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Abstract 

This paper offers a new input-normal output-diagonal real- 
ization and model reduction procedure for nonlinear systems 
based on the differential eigenstructure of Hankel operators. 
Firstly, we refer to the preliminary results on input-normal re- 
alizations with original singular value functions and the dif- 
ferential eigenstructure of Hankel operators with axis singular 
value functions. Secondly, the relationship between the two 
different characterizations of singular value functions is clar- 
ified and, consequently, the new input-normal realization is 
characterized. Thirdly. we perform the model reduction based 
on the obtained realization. Furthermore numerical examples 
demonstrate the effectiveness of the proposed method. 

1 Introduction 

In the theory of continuous time linear systems, the system 
Hankel operator plays a central role in  minimality theory, in 
model reduction problems, in realization theory, and related to 
these, in linear identification methods. Specifically, the Han- 
kel operator supplies a set of similarity invariants, the so called 
Hankel singular values, which can be used to quantify the im- 
portance of each state in the corresponding input-output sys- 
tem [7]. The Hankel operator can also be factored into the 
composition of the observability and controllability operators, 
from which Gramian matrices can be defined and the notion 
of a balanced realization follows, firstly introduced in [9].The 
linear Hankel theory is rather complete and the relations and 
interpretations between state space and input-output settings 
are fully understood. 

The nonlinear extension of the state space concept of bal- 
anced realizations has been introduced in [13], mainly based 
on studying the past input energy and the future output en- 
ergy. Since then, many results on state space balancing, mod- 
ifications, computational issues for model reduction and re- 
lated minimality considerations for nonlinear systems have ap- 
peared in the literature. e.g. [5, 8, 11, IO, 141. Further, the re- 
lation of the state space notion of balancing for nonlinear sys- 
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tems with the nonlinear Hankel operator has been considered, 
see e.g. [5, 15, 141. In particular, singular value functions 
[I31 which are nonlinear state space extension of the Hankel 
singular values in the linear case play an important role in the 
nonlinear Hankel theory. It has been shown that singular value 
functions are closely related to Hankel operators [IS]. How- 
ever, there are some major differences from the linear theory, 
i.e., studying similarity invariance of singular value functions 
in relation to the nonlinear Hankel operator can be done via 
several interpretations of the concept of similarity invariance 
and may result in different conclusions. Recently, axis singu- 
lar valuefrrnctions were introduced [2] as alternative nonlin- 
ear extension of the Hankel singular values, which are derived 
based on the differential eigenstructure of the self adjoint of 
nonlinear Hankel operators. This new characterization is de- 
fined only by input-output properties of the system and, conse- 
quently, does not depended on the choice of the coordinate in 
contrast with the original singular value functions. In addition. 
the relationship between the axis singular value functions and 
the original ones were not clear so far. 

The main objective of this paper is to provide an input- 
normalloutput-diagonal realization based on the axis singular 
value functions. To this end, we will prove that there exists an 
input-normalloutput diagonal realization whose original sin- 
gular value functions coincide with the axis singular value 
function on certain subspaces of the state space. Hence this 
realization connects the axis singular value functions and the 
original ones. Furthermore, we will perform the model reduc- 
tion [IZ, 131 based on the newly obtained realization. More- 
over, it will be proved that the axis singular value functions 
are preserved in the the model reduction procedure, and that 
the Hankel norm of the original system is also preserved as a 
result. Some numerical examples demonstrate the effective- 
ness of the proposed method. 

2 Preliminaries 

This section refers to preliminary results on input- 
normalloutput-diagonal realizations (as a nonlinear extension 
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of balanced realizations) [ 13,4,2], 

2.1 Singular value functions 
Here we refer to the observability and controllability func- 
tions, and relate them to singular value analysis of nonlinear 
dynamical operators. We only consider time invariant, input- 
affine, sufficiently smooth nonlinear systems without direct 
feed-through in the form of 

Here z ( t )  E W", u(t)  E Rm and y(t) E W', and it is supposed 
to be asymptotically stable and L-stable in the sense that U E 
L ~ ( - w , O ]  implies that y = C(U) restricted to [O,M)  is in 
L ; [ o , ~ ) .  

