist solutions are still

not satisfactory. Although the implementation of the sequential RAAM

proposed by Kwasny & Kalman (1995) promised to provide a better solution

than the standard sequential RAAM, Hammerton (1998b) found that in

practice this model did not learn even trivial data well. Therefore, the door

is still open for other solutions and in section 6.4 of this chapter, I propose

another model: a cascade of Recurrent Autoassociation Neural Networks to

build a system of such representations.

In the next section I will present some details about a few connectionist

architectures designed to develop representations of sequences, but before

that, I will outline more explicitly some features that connectionist systems

and distributed representations must meet.

Principles in developing distributed representations

Firstly, the lowest level of representations should simply be perceptual in

case of dealing with sensors, or e�ectual when producing actions. This is the

natural data that we experience and it is the source of any further processing.

Therefore, the structure of these representations should follow the structure

of the external data as close as possible. Visual processing systems, for

example, usually have two-dimensional array of receptors detecting light

6.2. SEQUENCES, HIERARCHIES AND REPRESENTATIONS 161

(the retina), because there would be no physical basis for a putative system

inputting data in three spatial dimensions (of course, stereoscopic vision

provides some three-dimensional data). Auditory sensors, on the other hand,

are strictly speaking of a zero-dimension in space, since this is enough to

detect auditory signals that take place over time. Nevertheless, for more

e�cient processing, two dimensional arrays of sensors are implemented in

humans (in the cochlea).

Next, representations should develop emergently, in the course of expe-

riencing the external (training) data. That is, higher-level representations

should not be externally imposed. Di�erent levels of representations should

be develop in a well-founded way, one after another, possibly with simul-

taneous re�ning of lower-level representations. This gradual representation

development, together with consequent associations to representations from

other modalities would solve the symbol grounding problem (Harnad 1990).

Further, each representation should uniquely represent the correspond-

ing sequential data, allowing (approximately) exact decoding. Some of the

connectionist models designed to develop representations of sequences do

not ensure this, which would lead to potential conicts later when us-

ing those representations (e.g., the Sentence Gestalt models, (St. John &

McClelland 1990)). During thinking, we produce and articulate language

sequentially (usually silently), by translating representations of structures

back into their external temporal forms, and �nishing this process by ex-

ecuting motor commands. Sensoric data is both extensively encoded and

decoded. It is known from neuro-imaging studies that visual signals ow not

only from lower- to higher-level processing regions, but also in the reverse

direction, providing top-down expectations about the lower-level patterns.

Similarity across data should also be accommodated properly. Repre-

sentations shall be developed in such a way that similar data result in similar

distributed representations. This is very important for a number of reasons,

including system reliability { this way, noise or data degradation would not

immediately degrade the performance of the system. Also, this is a way to

introduce generalisation { good performance on data unseen during training

(or early experience).

Finally, Fodor & Pylyshyn (1988) required that cognitive representa-

tions should have an explicit structure that allows a combinatorial syntax,

as in the classical symbolic systems. I will weaken this by requiring an im-

plicit structure in these representations, allowing a combinatorial syntax un-

derstandable to other computational models, including connectionist ones.

This requirement is necessary for emergence of systematicity among these

162 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

representations and for holistic computations (Hammerton 1998b, Smolensky

1991). The latter are structural operators acting upon holistic (static) repre-

sentations of sequences/structures, instead of �rst decoding these structures

into parts, then processing them and consequently recoding into holistic

representations. Systematicity might be considered a key to higher-order

cognitive processing and will be discussed further in section 6.7.

A failure to accommodate these principles results in models with lim-

ited capacities and no lasting implications, which is typical for many of the

reported architectures that feature, for example, static language process-

ing and hand-coded data encoding. We encounter language sequentially, by

hearing sounds and building or recognising gradually a number of objects

or temporal structures, such as, words, phrases and sentences. The number

of those structures is enormous and a designer's hardwired encoding does

not seem plausible at all. Also, the number of existing languages and our

competence to learn any of them imply that a system of such representations

should develop during the communication process.

6.3 Developing connectionist representations of lin-

guistic objects

In this section I will shortly present some of the ideas and models used to

develop static representations of linguistic and more generally, sequential

data.

Firstly, one can approach language modeling either with a static or a

dynamic connectionist model. An example of two views on the same problem

is connectionist GPC modeling, discussed in Chapter 5. The basic objects

there are words, which Seidenberg & McClelland (1989), Plaut et al. (1996),

and most of the other GPC models represent as static feature-based hand-

crafted encoding and process as static objects, in contrast to the dynamic

approach used in Chapter 5. However, sequential models have di�culties

in processing long sequences, as discussed earlier. Also, dynamic data do

not allow holistic transformations, where static representations are required.

Even more importantly, when the sequential data have an internal structure,

it would be an advantage to represent this structure somehow.

In connectionist modeling, static representations have been developed by

using various approaches. For example, words were represented statically as

a set of letter/token triples (e.g., Seidenberg & McClelland 1989) or by using

position-based encoding techniques (e.g., Plaut et al. 1996, Zorzi et al. 1998),

which impedes generalisation to polysyllabic words, or to other languages.

6.3. DEVELOPING LINGUISTIC REPRESENTATIONS 163

When modeling syntax, words have been encoded either localistically, or

again, using hand-crafted feature-based schemes (e.g., Elman 1988, Miikku-

lainen & Dyer 1991, Tabor, Juliano & Tanenhaus 1997).

Recognising the problem, various connectionist techniques that produce

static representations of sequential data were developed as early as 1990,

e.g., the Recurrent Autoassociative Memory (Pollack 1990) or the Tensor

Products technique (Smolensky 1990). Nevertheless, I am not aware of a

method that develops static representations of sequences which works as

reliably and easily as the MLP in static mappings or the SRN in sequence

processing. One of the reasons for this is that although those techniques

indeed provide a good theoretical basis for developing representations of

sequences, in practice they were found di�cult to explore for various reasons,

such as practical limitations of their representational capacity, a demand for

powerful computational resources, or very long training. Therefore, high-

level connectionist language modeling has focused only on small illustrative

problems, mostly using the 'hand-crafted' technology, learning only simple

grammars and a very limited number of words (Elman 1988, Tabor et al.

1997) or to keep things simple, using part-of-speech labels (TAGs) instead

of working with words (Henderson & Lane 1998). This could be attributed

not only to the insu�cient computational resources, but also to the absence

of an adequate working concept of how to develop high-level distributed

representations, which leaves the 'market' open for such methods.

Tensor Products

One of the pioneer connectionist works on developing representations of

structures was presented by Smolensky (1990), which is based on the ten-

sor product algebra. The tensor products z = x � y of two n dimensional

vectors x and y is simply their outer product xyT and the result is a n by

n matrix. Higher order tensor products are built in a similar way by outer

multiplication. The resulting matrix of a k-th order tensor product is a k-

dimensional matrix with nk elements, that is, the size of the representations

grows exponentially with the dimensionality of the structure to be repre-

sented. This is clearly problematic. Yet, one of the very useful properties

of this approach is that given that the vectors are orthogonal each other,

then any of the vectors participating in this product could be extracted by

applying the so-called inner product with the rest of the elements, followed

by a proper normalisation. Non-orthogonal vectors could be extracted only

approximately, similarly to the single token errors which the connection-

ist model presented latter in this chapter produces for some of the vectors

164 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

during the decoding phase.

Convolution methods

Even earlier than Smolensky's work, another even more interesting approach

based on the mathematical operations convolution and correlation was pre-

sented as an approach at modeling distributed associative memory. The con-

volution operation combines two n-dimensional vectors x and y into a vector

z of size 2n� 1. Convolution could also be applied recursively. The general

k-way convolution results in a k(n � 1) + 1-dimensional vector. Similarly

to tensor algebra, there is an approximate inverse operator of convolution {

correlation { which can approximately decode the original vectors if those

vectors are normalised so that their mean is zero, and variance is 1=n.

An even more compact, convolution-based method implemented into a

connectionist system was presented by Plate (1994), called \Holographic Re-

duced Representations". This method is based on the more-speci�c circular

convolution, which results in vectors with the same dimension. This way, a

k-way circular convolution multiplication of n-dimensional vectors results in

a n-dimensional vector. Similarly to the standard convolution, the circular

convolution has also an approximate decoding operator { circular correla-

tion, which needs the same data distribution as in the standard convolution,

in order approximately to be able to extract the original items.

However, this operator is commutative, that is, x � y = y � x, which

makes it impossible to preserve order. Nevertheless, there is one interesting

property of this operation, namely that it can superimpose vectors and then

approximately extract them. This, in turn, allows the using of a lower

dimensional scheme for representing structures into a memory trace z by

superimposing terms, where each term is a convolution of a positional token

pi and the token ci placed at that position. Then, the decoding operation

of a sequence consists of questioning (correlating) the memory trace z with

each position pi.

As far as the capacity of this scheme is concerned, the author gives an

estimation that, 4-item sequences composed out of 1000 di�erent items could

be encoded in a 512 items vector with 1% chance for error in decoding. Yet,

Weber (1992) when reporting an alternative implementation of this approach

noted a worse reliability of the circular convolution than what was originally

claimed.

The connectionist implementation of the circular convolution { the \Holo-

graphic Recurrent Network" { aims at decoding the holographic represen-

tations developed by circular convolution. The network assumes localistic

6.3. DEVELOPING LINGUISTIC REPRESENTATIONS 165

input and output vectors indexing the tokens, which are then transformed

into proper basic vectors in the input part of the network. The output of this

decoding network is interpreted as a vector of probabilities for each token

that it has been convolved with the current positional item. The network

has an architecture similar to the Simple Recurrent Networks, but with

di�erent computations, which perform convolutions and other operations

to decode the trace being decoded. The training procedure aims at more

precise decoder tuning, the basic functions being roughly initially encoded

into the connectivity and operations themselves. There are also some other

modules, for example one that generates the position vectors with which the

basic vectors are convolved.

Apparently this is a very interesting approach that uses a mathematically

elaborate background theory, implemented in a connectionist architecture.

Yet, there are questions about the capacity of the model. Since at certain

moments it requires localistic token encoding, there is apparent limitation

on the number of tokens possibly being encoded. Even alternative connec-

tionist implementations that avoid the requirement for localistic interface

vector encoding would have to deal with the special type of vectors the

approach needs { normally distributed, centred around zero, with variance

1=n. Another problem with its connectionist implementation is its structural

and operational complexity: it comprises some processing modules designed

to perform operations speci�c to the model, which questions its cognitive

plausibility.

In contrast, the method that I will present later involves very simple

principles, widely used in nature, with no restrictions on the patterns to be

used. It simply o�-loads the task of designing a very speci�c architecture

to the learning algorithm, which �nds its own way to develop perfectly

decodable meaningful representations.

