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Summary. The problemof usingP processes towrite a given
value to all positions of a shared array of sizeN is called the
Write-All problem. We present and analyze an asynchronous
algorithmwithwork complexityO(N ·P log( x+1

x )), wherex =
N1/ log(P ) (assumingN = xk andP = 2k). Our algorithm is
a generalization of the naive two-processor algorithm where
the two processes each start at one side of the array and walk
towards each other until they collide.

Keywords: Write-all problem–Wait-free –Distributed algo-
rithms –Work complexity – PRAM–Dynamic load balancing

1 Introduction

TheWrite-Allproblem is defined as follows. UseP processes
(or processors) towrite agivenvalue toall positionsof a shared
array of sizeN . Without loss of generality, we shall assume
that the array is an integer array and that 1 is the value to be
written to all its positions.

If the processes are reliable and run equally fast, it is easy
to come up with straightforward, optimal solutions for this
problem. The situation is quite different, however, if processes
can be faulty or run at widely varying speeds while at least
one process remains active. Kedem et al. [10] have shown that
under these circumstances anN + Ω(P logN) lower bound
exists on the amount of work processes must carry out when
processes can fail. This means that even if all processes run
fully in parallel and no process is actually failing, at least
Ω(logN) time is required to set the array.

The original motivation for theWrite-All problem comes
from [7]. Here it was shown that any program on aP process
synchronous PRAM (Parallel RandomAccess Machine) run-
ning in timeT can be executed on any unreliable PRAM with
work complexityW (P ).T whereW (P ) is the work com-
plexity of any algorithm solving theWrite-Allproblem of size
P . In [9] an overview is given of the algorithms and PRAM
simulations that have been developed so far.

Our motivation is quite different. It comes from the design
of wait-free or asynchronous algorithms [4–6], to obtain fast,

reliable programs for general purpose parallel computers with
typically a few dozen processes that run under widely varying
loads.

Acommonproblemonsuchmachines is to carry out a task,
consisting ofN independent subtasks, withP processes, as
quickly as possible. Such tasks are, for instance, copying an
array, searching an unordered table, and applying a function to
all elements of a matrix. We encountered this problem when
we had to find a parallel solution to refresh a hashtable by
copying all valid elements to a new array [4].

If we abstract from the nature of the subtasks, the problem
of executingN independent tasks is adequately characterized
by theWrite-All problem.

In this paper we present a rather straightforward algorithm
to solve theWrite-Allproblemonan asynchronousPRAM, i.e.
amachine onwhich the processes can be stopped and restarted
atwill.Thismeans that it is also suitable for all other faultmod-
els as mentioned in Kanellakis and Shvartsman, page 13 [9].
Using different terminology we can say that our algorithm is
wait-free, which means that each non-faulty process will be
able to finish the whole task, within a predetermined amount
of steps, independent of the actions (or failures) of other pro-
cesses.

For a shared array of sizeN andP processes, our al-
gorithm has to carry outO(N P log( x+1

x )) amount of work
wherex = N

1
log P . The complexity of parallel algorithms

is generally characterized by the total amount of steps that
all processes must execute, which is called thework of the
algorithm, instead of the execution time, which under ideal
circumstances, can be obtained by dividing the work by the
numberof availableprocesses. It shouldbenoted that theworst
case behaviour leading to the upper boundO(N P log( x+1

x ))
can only be achieved under a rare lock step scenario of the pro-
cesses. So, we expect average complexity to be much better,
which has been confirmed by experiment. In order to under-
stand the asymptotic behaviour of the boundO(N P log( x+1

x ))
it is interesting to look at the role ofx. The valuex roughly
denotes the ratio between the length of the array (N ) and the
number of processes (P ). In the limit case, wherex goes to
infinity, the work complexity converges toO(N). This means
that if there are only few processes, relative to the length of
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the array, complexity of our algorithm becomes linear in the
length of the array.

There are a number of existing solutions to theWrite-All
problem (see [9] for an excellent overview). We compare our
algorithm to the algorithmsX, X ′, AW, AW T andY that
are all suitable for asynchronous PRAMs, ignoring the solu-
tions suitable for more restricted fault models. From certain
perspectives our algorithm improves upon all of these.

Algorithm X is the first asynchronous algorithm for the
Write-All problem [3]. It is designed for the situation where
P ≥ N and hasworkO(N P log( 3

2 )). In [9] a generalisation of
X, calledX ′ is presented for the caseP ≤ N which has the
same upper boundO(N P log( 3

2 )) for the amount of work. For
N = P thealgorithmpresentedherehas thesameupperbound
asX ′. ForP < N our algorithm is an improvement overX ′,
since forP < N we havex > 2 and thenO(N P log( x+1

x )) is
better thanO(N P log( 3

2 )).
In [1] two particularly clever algorithms are proposed,

calledAW andAW T .
Algorithm AW requires workO(P 2 + N logP ). When

P ≤ √
N this reduces toO(N logN) which is particularly

good. However, this bound can only be achieved assuming
that a set of permutations of1 . . . P with a specific property
is given, which requires exponential time to calculate. Such a
set can be generated at random, but then the result ‘only’holds
with high probability. In order to overcome this problem al-
gorithmY has been proposed [8]. AlgorithmY is conjectured
to have (non probabilistic) work upper boundO(N logN),
which is confirmed by experiments, but which is unproven.