The observability and controllability functions of the system 
(1) are defined as follows. 

Definition 1 The observability function L J z )  and the con- 
trollability function L,(z) of C in ( I )  are defined by 

Ily(t)ll2 dt ,  x(0) = 20, u(t) 0 

In [13], these functions have been used for the basis of input- 
normal realizations and singular value functions of nonlin- 
ear systems. Also they fulfill corresponding Hamilton-Jacobi 
equations, in a similar way to the observability Gramian and 
the inverse of the controllability Gramian are solutions of a 
LyapunovRiccati equation. 

Theorem 1 [I31 Consider ike system C in ( I ) .  Suppose there 
exists a neighborhood W of 0 on which C i s  asymptotically 
stable and there exists a smootli observability function L,(x). 
Then L,(x) is ihe unique smooth soluiion of the Hamilton- 

, Jacobi equaiion 

!5!4 f(.) + 1 h(x)Th(.) = 0 
a x  

Furthermore, suppose that there exists a smooth contmllabil- 
ity function L,(x) on W. Then L,(z) is the unique solution of 
ihe Hamilton-Jacobi equation 

such that x = -( f +ggT(aL,/i3x)T) is asyniptotically stable 
about 0 on W. 

Next we review what we mean by input-normalloutput- 
diagonal form. In the rest of this paper, the word input-nornial 
is also used as shonhand for input-normaUoutput-diagonal. 

Theorem 2 [I31 Consider an operator C with an asymptoti- 
cally stable state-space realization ( I ) .  Suppose thar the Ja- 
cobian linearization of C is contmllable and observable and 
that there exists a neighborhood V of :he origin where smoork 
L, and Lo exist. Then there exists a smooth coordinate trans- 
fomiation z = @(z),  @(O) = 0, on V ,  which converis C into 
an input-normaVoutpui-diagonal form, where 

1 
2 
1 
2 

L,(@(:)) = -:T: (2) 

L,(@(r)) = - zTdiag(rl(z),...,r,(z))z ( 3 )  

with q ( z )  2 . . . 2 rn ( z )  being smooth singular value func- 
tions on V .  

Example 1 We consider the system ( I )  which fulfills all tech- 
nical assumptions with x = (ZI, z2)  E W2, U = ( ~ 1 ,  uz) E 
W2 and y = (yl ,  y2) E W2 and f ,  g and h as follows: 

-92.1 + 6z:xz + 65: - x: - 2x:x; - x1x2 

-922 - 65: - 6x12; - x!x2 - 2z:x: - x: 
f ( 4  = 

This system is zero-state observable, and j: = f (x) is asymp- 
totically stable. Computing Lo and L, by solving the HJB 
equations in Theorem I ,  we obtain: 

We see that the controllability function is already in input- 
normal form and that the observability function is in output- 
diagonal form. A pair of singular value functions are: 

36 + 1Sx1x2 + z: + 6x:x: 
1 + z: + 2x:x; + x; 'Tl(X) = 

9 + 1 8 ~ ~ x 2  + 9x:xZ + 42: 
1 + x: + 2x:x; + x; TdX) = 

The neighborhood V of 0, where the number of distinct singu- 
lar value functions is constant, i.e. q ( x )  > TZ(X). is 

V = { z I (x: + x;)(x: - 42:) + 27 > 0 )  

2.2 The differential eigenstructure of Hankel operators 
The observability and controllability operators of C in ( I )  are 
mappings of W" - L;[O, M) and L;"[O, 00) - R", and their 
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state space realizations are given by 

i = f ( x ) ,  z(0) = zo 
Y = Wz) y=Ux(xO):  (4) 

where 3- is the time flipping operator defined by 

(6) 
U ( - t )  ( t  < 0 )  

The observability and controllability functions and operators 
are related to each other as 

Furthermore the Hankel operator XHC. : Ly[O,m) - 
L;[O,m) of C is given by 

ux = ux o c x .  (8) 

Recall that if the system C is linear, then the square of the 
singular value ui is the eigenvalue of the self-adjoint of the 
Hankel operator, i.e. 