Synchronous Oscillation

Another very interesting approach that has been exploited for variety of

linguistic tasks is based on the synchronous oscillation of roles (variables)

and �llers (data), because of which this model is called Temporal Synchrony

Variable Binding (Shastry & Ajjandagadde 1993).

The basic idea of this model is very simple: There is a number of units

that oscillate with the same frequency, but in di�erent phases. Those units

that share common phase oscillate in synchrony and would be temporally

bound. On the other hand, units oscillating out of phase would not be

bound in time. This way, if there are units that represent roles and other,

166 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

that represent �llers, then the synchronous oscillation of di�erent roles and

�llers would at every given moment represent di�erent con�gurations { a set

of current relationships.

Henderson (1996) showed that since it is an internal property of the

model to generalise across entities, systematicity is also an inherited feature

of this model. Therefore, the model is plausible for modeling high-level rea-

soning. More recently, Henderson & Lane (1998) proposed a connectionist

implementation of this model for language modeling { the Simple Synchrony

Networks. This network is e�ectively a two-level Simple Recurrent Network,

where the �rst level oscillates across the entities and the second one repre-

sents the overall context. In particularly, this network was used for syntactic

parsing in language { a linguistic problem that still lacks proper connection-

ist implementations.

Although an excellent idea for representing various relationships, the

synchronous oscillations-based models have one important limitation { that

there is a very limited number of entities that can be represented at a given

time, which is related to the number of di�erent phases which could exist

within a given cycle. Also, as far as holistic computations are concerned,

this is not a holistic model, since the relationships are represented both in

time and space { it does not develop holistic representations of relationships,

but it only temporally represents relationships. Yet, it has a very promis-

ing future for short-term memory modeling, for example, for hyppocampus

modeling.

RAAM and SRAAM

A signi�cant attempt toward a more systematic way of representing struc-

tures and sequences was the development of the Recursive Auto-Associative

Memory (RAAM) by Jordan Pollack (Pollack 1990). This architecture is an-

other simple extension of the MLP. RAAMs auto-associate the input data {

concatenations of two patterns { and use the activations of the hidden layer

neurons to represent these concatenations (Fig. 6.1, left). This is equiva-

lent to learning simple symbolic rules. When applied recursively, that is,

when using the representations developed as an input for another compres-

sion, the RAAM can learn a grammar and develop representations for the

non-terminal symbols in this grammar. This makes RAAM a connection-

ist implementation of a symbolic processor. However, theoretical problems

arise from the connectionist point of view, due to the need for an external

symbolic mechanism to store representations. Also, the training process is

immensely di�cult due to the recursive reuse of the ever-changing represen-

6.3. DEVELOPING LINGUISTIC REPRESENTATIONS 167

tations in the course of the training (Kwasny & Kalman 1995).

If RAAM models a stack, then it can learn and represent sequences {

Sequential RAAM (SRAAM). However, this model needs an external stack

during the training, which is a step back from connectionism as commented

earlier. Then, it decodes sequences inversely, which necessitates another

mechanism to invert the decoded sequences. Also, it is di�cult for the

SRAAM to learn even trivial structures and sequences, which makes it an

impractical model.

Also, the RAAM produces representations at every time step, to be

reused as inputs, while dynamic objects with uniform structure need single

static representations. In that respect, producing single representations of a

whole object is more economical { representations at a certain level should

be produced only if there is a necessity for them. In natural language, pro-

ducing static representations of items such as syllables, words and sentences

is more useful than producing representations of arbitrary combinations of

letters, words, etc. Syllables are involved in morphological transformations.

Words are associated with visual patterns and actions; sentences have more

concrete semantic meanings. We know that those linguistic objects are dis-

tinguished because they have certain functions, and we make use of them.

On the contrary, producing representations of arbitrary combinations of

mixed items is not so useful.

Another implementation of the sequential RAAMwas presented by Kwasny

& Kalman (1995). Their SRAAM combines the architecture of the Sim-

ple Recurrent Networks and the RAAM idea for autoassociation (Fig. 6.1,

right). The stack that the RAAM requires during the learning is encoded

in the contextual memory of the SRN. This makes the training faster and

easier. Further, Kwasny and Kalman suggested a variation of the mean

square error function that boosts small di�erences between the targeted and

the resulted neuron activations. When combined with a modi�ed conjugate

gradient training algorithm, this reportedly improved the learning. Still

another important contribution in this work was a method for represent-

ing recursive structures { by means of symbolic transformation of any tree

structure into a binary tree, which can easily be transformed to a sequence.

Those two operations are reversible, which allows reconstructing the original

structures from their sequential representations.

Exploring holistic computations, Hammerton (1998b) attempted to repli-

cate Chalmers's (1990) experiments using the Kwasny and Kalman's SRAAM,

which was reported to learn faster and more reliably. For this purpose, he

used the corpus from Chalmers (1990) { a small dataset containing 250

sequences built out of 13 distinct items. The standard backpropagation

168 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

Figure 6.1: (left) RAAM: left and right input tokens are autoassociated,

which results in a single compact representation of the input tokens at the

hidden layer. (right) SRAAM: based on RAAM and SRN. (I) Compression

(or stack pushing): tokens apply one at a time to the input and they are

autoassociated, together with the previous state of the context. This results

in an even more compact representation of the input sequence at the hidden

layer. (II) Decompression (or stack popping): a compact representation

applies to the hidden layer and produces the last token from the encoded

sequence and the previous state of the stack, which in turn is applied again

to the hidden layer.

learning algorithm and two variations of the Kwasny and Kalman's training

algorithm were utilised. Hammerton reported that with the best learn-

ing algorithm (the modi�ed error function noted earlier and the conjugate

gradient training) the network encoded and decoded up to 85% of the 130

training and 87.5% of the remaining 120 unseen testing sequences (page 43),

which departs from the reported perfect learning by Kwasny and Kalman

(with SRAAM on a more complex task), and Chalmers (with RAAM on the

same task). Therefore, Hammerton concluded that \the SRAAM is not as

e�ective a vehicle for holistic symbol processing as it initially appeared".

Also, there are two other problems when these models are used to develop

sequential representations. First, as I said earlier, they produce static repre-

sentations at every time step, which is more useful for representing recursive

structures than sequential data. Next, due to the stack-based memory or-

ganisation, the input sequences are reproduced inversely. Therefore, one

would need another external mechanism to reverse those sequences. The

6.3. DEVELOPING LINGUISTIC REPRESENTATIONS 169

Figure 6.2: Sentence Gestalt Model by St. John. In this architecture,

a Jordan recurrent network (1) gradually produces representations of the

input sequence. Next, an MLP (2) extracts from these representations some

of the constituents of the sentence.

solution I propose in the next section is based on autoassociation and SRNs,

too, but it implements a queue rather than a stack mechanism, which leads

to reproducing the sequences in the right order.

Gestalt Models

The �rst attempt to employ recurrent architectures for producing a 'gestalt'

or a single static representation of a sequence of words (statically repre-

sented) was made by St. John & McClelland (1990) { the Story Gestalt

Model. This model comprises two networks { a Jordan Recurrent Network

that gradually processes the input sentence and uses the activations of the

output layer to represent the sequence presented as input thus far. This com-

pact representation was called a gestalt. The second NN is a static MLP,

trained to extract some information of interest for a sequence represented

with its gestalt as input to the MLP (Fig. 6.2).

Another similar model { the Movie Description Network by Cottrell et al.

(1990) { uses Simple Recurrent Networks to develop representations of sim-

ple movies presented as input to the SRN. A second SRN produces a verbal

description of the input movie. These are speci�c, rather than universal,

170 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

models; they produce representations which are not necessarily unique and

can not be involved in a hierarchical system of representations of composite

data.

Syllable modeling

The capacity of SRNs to process sequential data was also exploited in

another approach, aiming at obtaining static representations of syllables

(Gasser 1992). In this model, one recurrent network was trained on a se-

quential mapping { an input train of phones to an output train of patterns,

which are concatenations of the same phones and a static lexical represen-

tation of the word the phones belong to. The recurrent layer activations

at the end of each syllable were recorded and used by a second network

that was trained to unpack these representations to their original sequential

form. Assuming the task of word recognition, this scheme requires that both

phones and lexical representations be o�ered during training. Static syllable

representations result as a side e�ect.

This approach takes a direction that is opposite to the gradual build-

ing of language representations. Instead of building word representations,

it does the opposite { it produces syllable representations in the course of

word recognition. In contrast, the approach presented in this chapter takes

another direction, consistent with the principle of well-founded structural

learning, by processing and developing language items of increasing com-

plexity. Also, one problem with the solution presented by Gasser is that

because the packing and unpacking processes are split, this method requires

the training sequences to be available during both learning tasks, which is

less plausible and increases the learning time. The sequential autoassocia-

tive task in the approach suggested in the following section requires only a

short-term memory to keep the sequence to be presented for a second time

at the output layer and the system must only perceive the input the envi-

ronment provides throughout the learning (which may last inde�nitely: we

can keep the learning going non-stop).

6.4 Recurrent Autoassociative Networks

In this section, I will present an architecture designed to develop and make

use of static, implicitly structured, interpretable representations of sequences.

The proposed model is an extension of the Simple Recurrent Network (Elman

1988), presented in detail earlier in section 3.7.

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 171

Recall that the SRN is a recurrent neural network based on the feed-

forward Multi Layered Perceptron with a global context memory that stores

the most recent activation of the SRN hidden layer1. Theoretically, the

context layer has the capacity to encode all the information for the input

sequence provided to the network since its beginning, that is, since resetting

the context. Hence, if the context layer is reset and a sequence is applied,

then at every time moment, the hidden and the context layers will contain

static distributed representations of this sequence. Yet, as we will see later,

the context layer might, but does not necessarily contain distinct represen-

tations of the input sequences. This rather depends on the learning task.

There are di�erent possibilities to obtain static representations of input

sequences. One of them is to train a SRN on the token prediction task (as

in the phonotactics learning presented in Chapter 4) and to use the context

layer activation after the whole sequence has been processed { similarly to

the gestalt models (St. John & McClelland 1990, Cottrell et al. 1990). The

networks in those models were trained to predict the next input token, which

forced the networks to learn information speci�c to this particular task,

but which is insu�cient for developing distinct representations of the input

sequences. We need an organisation of the learning task that guarantees that

after the training, the distributed representations developed by the network

(1) contain all information about the training sequences, that is, (2) they

are unique for each sequence. Given (2), we would also like this architecture

not only to develop representations of sequences, but also to be able (3) to

decode them back into their original sequential form, that is, to reproduce

the original sequences.

