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ABSTRACT

An area based counterpart of the binary structural opening
spectra is developed. It is shown that these area opening and
closing spectra can be computed using an adaptation of Tar-
jan’s union-find algorithm. These spectra provide rotation,
translation, and scale invariant pattern vectors for texture
analysis.

1. INTRODUCTION

Multiscale feature extraction from textures or images can
be done by means of size distributions or granulometries
[1, 2]. These are ordered sets of morphological openings
which remove details below given scales. Usually the scale
is defined by the width of features, though other measures
are possible [3, 4]. One method to summarize the action
of a size distribution on a particular image in a single, 1-
D array is called a pattern spectrum [5, 6]. In the binary
case, this summarizes how many foreground pixels remain
as a function of the scale of the openings used. Figure 1
shows an example of a binary image and two morphological
pattern spectra. Image details are present at those scales
where the slope of the spectrum is steep.

Fast algorithms for the binary case are available [7, 8],
but computing patterns spectra in the grey scale case can
be time consuming, because many types of granulometries
require repeated openings and summing of grey levels to
compute the spectrum. Though computationally efficient
algorithms exist for certain openings with particular classes
of structuring elements [9], granulometries using Euclidean
discs to achieve rotation invariance of the method are still
costly. Breen and Jones [4] have shown that spectra based
on attribute openings, which are connected set filters can
be computed efficiently using a pixel-heap based algorithm.
Attribute openings are extensions of area operators which
form a comparatively new class of image processing opera-
tors [3]. They filter out or highlight detail based on the area,
rather than the width of an object. In the case of attribute
openings, the filters can be based on a far larger class of
attributes of each connected component. Rotation invariant
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Fig. 1. A binary image and two morphological pattern spec-
tra derived from granulometries based on structural open-
ing by discs of increasing sizes (solid), and openings-by-
reconstruction with similar structuring elements (dashed).

attribute openings are easily designed, so rotation invariant
spectra can be obtained quickly. In this paper we propose a
new algorithm, based on Tarjan’s union-find method. This
method is a variant of earlier work on area and attribute
openings [10, 11]. We will focus on the case of area spectra,
though the method is easily extended to other attributes.

In this paper we first describe opening and closing spec-
tra, and the definitions of area openings and closings. We
then go on to define area pattern spectra, and describe the
new algorithm for their computation. Finally we give some
experimental results of computational efficiency.

2. THEORY

2.1. Opening and Closing Pattern Spectra

Let binary images X and Y be defined as the set of fore-
ground pixels, i.e., a subset of the image domain M ⊂ R

n

(usually n = 2). Grey scale images are a mapping from M
to R. A size distribution or granulometry is a set of opera-
tors {αr} with r from some ordered set Λ (usually Λ ⊂ R
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or Z), with the following three properties

αr(X) ⊆X (1)

X ⊆ Y ⇒ αr(X) ⊆ αr(Y ) (2)

αr(αs(X)) =αmax(r,s)(X), (3)

in the binary case, and in the grey scale case

αr(f) ≤f (4)

f ≤ g ⇒ αr(f) ≤ αr(g) (5)

αr(αs(f)) =αmax(r,s)(f), (6)

for all r, s ∈ Λ. Since (3) and (6) imply idempotence, it
can be seen that size distributions are openings. The pattern
spectrum Sα

X obtained by applying a size distribution αr to
binary image X is defined as

Sα
X(r) = A(αr(X)). (7)

where A(X) is a function denoting the Lesbesgue measure
of set X in R

n, or the number of pixels in Z
n. In the grey-

scale case the spectrum Sα
f (r) of image f is just the integral

of the grey level of αr(f) over the image domain, or in the
discrete case the sum:

Sα
f (r) =

∑

x∈M

(αr(f))(x). (8)

2.2. Area Openings and Closings

The theory of area operators is given only briefly here. For a
more thorough discussion the reader is referred to [3]. Here
we will first discuss binary area openings and closings, and
then the extension to the grey scale case. Binary area open-
ings are based on binary connected openings. Let the set
X ⊆ M denote a binary image with domain M. The bi-
nary connected opening Γx(X) of X at point x ∈ M yields
the connected component of X containing x if x ∈ X , and
∅ otherwise. Thus Γx extracts the connected component to
which x belongs, discarding all others.