2 H;: 0 "x(7Ji) = uj 7Ji 

for each eigenvector ui. For nonlinear systems so far the ex- 
tension of this linear result was not obtained. In the sequel we 
study another type of extension with the help of the differen- 
tial of the Hankel operator: we consider an eigenstructure of 
the operator U - ( d H ~ ( u ) ) '  o '&(U) characterized by 

( d X x ( u ) ) *  o 'Hx(u)  = X u  (9) 

where X E R is an eigenvalue and U E L;n[O, CO) the corre- 
sponding eigenvector. See [2] for the motivation of investi- 
gating this eigenstructure. Here the operator d( . )  denotes the 
Glteaux differential, which corresponds to the Frkhet  deriva- 
tive in our setting. The operator (.)* is defined by 

Definition2 [I51 Consider an operator C : U - Y with 
Hilbert spaces U and Y .  An operator C' : Y x U - U 
satisfying 

(10) (C(U),Y)Y = (.,C*(y,.))u, VU E U, VY E Y 
which is linear in y is said to he a nonlinear Hilben adjoint of 
E. 

The state-space realizations of those operators are given in [4] 
and can he readily computed. The eigenstructure (9) has a 
close relationship with the Hankel norm of C defined by 

We have the following result which characterizes the solution 
of (9) and yields an expression for the Hankel norm. 

Theomm 3 121 Consider an operator C with the state-space 
realization ( I ) .  Suppose that the Hankel operator Xx is 
Gri teau differentiable, that there exist sugciently smooth en- 
ergyfunctions L,(x) and L,(x) and that the Jacobian lin- 
earization of the system C has nonzero distinct Hankel sin- 
gular values. Then there exist a neighborhood U C W of 0, n 
smooth functions pi : U - [0, CO) c Rs, i E {l, 2 , .  . . , n} 
such that 

min{pi(s),pi(-s)} 2 maxIpi+l(s),pi+l(-s)}, Vs E U 
(12) 

holds f o r  V i  E { 1 ,2 ,  . . . , n - 1) and there exist n distinct 
smooth curves Ei : U + R" satisJying &(O) = 0 and 

(14) 

Here every pair 

X = X,(s), 2) = C&(t ; (s) )  

satisfies the diferential eigenstructure (9) where Ci is the 
pseudo inverse of Cx defined in (7). Funhermore, if U = W. 
then 

IlEllH = suPP1(s). 
S E l  

Here we call the functions p.'s axis singular valuefunctions. 
The axis singular value functions are uniquely determined 
whereas the singular value functions q's in Theorem 2 are not 
unique [5]. The relationship between those two functions will 
be clarified in the following section. Furthermore, it is noted 
that Theorem 3 gives an input-output characterization of the 
Hankel operator without using the state variable. 

Example 2 (continued) Consider the state space system in the 
form of ( I )  which is in input-normal form, as given in Example 
1. In order to obtain the curves ( i (s) 's ,  we have to compute 
the solution of 

5% 

O = d e t ( 4 )  
s2 = 2L,(z) = z:+x',. 

Here the first equation follows from the fact that aL, /ax is 
parallel to aL,/ax, i.e. (14). These equations have two solu- 
tions parameterized by s: 
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The pi (s ) ’s  can be obtained by a direct computation: 

Note that both functions &(s)’s and pi(s) ’s  are defined for all 
s E Iw. We can easily check that the X i ( s ) ’ s  given by (15) 
satisfy the condition (14). Furthermore it can he observed that 

= m a x { m ( s ) , ~ ~ ( - ~ ) I  

holds for all s E W. This implies the equation (13) holds on 
U = W. Therefore it follows that 

3 Input-normavoutput-diagonal realizations 

The previous section gives a new characterization of the non- 
linear extensions of the Hankel singular values, namely the 
axis singular value functions pt (s) ’s  in Theorem 3. The cor- 
responding coordinates &‘s are expected to play the role of 
the input-normal coordinates. The next theorem derives a pro- 
cedure to obtain the input-normal realization whose (original) 
singular value functions coincide with the axis ones on certain 
subspaces of the state-space. by applying Theorem 3 repet- 
itively. This result relates the axis singular value functions 
p.’s (given in Section 2.2) with the conventional singular value 
functions T,’S (given in Section 2.1). 