Representations satisfying the above requirements would evolve natu-

rally if we train the network on an autoassociation task, that is, if we train

the network to reproduce the input sequences. However, there is another

problem { the timing, when to present the input and the output patterns.

One can try to reproduce the current input pattern immediately, which will

produce no useful hidden layer representations { there will be no need of a

context in this task. A delay of one step, or two, or some other �xed num-

ber of steps would train the network to develop information speci�c to the

delayed prediction task (similarly to the GPC learning in Chapter 5), but

the representations would still not necessarily satisfy the above condition for

uniqueness. In order to produce such speci�c representations, the network

has to be trained on an autoassociative task in which the input sequence is

1I will remind the reader that the term \layer activation" denotes a numerical vector

with the activations of all neurons in that layer.

172 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

reproduced after the whole input sequence has been presented to the input,

followed by a unique pattern not present in the original input sequence (a

trigger '#') that indicates the end of the sequence. The static representa-

tion of the input sequences will be just the hidden layer activations at the

moment when the trigger '#' has been applied and processed by the network

(Fig. 6.3).

Lemma 1

Let there be an RAN trained to autoassociate a set of sequences of patterns

as de�ned above. Then, given a successful training, this RAN will:

(I) reproduce the original sequences correctly;

(II) produce distinct Distributed Representations for each sequence.

Proof

(I): Appending a \trigger" input pattern guarantees (a) a unique target

(the same input sequence) in a unique context to the prediction task, and

therefore (b) that the network will reproduce the input sequence after suc-

cessful training. If the training set contains a sequence S (e.g., chickens)

that in turn contains other sequence(s) in the training corpus as initial sub-

sequence(s) S = S1S2 (for the above example: chicken, chick, and chic),

then the network will reproduce both the longer sequence S and its sub-

sequence(s) S1, because the target patterns at the end of the new sequences

[S#] and [S1#] will only be the symbols/patterns of these new sequences,

in contrast to the original case when the network would have two targets:

(a) the symbol/pattern of S after subsequence S1, and (b) the �rst sym-

bol/pattern of the sequence to be autoassociated. That is, appending all

sequences with '#' makes them unique targets in unique left contexts to the

prediction task, or, the empirical conditional probability P ([S#]=[S#]) = 1

for every string S in the training data. Then, given a successful training,

the network will reproduce the strings correctly.

(II): Given a task of reproducing the input sequences and successful

training, the context layer must necessarily have distinct representations of

these sequences after observing them completely: Let there be two di�erent

sequences S1 and S2, which are part of the RAN training corpus, and let

DRS1 and DRS2 be their DRs, produced by the RAN. If DRS1 = DRS2 ,

then the reproduced strings (that are the same as the original strings as just

proved) will be the same: S1 = S2, which contradicts the assumption that

S1 6= S2. Therefore, DRS1 6= DRS2 .

[end]

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 173

(a)

(b)

Figure 6.3: Recurrent Autoassociative Network: (a) architecture: based on

SRNs and (b) functional processing in time. Operations: (I) encoding an

input sequence (time steps 0{3); (II) obtaining or setting a static representa-

tion (time step 3), and (III) decoding a static representation to its sequential

form (time steps 3-6).

174 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

There are some other details to be speci�ed, namely: the input pat-

terns after the trigger has been applied to the input layer, the target output

patterns before that and the target output pattern after the sequence has

been reproduced. The target output pattern after the reproduction of the

whole input sequence is another special pattern, labelled end-of-sequence,

which signals that the whole sequence has been processed (decoded). The

input patterns after the trigger might be either the same trigger, repeat-

edly provided until the network produces the end-of-sequence pattern (e.g.,

chick######), or what I found more helpful to the network in learning

this di�cult task { at each time step in that phase to provide to the input

layer the last output pattern (e.g., chick#chick). The latter approach pro-

vides an additional guiding information to the network about how far it has

progressed in reproducing the current sequence and experimental work has

demonstrated that, indeed, it is easier for the network to learn the autoas-

sociative task with this approach.

With regard to the output target patterns at the time when the sequence

is still being entered to the input, the learning algorithm used { Back Prop-

agation Through Time { does not necessarily need target patterns at the

earlier moments, provided that an error signal is being propagated back

through time. Indeed, the sequential autoassociative task provides such an

error that originates in the second phase of the autoassociation (Fig. 6.3,

step III). It is also possible to combine the autoassociation task with the

standard prediction task, that is, to train the network �rst to produce at the

output layer its anticipations about the sequentially entered input patterns,

and next, to reproduce the whole input sequence, whose representation has

already been encoded into the context layer.

The latter approach is more plausible, considering the fact that each of

us has observed when listening speech in a noisy environment, namely that

we use anticipations in interpreting that speech; the same e�ect occurs in

many other cognitive tasks. In such a noisy environment, having got some

initial left context, the network could produce: �rst, the most probable

continuants of the context to date and next, the static representation of this

sequence (after the triggering pattern has been predicted).

Both approaches were tested, but in the latter case the performance

was worse, which I attribute to the higher computational complexity of this

joint task { the network had to learn two tasks, which made the learning

harder. In contrast, when using the former approach, the network learned

the autoassociative task faster and with fewer errors. Since this scheme sat-

is�es completely the above outlined requirements about the representations

produced, it will be used for the RAN processing algorithm.

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 175

In summary, by training a recurrent neural network on an autoassoci-

ation task as described above with a training corpus containing a set of

sequences, the network learns to produce unique static distributed repre-

sentations of these sequences. The hidden layer activations at the moment

when the triggering pattern has been applied to the input and processed by

the network are used for this purpose. The static representations for each

input sequence are unique due to the speci�c setting of the autoassociative

task. After successful training, a RAN network has two functions: �rstly, to

generate the static representation of a given input sequence (Fig. 6.3: steps

I and II) and secondly, to reproduce the original sequential form of a certain

static representation (Fig. 6.3: steps II, III).

6.4.1 Summary of the Processing Steps

Training

The RAN model is essentially a Simple Recurrent Network, with a special

data arrangement. Therefore, it has the same feed-forward processing steps

and learning algorithm. However, when SRNs are trained on the prediction

task they can also be trained with the standard error Back-Propagation al-

gorithm, while the RANs can only be trained with the Back-Propagation

Through Time learning algorithm, already given in details in section 3.7.

This is because in the �rst feed-forward processing phase, there is no er-

ror signal originating at the output layer and back-propagated through the

network (Fig.6.3b, phase I), but only error signal computed in the second

phase and back-propagated through time (Fig.6.3b, phase III). Therefore,

any other learning algorithm that back-propagates error signal through time

can be used, too. Yet, it is important that the input-output training data

is built properly out of the current training sequence S, according to the

scheme outlined earlier in this section, as also shown in Fig.6.3b.

Encoding

After training, the process of sequence encoding is the same as phase (I)

of the training algorithm (see Fig.6.3b). The input sequence is applied

sequentially to the input layer, followed by the delimiter pattern '#'. The

static distributed representation of the input sequence is the content of the

hidden layer at the moment when the delimiter input pattern has been

processed forward through the network.

176 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

Decoding

On the other hand, the decoding phase matches the second and the third

processing phases of the training algorithm (Fig.6.3b). In order to unpack

(decode) a static representation, it is �rstly applied to the hidden layer and

propagated forward; the resulting output pattern at that time is the �rst

element of the decoded sequence. Next, the new hidden layer activation is

copied to the context layer and a new output pattern is produced with the

help of the last output pattern provided as an input to the network. This

process is repeated until a pattern recognised as a delimiter is produced at

the output layer.

6.4.2 Experimenting with RANs { I: Learning Syllables

The idea of using the RAN to develop static representations of sequences

was �rstly tested on a small set of natural language data. A set of 140

distinct syllables was collected from a list of 100 polysyllabic Dutch words,

taken from the CELEX lexical data base (CELEX 1993). The syllables

were represented as sequences of Latin characters (normal Dutch spelling).

The mean length of the syllables was 4:1 � � = 1:12. The characters were

encoded orthogonally, in a vector of length 27, that is, for every symbol

there was a correspondent neuron which was set active any time this symbol

was encoded. The 27th position was activated when the special triggering

pattern for the input layer and the end-of-sequence pattern for the output

layer were presented or targeted. In order to speed up the training, the

non-active and active neuron states were set to 0.1 and 0.9 correspondingly,

which set the working regimen of the neuron activation functions within its

almost linear range rather than around the extremes zero and one, where

the sigmoid derivatives approach zero. The size of the hidden layer was set

to 30.

The network was trained with the Back Propagation Through Time

learning algorithm, with learning coe�cient � set to 0.15 and momentum

term � = 0:7. The training was organised in epochs, in which all patterns

were presented randomly, according to their frequency of occurrence as found

in the CELEX database. After each learning epoch, the network error was

measured by encoding and decoding all training patterns and counting the

percentage of character and sequence misprediction.

During the training process, the network error followed the standard

pattern of quick initial error drop and consequent slow decreasing. After

approximately 50 epochs, the network error was reduced to 6% sequence

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 177

error or 1% token error. Further training reduced the error even more,

down to 2.3% sequence error and 0.4% token error { 3 syllables incorrectly

encoded and decoded, with one wrongly decoded token for each of them. The

goal of this �rst experiment was just to test generally the idea of developing

representations of sequences by sequential autoassociation and apparently,

it worked.

From an implementational point of view, it was also interesting to test

di�erent strategies for representing the trigger and the end-of-sequence pat-

terns, for instance, whether it is possible to use only the neurons used for

encoding the standard input and output patterns, or whether an extra neu-

ron is necessary. Tests were conducted with patterns such as: all neurons

active, non-active or taking a value of 0.5. In all those three cases, the

performance was worse than the approach with an extra, switching neuron.

Therefore, the latter approach was used in the following experiments. It

has the additional advantage of always allowing the encoding of a distinct

switching pattern, even if the above (all neurons zeros or ones) patterns are

recruited by the network in order to represent sequences.

This �rst experiment suggests that the RANs can learn such a task. Now,

it is interesting to see what kind of static representations the network has

developed during training. A simple observation of those vectors does not

say much (Fig. 6.4, top), because the network has organised the represen-

tations just to accomplish its task, not to make them readable by humans,

which is the case in the high-level symbolic systems. It is more important

that the network itself can \read" those representations, that is, it can re-

produce the original sequential forms. Yet, it is also useful to understand

the nature of those representations; how they are organised.