The binary area opening can now be defined as:

Definition 1 Let X ⊆ M and r ≥ 0. The binary area
opening of X with scale parameter r is given by

Γa
r(X) = {x ∈ X|A(Γx(X)) ≥ r} (9)

The binary area closing can be defined by duality:

Φa
r(X) = [Γa

r(Xc)]c (10)

The definition of an area opening of a grey scale image
f is most easily derived from binary images Th(f) obtained
by thresholding f at h, which can be defined as:

Th(f) = {x ∈ M|f(x) ≥ h} (11)
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Fig. 2. An example of area pattern spectra: (top): images
of diatoms showing fine internal details; (bottom): corre-
sponding pattern spectra obtained from series of area open-
ings with increasing size criterion. Axes have been normal-
ized

Definition 2 The area opening for a mapping f : M −→ R

is given by:

(γa
r (f))(x) = sup{h|x ∈ Γa

r(Th(f))}. (12)

The grey scale area closing φa
r is defined as:

(φa
r(f))(x) = inf{h|x ∈ Φa

r((Th(f))c)}, (13)

The interpretation of these definitions is that the area
opening of an image assigns each point the highest thresh-
old at which it still belongs to a connected foreground com-
ponent of area r or larger. The area closing assigns each
point the lowest threshold at which it belongs to a connected
background component of area r or larger.

Vincent [3] has shown that area openings and closings
are size distributions and anti-size distributions respectively.
Therefore, area opening and closing spectra can be defined
as in (8). Fig. 2 shows an example of such spectra.

3. COMPUTING AREA PATTERN SPECTRA

Let Ns be the number of scales we wish to use for our pat-
tern spectra. A naive implementation would compute Ns

openings and compute the sum of grey levels for each open-
ing. This is very costly for even modest values of Ns. We
therefore propose a new algorithm, which processes the im-
age just once, rather than O(Ns) times.

Before going into the details of the algorithm, we first
define a flat zone Lh at level h of a grey scale image f as a
connected component of the set of pixels {p ∈ M|f(p) =
h}. A regional maximum Mh at level h is a flat zone no
members of which have neighbors larger than h. A peak
component Ph at level h is a connected component of Th(f).
At each level h there may be several such sets, which will
be indexed as Li

h, P j
h and Mk

h , respectively, with i, j, and k
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from some index set. It can be seen that any regional max-
imum Mk

h is also a peak component, but the reverse is not
true. Finally, let Λ be the set of values the attribute (in this
case area) of the peak components can assume for a given
image size, and B be a mapping from Λ to [0..Ns), which
is the index range of the spectrum, stored in array spec.

The idea is to process the image in grey scale order, fill-
ing peak components at all grey levels starting at the re-
gional maxima. Each time we move to a new grey level h
we may find some P j

h′ at grey level h′ > h which must be
merged with some Lk

h. In this case, spec[B(A(P k
h′))] must

be incremented by (h′−h)A(P k
h′), because an area opening

of r = A(P k
h′) would remove this quantity from the sum of

grey levels at that point in the image.
To make this work we need an efficient way to keep

track of the peak components, which are of course disjoint
sets. Tarjan [12] presents the union-find algorithm which
provides a general method for keeping track of disjoint sets.
It allows performing set-union operations on sets which are
in some way equivalent, while ensuring that the end prod-
uct of such a union is disjoint from any other set. Tarjan
uses tree structures to represent sets. Each non-root node in
a tree points to its parent, while the root is flagged in some
way. Two objects x and y are members of the same set if
and only if x and y are nodes of the same tree, which is
equivalent to saying that they share the same root. There
are three important operations.

• Makeset(x): Create a new singleton set {x}.

• FindRoot(x): Return the root element of the set
containing x.

• Union(x,y): Compute the union of the two sets
containing x and y.