Theorem 4 Consider an operator C with the state-space real- 
ization ( I ) .  Suppose that the Hankel operator ‘HZ is Gateau  
differentiable, that there exist sufficiently smootl~ energyfunc- 
tions L,(x) and L,(s). and that the Jacobian linearization 
ofthe system C has nonzero distinct Hankel singular values. 
Then there exists a neighborhood V C I?.“ of 0 and a coor- 
dinate transformation x = @(z) ,  O(0) = 0. converting the 
system into an input-normal form, i.e. there exist n smooth 
functions T, : V --i W satisfiing (2) and (3), such that 

holds for all z E { 1 , 2 , .  . . , n }  on V .  Furthermore 

T t ( 0 , .  . . ,o, i,, 0 , .  . . . O )  = p,”(zt) (18) 

-(O,. 87, . . ,o ,  i, 0,. . . ,O)  = (0 , .  . . ,o,  &,o , .  . . ,O)  aZ dz, 
(19) 

i 
holdsforall i E {1,2,. . . I n). Here the notation (.) denores 
the i-th element of a given vector: In particular: if V = R”, 
then 

llCll% = SUP T I ( Z 1 , 0 ,  ... ,a). 
=,ER 

The proof of this theorem is very long and tedious, and breaks 
down into several steps. Equation (17) is proved by induction, 
where the cases n = 1,n = 2 are studied. Then the case 
n = IC is proved using Theorem 3, which in itself breaks down 
into three steps. Finally the output-diagonal form in the z CO- 
ordinates is proved. The complete proof is omitted for the sake 
of space, and it is available at [3, I]. 

In Theorem 4 the existence of an input-normal form is proved 
so that the property in (17) and those in Theorem 3 along each 
axis (subspace) are achieved simultaneously. That is why the 
functions pi’s are called axis singular value functions. This 
result is a coordinate free characterization of the input-normal 
realization. We illustrate this theorem in the following exam- 
ple. 

Example 3 (continued from Example I)  Consider the state 
space system of the form (1) as given in Examples I and 2 
again. Equation (16) implies that the coordinate transforma- 
tion z = @(z)  is given by 

by which the zi-axis is mapped into the curve C, i.e., 

E l ( S )  = @(%O) 
M S )  = 

The coordinate transformation (20) converts the system vector 
fields and the output mapping into 

The observability and controllability functions in the new co- 
ordinates are given as follows: 
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satisfying (17). (IS) and (19) on V = R". Furthermore, we 
have 

IlClli = SUP i l ( z 1 , O )  =36.  
Z I E R  

which indeed equals the outcome of Example 2 

It can be observed from the above example that the singular 
value functions i ; ' s  in the new procedure have a closer rela- 
tionship to the Hankel nom of the system than the conven- 
tional ones ri's in Example 1. 

4 Model reduction 

This subsection develops the procedure of model reduction 
method based on the balanced truncation [12, 131. However, 
since our realization from Section 3 is an input-normal re- 
alization it is not in "strict" balanced form yet. The input- 
normal, output-diagonal realization essentially measures the 
importance of states such that the control energy is equally 
important for all states, and the output energy (or in other 
words, the observability properties of the output) are differ- 
ent for the different state components. Hence reduction of the 
input-normal form of Section 3, is only based on the output 
energy of the different state components. This corresponds in 
a certain sense with the linear cross Gramian thinking (see e.g. 
[6]), i.e., by noting that the Hankel norm equals 

it can be seen that for the input-normal case, L,(z) contains 
the information that is given by the cross Gramians. The prop- 
erty (17) can be considered of importance for model reduction 
of nonlinear systems. Suppose the assumptions in Theorem 4 
hold and the coordinate transformation I = * ( z )  gives the 
input-normal representation in the sense of Theorem 4, i.e. 
(17) holds. Suppose moreover that 

min{p&d, pk(-zlc)} > m a I p k + l  h + l  ), pk+l (-zlc+l)} 
(22) 

holds for all 2 E V. Then the state variables zl,. . . , zk are 
more important in terms of energy than those ~ k + ~ ,  . . . ,2, due 
to the ordering of the axis singular value functions pi's. 