For this purpose, a Kohonen Map neural network was trained to clus-

ter them (Kohonen 1984). The Kohonen Map is known as very useful for

clustering multidimensional data, similarly to Principle Component Analy-

sis. The learning algorithm of this self-organising network tends to associate

di�erent input vectors to di�erent neurons in the map in such a way that

neurons responding to similar input vectors are located at close map posi-

tions, no matter what is the dimensionality of the data. The resultant map

after training is given in Figure 6.4, at the bottom. At the same �gure, the

minimal spanning tree covering the input vectors is shown.

178 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

(a)

(b)

Figure 6.4: (a): Distributed representations (DR) developed by RAN. Each

line stands for one DR. Each circle represents one value of a DR. The larger

the circles, the greater the correspondent values. (b): A Kohonen Map

trained to cluster these DRs (see text). The network maps similar syllables

into close positions, which means that their representations are close to each

other. The lines connecting cells represent a minimal spanning tree.

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 179

As expected, syllables with same initial substrings are located at similar

positions (e.g., ant, ann, aus, am, aan, a), but also, syllables with similar

�nal substrings are placed at close positions (e.g., pol - rol ; tra - dra). The

RAN very clearly has captured some common external features among the

training sequences: similar sequences are mapped into close positions, that

is, their distributed representations are similar. This raised expectations

that the network would generalise, that is, encode and decode unseen input

sequences.

This hypothesis was tested on a corpus of unseen syllables, of which

some 90 syllables were correctly processed. This result is quite modest { just

about 65% generalisation (as compared to the number of training syllables),

but the network was trained on a very small number of sequences. Still,

it demonstrated that the RAN did learn some basic principles of how to

build such representations. I expect that The more training data, the more

knowledge would be gained and the better the generalisation should be.

6.4.3 RAN Experiments { II: Developing Representations of

Numbers

While the above experiment demonstrated the capacity of the Recurrent

Autoassociative Networks to develop unique representations of a set of se-

quences (syllables), it did not explore a more complete space of sequences.

The complete set of letter sequences build of up to 4 letters has about a

half a million of sequences { currently infeasible to process. Although the

next Chapter 7 presents a work on a larger number of words, the set used

there is still far from a complete set. Yet, it is interesting from a theoretical

point of view to explore the network's capacity to develop representations

of such a full set of sequences. Therefore, in this section, RANs will be

trained to develop distributed representations of numbers, ranging from \0"

to \9; 999", represented as sequences of digits in a database M . This way,

all possible ordered combinations with repetition of digits, ranking from 1

to 4, will be used.

The main point of interest in this experiment was studying the general-

isation capacity of the model. For that purpose, the original database M

was split into �ve di�erent training (M1) /testing (M2) subsets: M
50, M33,

M20, M10 and M5, whose training subsets contained correspondingly 50%;

33%; 20%, 10% and 5% of all sequences. RAN models will be trained on

those training sets and the generalisation will be tested on the testing sets.

As far as the encoding of the digits building the numbers is concerned,

a binary 4-bit (neuron) feature-based representation was used. In addition,

180 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

there was one more neuron to represent the triggering pattern and two more

neurons reserved for further studies, set to zero in this experiments.

Learning all numbers

Before studying the generalisation, a pilot experiment was run aiming at

determining the hidden layer size necessary for a RAN to encode the whole

data setM . A network with only 20 hidden nodes failed in learningM (34%

error). A RAN that managed to score almost perfect performance had 30

hidden neurons { a size that will be used in the course of the main set of

experiments.

The RAN with 30 hidden neurons reproduced (and developed represen-

tations of) all numbers but two { only \479" and \7984" were reproduced

wrongly as \471" and \7904", which is mis-reproducing one bit in each of

these cases. However, this almost perfect score could not be achieved by

training directly on all words, but only by gradual increasing of the training

database, similarly to (Elman 1993).

The main problem in learning M when applying the standard training

procedure was the learning of short sequences { the network learned numbers

with 3 and 4 digits quickly, but shorter numbers were di�cult to learn.

Therefore, a new strategy was used, in which the network was �rst trained

on all numbers from \0" to \99", which was followed by training on a set

of all numbers from \0" to \999" and then, the network was �nally trained

successfully on all numbers.

It is interesting that this strategy worked in this case, because in my

earlier experimental work it had no positive e�ect on NN training, similarly

to other reports in the literature about this matter (Rohde & Plaut 1997).

This means that the success of this strategy might be task-dependent, this

problem particularly bene�ting from it. Yet, in the following experiments

on generalisation, such a gradual training set increase will not be applied,

because it would complicate too much the experiments without changing

signi�cantly the outcomes.

Studying the generalisation

Since the experiments in this section aimed at quantifying the RAN gener-

alisation, three networks in a pool were trained in parallel, on each of the

training databases, independently of each other, and the result of each of

the runs will be presented. The results reported here represent the per-

centage of the incorrectly encoded / decoded numbers (sequences of digits).

6.4. RECURRENT AUTOASSOCIATIVE NETWORKS 181

Training/Generalisation Error(%) vs. Training set size(%)

Network# 5 10 20 33 50

RAN1 0.6/21.5 0.4/4.5 1.1/2.6 0.5/1.0 0.3/0.6

RAN2 0.6/14.5 0.5/3.3 2.8/9.3 0.5/1.5 0.7/1.5

RAN3 4.0/20.5 3.9/9.2 3.2/8.4 1.1/1.7 16.5/18.2

Table 6.1: Performance and Generalisation of three RANs (rows), indepen-

dently trained to develop representations of strings of digits (numbers from

\0" to \9999"), for variable size of the training databases { from 5% to

50% (columns). The generalisation improves as the percentage of the train-

ing dataset increases. Reasonably good generalisation appears at the 33%

training dataset (0.5% training error / 1.0 test error%).

The networks in both Table 6.1 and in the following explanation will be

reported in an order of performance: the better networks �rst. Note, also,

that the generalisation in this set of experiments is not measured as earlier

(the number of successfully encoded/decoded unseen sequences vs. the size

of the training data set), but rather, as percentage of correctly processed

unseen strings, as taken from the whole set of unseen strings. This is be-

cause the sizes of the full and the test sets are feasible to explore, unlike in

the experiments with syllables and words.

Initially, three RANs were trained on M5
1 . The �rst two of the networks

learned to encode and decode all but 0.6% of the numbers, which means 3

improperly encoded/decoded numbers. The third network fell into a local

minimum at 4.0% error. However, the generalisation of all of the networks

was very poor { their performance on the testing dataset M5
2 was 21.5%,

14.5% and 20.5%, correspondingly (see Table 6.1, the �rst data column). Al-

though the network correctly encoded about 80% of the testing set, since we

would like to use the representations developed in other tasks (e.g., for holis-

tic computations, Chapter 7), we would like to have as good performance of

the RANs on all targeting sequences as possible.

Training on 10% of the numbers lead to a little better performance on

the training set, but also improved the generalisation quite a lot (Table 6.1,

the second data column). In training, two of the networks learned to encode

and decode all but 0.4% and 0.5% of the numbers from M10
1 , which means

4 and 5 improperly encoded/decoded numbers. One network again fell into

182 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

a local minimum at 3.9% error. However, the generalisation of the �rst two

networks was much better, even if not good enough { their performance

on the testing dataset M10
2 was 4.5% and 3.3% correspondingly. These

percentages may look acceptable, but they are still far from the perfect

generalisation, which we would need for more complex problems.

The next experiment was training on the M20
1 dataset. This time the

networks met more di�culty in learning those 20% of the 10,000 numbers.

Only one of the three networks managed to achieve 1.1% error on the train-

ing set and 2.6% on the testing M20
2 dataset. The other two networks fell

into di�erent sorts of local minima { at 2.8% and 3.2%. Even so, the gener-

alisation of the �rst network is better than the generalisation of the network

trained on 10% of the numbers { an expected outcome following the emerg-

ing trend of increased generalisation.

The percentage of words that seems to be necessary to have reasonably

good generalisation is about 33% { see Table 6.1, the fourth data column.

Two of the networks in this experiment learned to decode the training words

with 0.5% error and they scored 1.0% and 1.5% generalisation error on the

testing M33
2 dataset. A more deliberate training on all single and double-

digit numbers, together with the training on some 33% of the words would

result in excellent generalisation, I suppose.

The last experiment of this serial { training on 50% of the words (M50
2)

{ con�rmed the trend of ever increasing generalisation as the size of the

training set increases. The networks here scored quite well, the best of them

achieving 0.3% and 0.7% error. Yet, one network once again fell into a

local minimum at 16.5% error, which it would have taken long time to exit

from, and therefore the training was ceased. Regarding the generalisation,

as expected, it was even better than in the earlier case, with 0.6% and 0.7%

error for the �rst two networks.

The important conclusion that could be drawn from this set of experi-

ments is that given enough training data { at least some 30% of the whole

dataset { the RAN model may be expected to generalise very well, that is,

to encode and decode unseen sequences belonging to the same group as the

training data set. The network also generalises reasonably well given smaller

percentage of the data { some 10% of the whole data, but then the expected

generalisation is somewhat smaller.

It is not surprising that RANs generalise that well { generalisation is one

of the most important properties of the connectionist models. This property

will also be the basis for another, even more important property of the RAN

models { systematicity in the way the DRs are developed { which will be

discussed in latter in section 6.7.

6.5. A CASCADE OF RANS 183

6.5 A Cascade of RANs

Recurrent Autoassociative Networks develop distributed representations of

sequences consisting of tokens belonging to one level of complexity. Yet,

in natural language as in other dynamic objects, data is organised in a

hierarchical system, as discussed in section 6.2. Although the distributed

representations developed by the RAN model are also organised in a way

following the principles of the organisation of the data they represent, it is

also interesting to develop a model that explicitly represents the underlying

hierarchical structure of the external data.

In natural languages, this would be explicit structuring of phonemes into

syllables; syllables into words; words into phrases; phrases into sentences,

and so on. This hierarchical organisation is expressed quite universally in

languages, and it might be easier to model languages by using this hierarchy

in a cascaded model, instead of training a single-level model to discover it.

This way, RANs used as building blocks in a cascaded organisation would

discover the �ner organisation of the data at each explicitly stated level and

develop representations of subsequences at that level. The representations

at any level might be processed in any desired way, including the required

communication between the RANs of adjacent levels and possible associa-

tions to representations from other modalities, which in turn will be explored

in the next chapter.

Now, this idea will be outlined more formally. Firstly, let the sequential

input data (c1c2 : : :) have the following hierarchical organisation (6.2). To-

kens c 2 � at the bottom input level are organised into sequences at level

one (S1); in turn, sequences of S1 form sequences at level two (S2), and so

on, till the highest level.

InputData = (Sk1S
k
2 : : :) (6.2)

Ski = (Sk�11 Sk�12 : : : Sk�1
jSk
i
j
)

: : :

S1j = (c1c2 : : : cjS1
j
j)

This might also be presented in a graphical way, as in Figure 6.5.