Each of the sets is represented as a tree, with each pixel
containing a pointer to its parent pixel. To store the trees
for the entire image, we use an integer array parent of the
same size as the image I (i.e. N ), in which parent[p] is
the parent of pixel p. Pixels are stored as width*y+x,with
x and y the pixel’s x and y coordinates, and width the im-
age width. If a pixel is a root of a tree, i.e. it has no par-
ent, we flag this by setting parent[p] = -area, with
area the number of pixels in the set. In the following dis-
cussion pixel p refers to the integer representation of the
coordinates, whereas I[p] is the pixel’s grey level.

Finally, we need to ensure that for a peak component
Ph at level h, its root element r has a grey level I[r]= h.
Therefore, we always make the last pixel processed the root
of the new tree. This is done by radix-sorting the pixels, and
storing the coordinates in an array S of length N . Pixels of
the same grey level are processed in scan line order.

As can be seen in Figure 3, The Union procedure per-
forms the following task: Find the root r of neighbor n;

void MakeSet ( int x )
{ parent[x] = -1;
}

void Link ( int x, int y )
{ parent[y] = parent[y] + parent[x];

parent[x] = y;
}

int FindRoot ( int x )
{ if ( parent[x] >=0 )

{ parent[x] = FindRoot( parent[x] );
return parent[x];

}
else return x;

}

void Union ( int n, int p )
{ int r=FindRoot(n);

if ( r != p )
{ if ( I[p]<>I[r]

{ spec[B(-parent[r])] -=
(I[r]-I[p]) * parent[r];

}
Link( r, p );

}
}

Fig. 3. The basic operations for area spectra. The root el-
ement now stores the area of the component as a negative
number.

FindRoot(p) is not necessary because the current pixel
p is always a root, because if linking has occurred it has
become the root of the resulting tree, and otherwise it is a
singleton. If the root r�=p we must Link them. Before
linking we check whether I[r]�= I[p], and if so, update
the appropriate bin in spec.

The complete algorithm is shown in Fig. 4. The spec
array is first set zero, after which the pixels are processed
in reverse grey level order. For each pixel p a union with
those neighbours which have already been processed is per-
formed. After this stage spec[i] is the amount subtracted
from the sum of grey levels at the ith scale, but not at lower
scales. The desired spectral value Si is given by

Si = Si−1 − spec[i] if i > 0 (14)

For i = 0 the correct value is the sum of grey levels minus
spec[0]. This is carried out by the last loop in Fig. 4.
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/* array S contains sorted pixel list */
for (i=0;i<Ns;i++)

spec[i]=0;
greysum=0;
for (p=0; p<Length(S); p++)

{
pix = S[p];
greysum += I[p];
MakeSet(pix);
for all neighbors nb of pix do

if ((I[pix] < I[nb]) ||
((I[pix] == I[nb]) && (nb<pix)))

Union(nb,pix);
}

for (i=0;i<Ns;i++)
{ spec[i] = greysum - spec[i];

greysum = spec[i];
}

Fig. 4. Pseudo-code showing how to compute an area open-
ing pattern spectrum using the operations of Fig. 3.

Table 1. Timing results of different algorithms (in seconds)

Method min median max
naive,Ns = 256 23.0 30.7 33.3

pixel-heap 0.14 0.68 1.42
union-find 0.092 0.124 0.127

4. RESULTS

Three algorithms were implemented in C: (i) the naive im-
plementation using fast area openings by union-find with
Ns = 256 (ii) the direct approach using the pixel-heap
method (for details see [4]), and (iii) the direct implementa-
tion using union-find. All implementation were optimized
manually for maximum performance. Timings were per-
formed on 10 natural images of 256 × 256 pixels. The
results are shown in Table 1. As expected, the direct ap-
proaches outperform the naive by a factor approaching Ns.
The union-find approach outperforms the pixel-heap method
by a factor of about 5, consistent with earlier findings on
attribute openings [11]. Similar results were obtained on
images of 768 × 1024 (data not shown).

5. DISCUSSION

We have shown that the new algorithm is up to ten times
faster than the pixel-heap method on natural images. The
complexity of the algorithm is identical to that of a single
area or attribute opening using union-find, which was shown
to be O(N log N), whereas that of the pixel-heap method is

O(N2 log N), with N the number of pixels [10, 11]. This
method can readily be extended to other attribute operators,
in the same way as in [11] for openings and closings.
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