Divide the coordinates into two parts corresponding to the di- 
vision (22) as 

2 = (z",zb) ER"  
2a := (21, ..., Z k ) € R l c  
2 b  ._ .- (Zk+l,...,z")ER"-k 

Moreover, divide the system E into two subsystems accord- 
ingly as follows: 

(23) 
i" = f " ( z " , o ) + g y 2 ~ , 0 ) 1 1 a  

Then we obtain the following properties. 

Lemma 1 Consider the sysrem C in ( I )  and rhe divided sys- 
rems (23 )  and (24) .  Suppose the assumptions in Theorem 
4 hold. Then rhe controllability and observabiliry funcrions 
L:(zD), L:(z"). L,!(zb) and L:(zb)  oftliesystems C" a n d C b  
sarisb 

Proof: 
bility and Observability functions satisfy 

It follows from Theorems I and 4 that the controlla- 

Then, by (17), we obtain 

Hence, substituting z = ( z " ,  0) for (29) yields 

These relations prove (25) and (26) again by Theorem 1. 
Equations (27) and (28) can be proved in the same way and 
this completes the proof. rn 

Lemma I implies the following preservation property in the 
model reduction procedure which is a natural generalization 
of the linear case results in (121. 

Theorem 5 Consider the sysrem C in (1)  and rhe divided sys- 
rems (23)  and (24).  Suppose the assumptions in Theorem 4 
hold. Then rhe reduced systems C" and Cb are in the input- 
normalfonn wirh the properties (1 7). and 

p:(Zp) = pi(.;) i € { 1 , 2 ,  . . . ,  k} (30) 
p i ( z i )  b b  pi+r(+P) i € { l , Z ,  ..., n - k }  (31) 
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hold with pp s and pp 's the singular value functions of the sys- 
tems E" and Cb, respectively. In particular: ifv = Ut". then 

/lC"llH = l lC l lH.  (32) 

Proof: The fact that C" and Cb are again in the input-normal 
form is obvious because of 

which is obtained from Lemma 1. Also the equations (30)- 
(32) follow straightforwardly from Lemma 1. This completes 
the proof. rn 

The model reduction of C into CD (and Cb)  is uniquely de- 
termined (coordinate free), although the input-normal coordi- 
nates z = a-'(.) are not unique. On the other hand, the 
model reduction method based on the conventional model re- 
duction procedure [I31 is coordinate dependent. 

Example 4 (continued from Example 3) Consider again the 
state-space system (211, which already has input-normal form, 
obtained in Example 3. According to the above model reduc- 
tion procedure, one obtains 

f"(2") + g=(Za)21 { y = = h"(2") 

with 

f"(2") = -92"- (2")5  

g"(2") = ( JW, 0 ) 

The observability and controllability functions of the reduced 
system E" are given as follows: 

1 
2 L:(z") = - ( 2 " ) 2  

Furthermore, .the square of the Hankel norm of the reduced 
system E" can be computed as 

= 36 = llCl/$. 

which indeed equals that of the original C. Thus the Hankel 
norm is preserved. 

5 Conclusion 

This paper has provided a new input-normalloutput-diagonal 
realization and model reduction procedure for nonlinear sys- 
tems based on the differential eigenstructure of Hankel opera- 
tors. The relationship between the two different characteriza- 
tions of singular value functions has been clarified and, con- 
sequently, the new input-normal realization has been identi- 
fied. More precisely, the existence of an input-normal realiza- 
tion has been proved whose singular value functions coincide 
with the axis singular value functions in certain subspaces of 
the state space. We have also performed the model reduction 
based on this realization. Furthermore numerical examples 
have demonstrated the effectiveness of the proposed method. 
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This example exhibits the effectiveness of the new charac- 
terization of input-normal realization and model reduction 
method based on it. 
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