A RAN-cascade developing representations for this data is de�ned as

an ordered set of RAN networks (RAN1, RAN2, : : : RANK), where each

level RAN l processes sequences of distributed representation DRl�1 from

the lower level l � 1 (of sequences or symbols) and develops distributed

184 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

c c : : :

%% ��TT

S11;1 S11;2 : : :

: : : c

�� TT

S1
1;jS2

1
j

!!!! ��@@
PPPPP

S21

c c : : :

%% ��TT

S12;1 : : :

c c : : : c

,
,�� CC

l
l

S1
2;jS2

2
j

!!!! ��
bbb

S22

Figure 6.5: Exemplary graphical representation of the structure of two se-

quences of tokens S21 = hcc : : : ci and S22 = hcc : : : ci with internal three-level

hierarchical organisation (external data, representations at level one: S1i and

representations at level two: S2i). Here c stands for any element of the input

(alphabet).

representations DRl of sequences at level l. The input data of RAN1 are

tokens c from the external (perceptual) level: (c1c2 : : : cjSj). The input data

of all other networks RAN l>1 are sequences of distributed representations

DRl�1: (DRl�1
1 , DRl�1

2 : : : DRl�1
jSlj

).

That is, RANs from each level are fed with sequences of patterns devel-

oped at the immediate lower-level RAN; they produce static representations

of those sequences, and provide them as input patterns to the immediately

higher-level RANs. Also, whenever they are requested, those RAN modules

decode (unpack) representations, for example, if the immediate higher-level

RAN module needs to decode some object into its external sequential rep-

resentation (Fig. 6.6).

Discussion

Following the line of representations developed in a RAN-cascade, from

the lowest level, to the highest RAN-level, note that this cascade architec-

ture gradually transforms the temporal-dimension complexity into a spatial -

dimension complexity, that is, long sequences of patterns of simple elements

are transformed into shorter sequences of complex static representations,

distributed among a (possibly increasing) number of neurons. This way,

trains of percepts that implicitly contain high-level sequentially represented

concepts are transformed into static representations of those concepts and

those representations can also be reconstructed back to their external se-

quential form. This is important if we want to construct a cognitive system

6.5. A CASCADE OF RANS 185

Figure 6.6: RANs and the mechanism of multi-level sequence processing.

(1a) A stream of letters is presented to the input of the syllable-RAN,

which builds syllable-representations and (1b) provides them to the word-

RAN, which, in turn, builds word-representations and (1c) exports them

further. On the other hand, if (2c) a word-RAN is presented with a word-

representation, it will unpack it to a sequence of syllable-representations and

(2b) will provide them to the syllable-RAN, which in turn will unpack them

to train of letters and (2a) export at the output of the cascade.

that encodes data from di�erent modalities, associates them, and decodes

then back, as it will be done in Chapter 7 on Holistic Computations.

The RANs also provide an account of systematicity among the represen-

tations built. The more sequences learned at a certain level, the better the

network generalisation will be, that is, after exploring many combinatorial

possibilities among the input data, the RAN modules will build static repre-

sentations in a systematic manner. This was shown with the experiments on

the complete set of numbers composed out of sequences of digits in the pre-

vious section: the larger the training set, the better the generalisation, that

is, more systematically those representations are developed. I will further

discuss the problem of systematicity in section 6.7.

186 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

Still, there are some questions to be answered. For instance, why do

we need such a hierarchical structure, when a single RAN can be trained

to produce the same highest-level static distributed representations and to

output sequential associations? There are two points which speak in favour

of a cascade structure.

First, it is di�cult for one homogeneous network to learn long distance

relationships (Miikkulainen & Dyer 1991, Christiansen & Chater in press).

BPTT learning algorithm propagates error back in time, but the more steps

it propagates back, the smaller the inuence of those errors is to the ear-

lier steps. Studying di�erent patterns of recursion, Christiansen and Chater

found that SRNs can handle well some 5 levels depth of embedding (re-

cursion). The experiments on GPC learning in Chapter 5 showed successful

processing of sequences containing up to 10-15 symbols, but there the longer

the sequences were, the larger the error was. Hence, learning sequences

longer than some 10 tokens would be more di�cult rather than learning

shorter ones. Even if one uses some techniques to improve the learning, the

general tendency to perform worse on longer sequences remains. Hierarchi-

cal organisation limits sequential size severely, hopefully limiting error as

well.

Another advantage of the hierarchical system of representations is the

possibility of accessing intermediate representations of meaningful sub-se-

quences of the input train of patterns (e.g. words), for example if we need

to apply holistic operations or to interpret them. In natural languages,

when we hear a sentence, we have an access to its constituents, each of

which has some relations with other objects. Only a hierarchical system

can handle such intermediate representations and in an RAN cascade static

representations at meaningful levels are developed.

However, this cascade structure has one important limitation { that the

cascade should be designed in advance and remain �xed throughout its life.

This raises two design questions { how to determine the data structure and

how to determine the size of the RAN hidden layers, that is, the size of

the representations at each level. A related question regards segmentation

mechanisms that signal the end of the sub-sequences for every cascade level.

A certain �xed hierarchical structure may be selected according to the

natural hierarchy in the input data. For example, when learning natural

language, one might favour learning representations of syllables, words, sen-

tences and so on. The input sequence might be split into sub-sequences

either by use of some external markers { syllabic delimiter, space between

words, full-stop (or even larger pause), or by learning phonotactics and word

order and segmenting at proper points, where low-frequency combinations

6.5. A CASCADE OF RANS 187

are about to be formed. Cairns et al. (1977) have connectionist experiments

on this matter. Likewise, if we use the approach in which RAN both pre-

dicts the following pattern and reproduces the sequence (see the previous

section), then RAN itself could be used to segment the input sequences.

With regard to the structures that such a cascade architecture can repre-

sent, this model imposes a few restrictions. First, one cascade may develop

representations of �xed-depth trees, where RANs at each cascade-level pro-

cess one tree-level. As a consequence, true recursive structures can not be

fully represented, only approximated up to a certain depth. On the one

hand, this is a disadvantage of the model, but on the other hand, humans

do have limitations of their cognitive capacities, which may speak in favour

of such an architecture.

Next, leaves (terminal patterns) may occur only at the bottom level

of these trees. For example, sequence (6.3) with internal structure (6.4) is

illegal in a two-level cascade because the token 'd' is at the second level rather

than at the bottom level. Four of the �ve structures of this sequence allowed

in a two level cascade are given in (6.5). This limitation corresponds to the

particular interpretation we have imposed on well-founded representations

(see above, section 6.2). Actually, for each structure G in which there are

leaves at levels above the deepest (perceptual) level of G, there is at least

one alternative structure G0 in which the leaves are located at the bottom,

perceptual level. To build this structure, one can simply project each leaf to

the deepest level, connecting it with intermediate non-terminal tokens. For

example, the structure that we need for (6.4) is the third structure in (6.5).

abcd (6.3)

((abc)d)

a b c

�� JJ

W d

��@@

S

(6.4)

((a)(bcd))

a

W1

b c d

�� TT

W2

�� BB

S

((ab)(cd))

a b

�� BB

W1

c d

�� BB

W2

�� JJ

S

((abc)(d))

a b c

�� JJ

W1

d

W2

��@@

S

((abcd))

a b c d

���� BB@@

W

S

(6.5)

188 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

An alternative way to deal with truly recursive structures was suggested

by Kwasny & Kalman (1995), who proposed to transform tree structures

into plain sequences by marking the structures with brackets. Then, such

tree structures can be handled by one RAN module. This approach, how-

ever, almost triples the size of the original sequences, which in turn makes

the RAN learning task very di�cult. Also, this method needs an external

symbolic device that transforms the structures in both directions, which is

a departure from connectionism.

Another solution might involve marking the distributed representations

with level-labels and sending them directly to the correspondent RANs when

they are encountered. This solution needs a supervisor that distributes the

patterns, and it is more plausible than the former solution. However, it

violates the principle of well-foundedness.

Finally, sequences with complex (recursive) structure, such as sentences

in natural language, may simply be processed with one RAN-level, too.

In this case, the structure (e.g., syntax) may evolve implicitly among the

distributed representations, instead of being taught explicitly. However, this

hypothesis needs extensive examination, which is beyond the scope of this

work. Similarly, Elman (1991) trained SRNs to predict words of sentences

and later found that the context layer representations developed at each

time step also represent the syntactic category of the sequence processed

thus far, that is, such implicit structures had been developed, indeed.

One important question concerning SRN cascades is the order in which

the networks should be trained at the di�erent levels, and what training

regime to select. This includes the question of whether to train the di�erent

RAN levels gradually and then keep them �xed, or to keep training them,

while training the higher-level networks simultaneously. We can also re�ne

them at a later stage of the training of the higher-level network, because

initially the current network will generate too large an error, which might

destroy the representations developed. A completely di�erent strategy for

training the whole cascade is to train all RANs simultaneously. However,

this is a very complicated learning task and it is doubtful whether the net-

work cascade would get to the solution in reasonable time. Instead, building

the lower levels �rst and leaving a small amount of freedom for later change

is preferred. A behaviour close to this strategy appears to work with hu-

mans { initially people learn to produce simple syllables, next more complex

syllables; then words, small phrases, and so on. Which strategy is better

is a question for experiments. In the rest of the experiments, the gradual

development strategy was chosen { training the networks gradually, starting

from the lowest level and keeping them �xed later.

6.5. A CASCADE OF RANS 189

6.5.1 Size of Distributed Representations

Another pre-training step that concerns the design of a single RAN or a

RAN-cascade is the size of the hidden layers where the DRs will be devel-

oped. Actually, this question has two aspects: on one hand, the hidden layer

must store DRs and all other intermediate states necessary to develop those

DRs, and on the other, the hidden and the context layers provide driving

signals to the SRN in order to get it to perform its task.

So far, little is known about the size of the hidden layer that is required

for a normal feed-forward MLP or a recurrent SRN to perform well, that is,

to learn its task. This problem is solved empirically rather than theoretically.

In this section I will elaborate on the other aspect, namely the hidden

layer viewed as storage for DRs. From that point of view, I will study

the question of what size vector space is required in order for this space

to represent a certain amount of information. From here on, the size h of

a RAN hidden layer should be based on the informational content of the

sequences that this RAN is to encode. Parameters in this measure are: the

number of distinct input tokens (patterns) jCj, the number of sequences to

be encoded jSj, the maximal length of the sequences to be represented k

and the number of distinct neuron states b.

First, let us enumerate the maximal number of distinct patterns Pmax
that the RAN should encode in the hidden layer. The number of strings

composed of up to k tokens is (jCjk+1 � 1)=(jCj � 1) � 1, which is the

total number of permutations with repetition of 1; 2; 3; : : : k items selected

from jCj distinct items. To show this, let me remind that the number of

strings of length l over an alphabet C is jCjl. Then, the size of the set

containing all strings of length l = 1 : : : k over an alphabet C is the sumPk
l=1 jCj

l = (jCjk+1 � 1)=(jCj � 1)� 1.

In the same way, the actual number of training strings is jSj. We should

count the maximal number of strings, because the network is expected to

generalise after the training, that is, to reproduce combinations of items,

unseen during training. Next, the number of distinct patterns that RANs

need to reproduce a sequence of k items is 2k + 1, which is the number of

context states used when auto-associating the input sequence (see section

6.4)2. Therefore, the maximal number Pmax of distinct patterns necessary

to produce unique representations of all strings composed of up to k tokens

is [(jCjk+1 � 1)=(jCj � 1) � 1](2k + 1). Therefore, the actual number of

necessary distinct patterns P satis�es condition (6.6).

2Actually, only one context pattern is used to represent the input sequence, the rest

are used (a) to build the desired representation and (b) to reproduce the sequence.

190 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

jSj(2k + 1) � P � [
jCjk+1 � 1

jCj � 1
� 1](2k + 1) (6.6)

Next, the number N of patterns that h neurons can represent, each of

them having b distinct states is N = bh, so that the number of neurons

necessary to represent N patterns is h = logb(N). Therefore, by applying

a logarithm to (6.6), we derive the number of hidden neurons necessary to

encode P distinct patterns: (6.7)

logb(jSj(2k + 1)) � h � logb([
jCjk+1 � 1

jCj � 1
� 1](2k + 1)) (6.7)

from which follows (6.8):

logb(jSj) + logb(2k + 1) � h < (k + 1)logb(jCj)� logb(jCj � 1) + logb(2k + 1)

(6.8)

Formula (6.8) estimates the minimal number of neurons that is necessary

to represent certain number of sequences with RAN. As mentioned earlier,

the right-hand side number should be used in order to allow perfect gen-

eralisation. However, formula (6.8) does not guarantee that this number

of hidden neurons is enough for the network to perform the autoassocia-

tion task for all strings and develop their distributed representations. As

noticed earlier, in (recurrent) neural networks, hidden layer neurons have

other functions, too, related to the network processing. In addition, given

the enormous complexity of the learning problem, it is very di�cult for the

learning algorithm to �nd proper weights producing these particular repre-

sentations. Usually, more neurons are necessary to learn a particular task

than this theoretical estimations. Therefore, a scaling coe�cient > 1 will

be applied to (6.8) that will account for these and other factors related to

the network processing mechanisms. This will give to the learning algorithm

more freedom to �nd a proper weight set solving the training problem.

Examples

Now, let us �nd an estimation of the necessary RAN hidden layer size in the

previous examples by using (6.8). The base b will be set to 2 states and the

coe�cient to 3.0

6.5. A CASCADE OF RANS 191

The �rst experiment was learning 140 syllables (jSj = 140) built out of

26 distinct letters (jCj = 26). The maximal string length was 4, (k = 4).

Then according to (6.8), 30 < hRANsyll
< 63. In the reported experiments,

30 hidden neurons were enough to encode almost all training sequences.

The second experiment on learning DRs of numbers was more complete,

in terms of training set { all strings composed out of up to k = 4 digits,

each having jCj = 10 distinct states. The number of sequences jSj varied,

from 100 to 5,000 in the di�erent training sets. Then, the estimation for

the hidden layer size h, derived from (6.8) is 30 < hRANM
< 45. In that

experiment the numbers were encoded with a RAN with 30 hidden neurons.

Finally, I want to note that the computations provided here give just

a very rough estimation of the hidden layer size necessary for a particular

task. The very important factor of number of hidden neurons necessary for

the normal processing of the RAN as a SRN model is not estimated at all,

but it is just taken into account with the scaling coe�cient.

6.5.2 Simulation III: representing polysyllabic words with a

RAN-cascade.

A step toward building a hierarchical model of natural language according to

the hierarchical design presented earlier is a cascade model producing repre-

sentations of natural language polysyllabic words. This model involves two

RAN modules: a syllable-RAN building static representations of syllables

(as sequences of characters), and a word-RAN building static representations

of words (as sequences of syllables).

The experimental work reported on here is a natural extension of the

experiment described earlier on syllable modeling. The syllable-RAN is the

same as before { with 27 input and output neurons, and 30 hidden neurons.

This implies that the word-RAN input and output layers should have 31

neurons { one more neuron used to encode the trigger and the end-of-word

patterns. The size of the hidden layer of the word-RAN is 30, which is

determined by the insigni�cant complexity of this concrete learning task {

there are only 100 sequences to be learned, consisting of some 140 possible

syllables, with an average length of the input sequence 4 syllables. In a more

realistic model, more hidden neurons would be needed for both RANs, since

many more syllables and polysyllabic words should be encoded.

Given a pre-trained syllable-RAN, the training procedure of the word-

RAN is organised as follows: First, a training word is randomly selected from

the training corpus, which contains pre-syllabi�ed words. Next, for each

syllable in the selected word, the syllable-RAN produces a corresponding

192 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

static representation, which in turn is provided to the word-RAN input

layer. The static representations of the syllables belonging to the current

word are kept in a bu�er until the learning procedure for the current word is

�nished. When all syllabic patterns from the current polysyllabic words are

presented to the input of the word-RAN, it is fed a triggering pattern and

the syllabic patterns processed thus far are presented as target patterns to

the output layer, one at a time, and error is calculated. The same targeting

patterns, with one step delay, are presented to the input layer again (see the

previous section and Fig. 6.3 for details). Next, during the second phase

of the BPTT learning algorithm, the accumulated error is propagated back

through time till the beginning of the sequence. Finally, the weights are

updated with the accumulated weight-updating values. After one training

epoch { when the network is trained on all words from the corpus { the

word-RAN is tested and the training halts or continues, depending on the

performance.

The RAN-cascade is tested by encoding the training/testing words and

decoding (unfolding) the static representations of these words back to their

sequential forms (string of letters), and comparing the resulting strings with

the expected strings. The word-RAN error is measured as a percentage of

erroneous predictions of (1) letters, (2) syllables and (3) words. Syllables

are considered to be predicted correctly if all the correspondent letters are

reproduced correctly. Similarly, words are learned if their syllables are re-

produced correctly. The performance of the word-RAN in this experiment,

after 100 training epochs was as follows: 1.8% character error, 4% syllable

error and 6% word error.

Although the model did not perform perfectly, this �rst experiment with

the cascaded model demonstrated that the Recurrent Autoassociative Net-

works handle distributed patterns produced by the same model well, and

that they are capable of developing distributed representations of structured

sequences.

6.5.3 A more realistic experiment: looking for systematicity

In this subsection a more realistic experiment will be presented { building

distributed representations of some 850 polysyllabic Dutch words, consisting

of about 600 distinct syllables. The less complex examples studied earlier

suggested what the static representations were like (Fig. 6.4), and more im-

portantly, con�rmed that the network generalisation increases as the number

of combinations learned by the networks increases.

The cascade processing polysyllabic words consists again of two RANs

6.5. A CASCADE OF RANS 193

Error (%) / Hidden layer 30 50 100

Syllables 72 30 2.9

Chars 18 7.2 1.1

Table 6.2: Performance of the Syllable-RAN trained on 600 distinct sylla-

bles, when varying the hidden layer size (30, 50, 100). Syllabic error (1st

raw) and char error (2nd raw) is given.

{ a syllable RAN and a word RAN. The necessary size of the hidden layer

could be estimated also with formulae (6.8). For the syllable-RAN, which

deals with letters as input tokens, jCj = 26; the number of the studied

syllables is jSj = 600; their average length k = 5. Then, according to (6.8),

30 < hRANSyll
< 100. Similarly, for the word-RAN: the number of the

distinct input patterns is jCj = 600, the number of sequences studied is

jSj = 850, length k = 5. Then, we compute that 40 < hRANWord
< 150.

Still, those estimations are quite approximate and therefore experiments

with di�erent hidden layer sizes were run in order to �nd the most proper

ones. The �rst level (syllable) RAN was tested with 30, 50 and 100 hidden

neurons. The network with largest hidden layer resulted in best perfor-

mance { 0.6% erroneous letter prediction and 2.5% erroneous syllable pre-

diction. As the size decreased, the performance deteriorated signi�cantly.

The syllable-RAN with 50 hidden neurons learned some 70% of the syllables,

while the network with 30 hidden neurons learned only 28% of them (Table

6.2).

The second level (word) RAN was constructed with 101 input and output

neurons, because the syllable-RAN with 100-hidden neurons was used as

a �rst-level network for syllable encoding. To �nd the most appropriate

hidden layer size of the word-RAN, again three networks were tested: with

150, 250 and 350 hidden neurons. This time, the hidden layer estimations

here did not work as well as for the �rst-level network: only a network

with 350 neurons managed to learn some 86% of the words. The other

networks performed much worse (Table 6.3). Although the performance of

the RANWord measured as percentage of correct letter prediction is much

better (2.7%), error accumulates, making the word-level error much larger.

Therefore, for perfect performance, more training is necessary.

These experiments support to some extent the estimation of the hidden

194 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

Error (%) / Hidden layer 150 250 350

Words 23.1 19.2 14.1

Syllables 7.8 6.8 5.0

Chars 4.2 3.6 2.7

Table 6.3: Performance of the word-RAN trained on 850 polysyllabic words

with input vector size 100, when varying the hidden layer size. Word error

(1st row), syllabic error (2nd row) and char error (3rd row) is given.

layer size with formula (6.8) that is based on the information content of the

hidden layer and size of data to be encoded. Decreasing the number of hid-

den neurons below the suggested size caused the performance to deteriorate.

Besides the minimum number of hidden neurons necessary to encode cer-

tain amount of data, another reason for worsening of performance is that the

back-propagation learning algorithm more easily �nds escape routes from lo-

cal minima when there are more weights { if a set of weights are trapped

into a valley on the multi-dimensional error surface, other weights can drive

the network from this point. Therefore, the more complex the task is, the

more neurons are necessary. If the number of the neurons seems very large,

consider the brain, where billions of neurons participate in di�erent cogni-

tive tasks. Practically, with the ever increasing computational power, this

question will be outdated in a few more years.

The more interesting question now concerns the generalisation of the

syllable-RAN and the word-RANs, that is, how many words unseen during

training would be reproduced correctly by the model. Tested on a larger

corpus with 9,000 words and 2,320 distinct syllables, the syllable-RAN suc-

cessfully reproduced, (and generated unique representations of) other 1150

syllables, which is more than 190% generalisation as opposed to the �rst

experiment with only 65% generalisation (as compared with the number of

training examples). These results show that networks trained with more

combinatorial possibilities generalise better. In turn, this shows the RAN

capacity to produce static distributed representations systematically (see

section 6.7 for discussion).

The word-RAN generalised well too, with successful reproduction of

1,500 words unseen during the training, which is about 180% generalisa-

tion. It is interesting to note that the word-RAN generalised almost as well

6.6. TOWARD COGNITIVE MODELING 195

as the syllable-RAN after learning fewer combinatorial possibilities than the

syllable-RAN did (850 words made out of 600 distinct syllables, while the 600

syllables are made out of 26 distinct letters). I attribute this to the nature

of the input data of those two RANs. On the one hand, the syllable-RAN

is provided with localistically encoded letters, which gives no prior informa-

tion about the similarity among the classes they represent. On the other

hand, the word-RAN is supplied with much more meaningful distributed

representations, systematically produced by the syllable-RAN.

This also suggests that if the letters were represented with features (con-

sonant/vowel, voiced, place, manner : : :), perhaps the syllable-RAN would

learn the task even easier, with fewer hidden neurons and would generalise

better.

6.6 Toward Cognitive Modeling

Once we have a method to represent holistically (statically) complex struc-

tured data that we experience externally in its dynamic (sequential) form,

we can go further and learn some relations between representations coming

from the same or di�erent modality channels. Those relationships can be

simple associations, or more complex holistic transformations { a problem

which will be explored in Chapter 7. A complete architecture consisting

of channels organising the data (cascaded RAN-modules) and horizontal

links across those channels might provide a basis for a cognitive system

that would extensively organise data in holistic representations and perform

holistic transformations.

For example, processing acoustic input with the cascaded RAN model

results in an auditory modality cascade that produces representations of

acoustic objects, which at the higher cascade levels might be interpreted as

representations of linguistic objects. In the same manner, visual input might

be organised in RAN-cascades for visual modality . Similar to the perceptual

signals, commands controlling various e�ectors (e.g., muscles, glands) could

also be organised into such cascades. Having a system that develops repre-

sentations of objects from di�erent modalities, other neural networks could

learn various associations between them. The set of associations of higher-

level abstracted representation plus the correspondent encoding/decoding

cascades might provide a basis for grounding multi-modal representations.

As far as the nature of the static associations is concerned, such complex

multi-modal mappings can be e�ected with any static connectionist model {

self-organising or trained by a teacher. What is more, the use of both learn-

196 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

ing paradigms would be cognitively motivated, because associations could

be learned whenever two representations are simultaneously activated and

there is a \will" or attention to learn this coincidence. Then, this coinci-

dence would naturally provide a teaching signal to be used by the learning

method. Neural Network models that might be used for this purpose are the

supervised Multilayered Perceptron, the ART-Map network by Carpenter &

Grossberg (1992) or the autoassociative memory by Hop�eld (1982), among

other connectionist models.

A very sketchy graphical view of this model is given in Fig. 6.7, in which

each column represents one RAN-cascade responsible for the organisation

of the sequential data incoming from a given modality. On the other hand,

the RAN-blocks at each level represent a given conceptual level of data

complexity. Those levels should either be designed in advance, or devel-

oped gradually, one after another. The communication between RANs from

di�erent levels is marked with vertical arrows. In turn, the horizontal links

represent holistic (static) associations, which might be uni- or bi-directional.

When sequential data is input to a given modality, that is, to its cor-

responding lowest-level RAN, higher level holistic representations will be

gradually produced. If there are associations learned between the currently

active representation and other columns, and if there is a signal that could

spread through certain links, the holistic pattern that has just been acti-

vated from the bottom-up signal could be transformed into corresponding

patterns at (an)other column(s), which in turn might be decoded to lower

level sequences. High level representation might also be activated through

any channel and decoded to the lowest level sequences, and sequences within

other modalities might be produced as well.

Another possible extension toward a global cognitive model might be

developing representations of composite input patterns at certain levels of

the RAN cascade. This composite pattern might simply be the concate-

nation of distributed representations from di�erent modalities (Fig. 6.8).

The motivation for developing representations of such composite sequential

data comes from natural language. Word representations developed on the

basis of the external form of the words would only capture systematic de-

pendencies related to combinations of letters (phonemes) into words, but

not categorical or semantic information, which might be necessary when

processing sentences. Therefore, if we need representations that share prop-

erties from di�erent modalities, we could apply this multi-modal approach.

For example, the input to a sentence-RAN might consist of static lexical

representations and patterns from the visual modality. This would let the

sentence-RAN develop sentence representations that properly reect the vi-

6.6. TOWARD COGNITIVE MODELING 197

Figure 6.7: Cognitive model based on a network of RAN cascades. Each

RAN-cascade (a column) stands for a di�erent modality. The RANs in each

cascade represent di�erent conceptual levels. The horizontal and diagonal

bi-directional arrows represent static associations between di�erent modali-

ties. In addition to this picture, there should be a central attentive system

that directs the ow of activations.

sual meanings of the words, not only their external auditory or visual form.

By using this approach, complex associations that a cognitive system

would encounter could be learned. However, there are still a lot of other

questions to be answered before talking of a working system { data synchro-

nisation, signal direction, better learning, etc. This huge net of associations

needs a central supervisor directing the spread of activations through and

across the di�erent channels. Modeling cognitive processes such as attention,

awareness, etc., perhaps would resolve some of those questions.

Developing such a cognitive system is not an easy task. The sketchy ideas

that were presented here need an extensive elaboration in order for a real

198 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

Figure 6.8: RAN developing static representations of multi-modal sequential

data (e.g., auditory and visual). The distributed representations developed

could feature multi-modal systematicity.

functioning system to be developed. This, however, is not the purpose of this

work, which rather aims at modeling various lexical linguistic phenomena.

Therefore, I will con�ne my further remarks to elaborating some holistic

transformations in the next Chapter 7.

6.7 Discussion

The basic question addressed in this chapter was how to build static repre-

sentations of complex sequential data with connectionist models, concerning

primarily natural language. Dynamic data exist in all cognitive modalities

and it is important to have a mechanism that compresses and uncompresses

external dynamic objects into the more convenient static, or \holistic" rep-

resentations, in order to process them further. Furthermore, I postulated

some principles about the way those representations should be developed,

in order (a) properly to reect the well-founded organisation of the data in

our cognitive system and (b) to enable further complex processing on those

representations, including various holistic transformations. Among those

principles are the gradual emergent development, similarity and systematic-

ity.

Association is one of the basic forms of learning. Repetition, or auto-

association provides a powerful mechanism for cognitive development, too.

We can observe this mechanism throughout animal species. Baby animals

develop initial behaviour without being initially taught, but just by attempt-

ing to repeat, imitate their parents. Humans develop language in a similar

6.7. DISCUSSION 199

way: infants initially start to repeat sounds (babbling), next they repeat

simple words, small phrases and so on, until they develop full-scale lan-

guage capacity (Jusczyk 1997). Infants away from language environments

simply can not develop language, or have great di�culties in developing

language later. Similar motivations drove me to use autoassociation in a

connectionist model for developing representations of dynamic data from

the external world.

Recurrent Neural Networks are connectionist models that allow us to

process dynamic sequential data. The more speci�c Simple Recurrent Net-

work is a powerful universal model which I have exploited for this purpose,

by setting it an autoassociation task and arranging the data to develop the

desired static representations. The suggested architecture is called a Re-

current Autoassociative Network. The model was extended further to a

cascade of RANs, aiming at developing static representations of hierarchi-

cally structured sequential data. In this cascade, RAN modules at each

level are designated to develop static representations of di�erent levels of

complexity (or di�erent conceptual levels) { words, sentences, and so on.

What is the importance of this model? To what extent does it increase

the capacity of connectionist modeling? The discussion in section 6.2 on

the representations of sequences that one needs when modeling natural lan-

guages and the capacities of the connectionist models presented in section

6.3 clearly demonstrate that the question of how to develop distributed rep-

resentations of composite dynamic data is still open. Local encoding is

restricted, random representations lack systematicity, and the feature-based

representations are limited and rather arti�cial. All those representations

keep NNs away from real data. In order to get closer to our cognitive ca-

pacity, we need a mechanism that builds representations, starting from the

bottom and gradually building ever more complex representations { what

RANs do.

The similar idea of building a gestalt representing input data was promis-

ing, but it was not elaborated further. The RAN model has something in

common with the earlier works on gestalt: they all develop representations

of the sequential input data in the network global memory. However, they

di�er in the learning task they set to the SRN and in the way they use

this context. The gestalt models use the context developed for information

retrieval at every moment, which causes uncertainties { it uses the classical

prediction task { while RANs develop unique static representations of the

input sequences by a specially arranged learning task that makes the same

RANs able to reproduce the input sequence, which in turn does not hold for

the gestalt models. The gestalt model needs a second network trained to ex-

200 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

tract information from the context of the �rst network, but this information

does not necessarily describe the input sequence completely.

The other similar and important architectures RAAM and SRAAM were

initially reported to work well on sequential and recursive data, but later

experiments did not con�rm the initial optimism (Hammerton 1998b). Also,

the RAAMs need an external stack and boot RAAM and SRAAM reproduce

the sequences in inverse order. This might cause interpretation problems

when processing longer sequences { it would require an external stack to

invert those sequences back to the normal order. Still, RAN clearly owes

the idea of autoassociation as a source of developing compact representations

to the RAAM model.

The experiments in section 6.4.3 on developing representations of num-

bers and in section 6.5 on modeling sequences with a cascade of RAN mod-

ules demonstrate that RANs can handle both orthogonal and feature-based

low-level data (we can assume that this is a kind of perceptual data), and

also continuous-values data produced by RANs themselves. The network

learned to autoassociate in both cases, although there were more di�culties

in learning the latter types of patterns. I attribute this to insu�cient com-

putational resources, because the larger the hidden layer is, the better the

performance is (see table 6.3). On the other hand, word-RAN generalised

very well given the small number of training combinations of syllables, which

is due to truly distributed syllabic patterns, as opposed to the localistically

encoded input for the syllable-RAN. Similarly, the number-RANs could also

generalise well by learning just some 10-20% of all possible combinations of

digits, which is also due to the distributed encoding of the numbers { its

input patterns { and the general capacity of NNs to generalise on distributed

data.

With regard to the hidden layer size that is required for a RAN to learn

a particular task, it is di�cult to �nd a theoretical measure for it because

the representations are continuous and, theoretically speaking, even one real

value number can encode any sequence. However, limitations from the lim-

ited e�ective working range of the sigmoidal activation functions apply and

by enumerating the maximal number of distinct patterns to be encoded in

the hidden layer, an estimation of the required hidden layer size was derived

(formula 6.7). Still, more theoretical and systematic experimental investiga-

tion is necessary in order to determine other factors related to hidden layer

size, such as factors related to the way the data is processed and encoded in

the neural networks, especially in recurrent models.

6.7. DISCUSSION 201

Systematicity

Neural Networks were reproached by Fodor & Pylyshyn (1988) for not being

able to produce systematic representations, which inspired a serious debate

about the validity of this challenge (Smolensky 1991, Aydede 1997) among

others. Besides having an impact on connectionist modeling, the debate on

this human cognitive property is important because it leads toward an ex-

planation of our capacity to think and provides ideas how to model it, that

is, how to design thinking machines. The ongoing debate inspired the devel-

opment of a number of architectures that more or less meet the requirements

characterising systematicity (Smolensky 1990, Smolensky 1991, Henderson

1996). In this subsection I will explain how the distributed representations

developed by RAN account for systematicity.

It is not easy formally to explain what actually this property means and

its de�nitions often contain tautologies. To begin with, we may say that

systematicity concerns the intrinsic connections between some thoughts and

some other thoughts. Fodor and Pylyshyn ask why there are such relation-

ships and what cognitive architecture can account for them. The answer

they give views the mind as a symbolic system and cognition as symbol

manipulation. Accordingly, they claim that the phenomena of systematicity

can be explained only with their \Language of Thought" because of its syn-

tactic basis. They also explicitly claim that connectionism can not account

for systematicity, because connectionist representations lack syntactic and

combinatorial structures, according to them.

A classical example for systematicity is that if we can think of "Mary

loves John", then we can think of "John loves Mary", too. With this simple

example, one can distinguish a few descriptive characteristics of systematic-

ity:

� compositionality : thoughts are made up of constituents (e.g., \Mary",

\John", \loves"). However, these constituents do not necessarily have

to be explicit in internal representations of thoughts, like in holistic

representations.

� combinativity : various tokens might be used at the same position in a

relation (that is, to have the same function), e.g., \Mary" and \John".

Or, any possible ordered combination of tokens is possible, although

some restrictions apply, due to the following property.

� generalisation: similar tokens can occupy a given position and there-

fore sequences/thoughts that have not been experienced earlier can

202 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

be induced. In this example, the tokens \John" and \Mary" are (se-

mantically) similar and therefore \John loves Mary" is inducible from

\Mary loves John".

Fodor's classical \Language of Thought" respects fully the �rst and the

second characteristics, and partially the third one. The hard rules of logic

which underlie symbolism { the background of the classical cognitive expla-

nation { can not account for similarities across all symbols because they do

not make use of continuous metrics to compute such similarities. Therefore,

in symbolic systems, external (physical) similarities across symbols do not

give rise to generalisation unless a system of arti�cially developed features

characterising the symbols is applied or a complicated grammar specifying

various classes of symbols is developed. In the above example, if \Mary"

and \John" are de�ned as fnoun, animated, : : : g, then the well-formedness

of \John loves Mary" will be inducible from the well-formedness of \Mary

loves John".

On the contrary, an important property of connectionism is generalisa-

tion, which is shared by the RAN model, too. Similar items are treated in

a similar way. Due to the distributed way of representing data and \rules",

and due to sharing one set of weights throughout the di�erent time steps,

similar sequences develop similar representations, that is, similarity in time

transfers into similarity in space, as discussed earlier. The similarity across

the representations developed is the basis for the generalisation. In this par-

ticular example, if there is a more global cognitive system featuring other

modalities, such as the visual modality, then similarity between two items

in one or more modalities will transfer to other modalities, e.g., language,

and therefore the above two sentences will be inducible from each other.

On the other hand, similarities across examples within one modality lead to

generalisation in this modality. Even more, as noted earlier, generalisation

in SRNs/RANs also occur in time due to shared weights.

Yet, some other connectionist representations do not feature some of the

other characteristics: localistic representations do not allow similarity to be

computed. Feature-based encoding compromises compositionality and en-

ables combinatorial possibilities by using di�erent slots for representing dif-

ferent micro-features, but it is rather arti�cial and hand-crafted. Models fea-

turing excellent combinativity are those based on the synchronous oscillation

(Henderson 1996). However, as I already noted, they do not produce static

representations { they span time and space. Other distributed representa-

tions, such as those produced by the RAAM and the SRAAM models, show

that neural networks can produce distributed representations that have com-

6.7. DISCUSSION 203

positional structure, although in an implicit manner (Chalmers 1990, Blank

et al. 1991, Hammerton 1998b).

Similarly to the RAAM and the symbolic models, the RAN model also

produces composite representations. Of course, RANs are not aimed at pro-

ducing distributed representations understandable by humans. This is re-

served for symbolism. The representations that RANs produce are designed

to be understandable, �rstly, by the RANs themselves and, secondly, by

other computational models able to analyse data numerically and eventually

extract useful features from this data. RANs can decode representations to

an original input sequence { this is a part of the autoassociative task. With

regard to the other models, the Kohonen Map that was trained in section 6.4

to cluster the distributed representations of syllables clearly demonstrates

that other models can \understand" those representations, too (Fig. 6.4). In

this case, the Kohonen Map was just an instrument to persuade the reader

that those representations are organised in a systematic way. In addition,

similarly to the ability of the RAN to decode the distributed representa-

tions, other connectionist models should also be able to extract (information

about) the encoded items and to do holistic computations. Experiments with

distributed representations produced by the RAAM and the SRAAM show

that this is possible (Chalmers 1990, Hammerton 1998b); RANs produce dis-

tributed representations following the same principles as the SRAAM, only

the order of reproducing the sequences is di�erent. The (S)RAAM models

implement a stack, while the RANs implement a queue. Therefore, I expect

holistic computations will be able to apply on distributed representations

developed by the RAN, too { a question that will be explored in the next

Chapter.

With regard to the other characteristic of systematicity { exploration

of the combinatorial possibilities { the model can indeed learn any ordered

combination of tokens and this was shown with a number of experiments.

However, this is not enough. Not only should models have the capacity to

explore di�erent combinations, but the training environment should provide

them, too. Similarly, symbolic learning algorithms can evolve rules in the

course of the training only if the learning data provide di�erent examples.

This is the same with humans, too. We start to combine words properly after

having enough experience in a language environment. Another example is

related to algebra. Students learn to add and subtract �rst by example,

and then they realize the nature of the operators "add" and "subtract".

With regard to the capacity to explore such combinations, RANs have this

capacity, by allowing tokens to take any position in the input sequences.

Similarly to Deacon (1997) I hypothesise that a systematic organisation

204 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

emerges in the RANs after exploring certain subset of all possible combina-

tions of the input tokens, when the network starts to rely on some common

features among the input representations rather than on particular patterns,

which Deacon characterises also as example \forgetting". Indeed, the exper-

iment on developing representations of numbers (represented as sequences

of digits) in section 6.4.3 showed that the network started to generalise rel-

atively well after observing as little as 10% of the complete dataset, and

achieved excellent generalisation after experiencing just some 30% of the

data, which shows that the network has discovered the relationships in the

sequential data and has started to use them by developing representations

in a very systematic manner, so that after the forced training, it developed

representations of unseen numbers in just the same way as it did on the

training examples.

I will end this section with the conclusion that the Recurrent Autoasso-

ciative Networks model can, indeed, develop distributed representations in a

very systematic way, provided su�cient training data, which I showed by ex-

plaining how the RAN can account for three characteristics of systematicity:

compositionality, combinativity and generalisation.

6.8 Conclusions

Sequential processing is recognised as a di�cult problem, especially when

sequential complexity, in terms of length and internal structure, increases.

In the present chapter I proposed a framework for representing statically

structured sequential data, as found in natural languages, perceptions of

movements, actions, and so on. The approach is based on the idea that by

sequential autoassociation, a single recurrent NN { the Recurrent Autoasso-

ciative Network { can develop static representations of sequences composed

of uniform items. A hierarchical set, or a cascade of such networks, de-

velops static distributed representations of ever more complex sequences,

where each prede�ned structural level in the data is processed by one RAN

module, and the sequential input to the upper levels is developed by the im-

mediate lower level RAN. For this purpose, recurrent networks are trained

on autoassociative tasks (RAN modules), and they develop unique static

representations of the input sequences at their hidden layers (Fig. 6.3).

Those static representations are used as interface patterns for the next level

RAN (Fig. 6.6). The static representations at the highest level RAN are

the distributed representations of the most complex data or whole input

sequences, e.g., sentences or stories. In section 6.5, an example was given of

6.8. CONCLUSIONS 205

how this model might work for developing representations of Dutch polysyl-

labic words, which includes grouping phonemes into syllables and syllables

into words.

Further, it was suggested in section 6.6, how the cascaded RAN model

might be extended to a more global cognitive model, where it was sug-

gested that the static representations at each level were associated with

or transformed into other static representations (of sequences of the same

or other modalities) via static mappings. Such a net of multi-modal as-

sociations, I believe, might provide an implementation of natural language

grounding and is a base for semantics modeling. Yet, the development of a

full-scale autonomous cognitive system also involves many other unexplored

sub-systems, such as signal control, attention, short-term and long-term ex-

plicit memory, etc.

The model has some practical limitations, too. Although I claim that

the RANs can theoretically be used for representing hierarchically structured

sequences of any complexity, there are practical problems that currently do

not allow its full realisation. These may be due to the currently limited

computational power and the absence of real neuro-chips that would allow a

parallel implementation of large-scale arti�cial neural networks. Among the

problems is also the not very e�cient BPTT learning algorithm, which has

the very di�cult task to learn a multiple-pattern sequential autoassociation.

One possibility to solve this problem is to improve the BPTT learning algo-

rithm as suggested in (Kuan et al. 1994, Arai & Nakano 2000). Alternatively,

other dynamic NNs, possibly more neurobiologically oriented, could be used,

too, providing the possibility to organise a sequential auto-association in a

manner similar to what was explained earlier in the chapter.

In spite of those limitations, I showed that the model contributes pos-

itively to the ever-going connectionist-symbolic debate, by demonstrating

that it can develop meaningful distributed representations of sequences in

a very systematic way. Those representations can be used for various high-

level cognitive tasks, including holistic computations, which in turn will be

the subject of the following chapter. Therefore, I believe the suggested model

is an important step in connectionist modeling, and I strongly encourage the

reader to experiment with the RAN cascade on di�erent problems.

206 CHAPTER 6. RECURRENT AUTOASSOCIATIVE NETWORKS