Algorithm AW T needs workO(q N P ε) where ε =
logq log qc for some constantq that can be freely chosen, and a
constantc which, according to the proof in [9], can be chosen
to be2. As logq log q2 goes to0 whenq goes to infinity, algo-
rithm AW T has superior complexity. However, the constant
amount of work that must be done in the preprocessing phase
(which is independent ofN andP ) is exponential inq (see
[1]). In order to outperform algorithmX ′ for anyN andP ,
it must be the case thatε < log( 3

2 ). From this it follows that
q must be larger than80. Therefore, to outperform our algo-
rithm,qmust be choseneven larger. In the setting forwhichwe
developed our algorithm, we generally haveP <

√
N (and

thusx > 4), so one must chooseε < log 5
4 to make algorithm

AW T perform better than our algorithm. This means thatq
needs to be larger than105. This is the reason why we ex-
pect that our algorithm performs much better under practical
circumstances.

The present paper has the following structure. In Sect.2
we present the algorithm. In Sect.3 we prove its correctness
and show space and time bounds. Section 4 contains some
considerations on using a non-uniform tree as the shared data
structure. Finally, Sect.5 is reserved for conclusions and fur-
ther considerations.

2 A collision-based algorithm

2.1 Basic case

Although the asynchronousWrite-All problem in its general
setting is far from trivial, the case that there are only two
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Fig. 1. Initial configuration

Fig. 2.Possible paths of the processes

processes (P = 2), allows for a very intuitive and optimal
solution. This algorithm solves the problem for any value of
N inN+o(N) steps. One process starts at the left of the array
and walks to the right, in the meanwhile setting the values of
the array elements encountered to 1. The other process does
the same from right to left. If the two processes collide, the
whole array is processed and the processes can stop. In the
worst case, one element of the array is processed twice. We
call this algorithm theBasic Collisionalgorithm.

In [3] an extension of this algorithm is described, which
works with three processes. It is called algorithmT. Two pro-
cesses have the same behaviour as described above, but the
third process behaves differently. It starts in the middle of the
array and fills the array alternately to the left and to the right.
If the first two processes collide, it means that the whole array
is processed. If, e.g., the first and the third process collide, it
means that the left part of the array is processed. Therefore
they move to the segment of the array that is not processed
yet. The first process starts at the left of this segment, the
third process starts again in the middle of this segment, and
the second process is still busy filling the segment from the
right. This procedure repeats until the array is completely pro-
cessed. This algorithm is also optimal and the work of this
algorithm, measured in terms of actual elements processed, is
N + o(N). Algorithm T does not appear to be generalizable
to larger numbers of processes.

2.2 Generalized case

Our algorithm generalizes theBasic Collisionalgorithm in a
different way. We will call it theGeneralized Collisionalgo-
rithm. It is best explained by looking at a simple example with
four processes (P = 4). We chooseN = 25 in our example.

The processes operate in pairs. Every pair of processes ex-
ecutes theBasic Collisionalgorithm on successive segments
of the array. Each segment has length 5, so there are 5 seg-
ments. The four processes start at the locations indicated in
Fig.1. The arrows indicate the direction in which each pro-
cess traverses the segment.

Every time that a segment of the array has been processed
by a pair, operation continues at the next segment. The first
process of a pair to finish a segment can directly continue with
the next segment, without having to wait for the other process.
In this way, the pairs walk towards each other through the
array in steps of length 5 until they collide. A typical path
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of the four processes in our example is shown in Fig.2. This
figure shows just one possible path, in which all processes
roughly operate at the same speed. The algorithm, however,
is completely robust with respect to process delays, failures
and restarts. This is because every process potentially visits
all array elements. As long as one process survives, the whole
array will be processed.

From a higher point of view, the four processes also ex-
ecute theBasic Collisionalgorithm where the grain size of
the work is 5. To see this, we have to consider every pair as a
single aggregated process and every segment of length 5 as a
single aggregated array element. A collision now takes place
at a complete segment, rather than at a single array element.
This explains why the middle segment in Fig.2 is processed
twice.

It is now clear how to generalize this example if we double
the numbers of processes and assume 125 array elements.We
simply add one level to the hierarchy and have clusters of four
processes operate on segments of length 25, until the clusters
collide.

This implies that our algorithm works for any number of
processes which is a power of two, soP = 2k for somek ≥ 1.
Furthermore, we have that the length of the array is the length
of a basic segment to the same power, soN = xk for some
x ≥ 2. In the above examplewehave chosenk = 2andx = 5.

In Fig.3 the generalization of theBasic Collisionalgo-
rithm is illustrated in a cube which has to be filled with 1’s
by 8 processes. The picture shows pairs of processes, clusters
of 2 processes, and clusters of 4 processes racing each other.
In this examplek = 3 (the dimension of the cube) so there
are 8 processes, and the length of an edge of the cube isx, so
that there arex3 cells to be filled. This is the biggest example
that we can easily visualize in this way. An example with 16
processes would require a 4-dimensional figure.

2.3 Data structures

Additional data structures are needed in order to enable the
processes to decide which array element should be processed
next. First of all, every process has a process identifier (pid)
consisting of a bit string of lengthk. The set of all process
identifiers is calledPID.We use the functionshead andtail to
return the first element of a bit string and the bit string with the
first element deleted. The bit strings will be used to direct the
processes to different parts of the array. There is a nice relation
between the pids of the processes and the initial position of the
processes in the cube from Fig.3. If we consider the general
Boolean k-dimensional hypercube, the pids correspond to the
processes’s initial co-ordinates.

Next, we assume that the processes share a tree of depth
k. According to the above explanation, the tree should have a
uniform fan-outx. Thismeans that there are exactlyxk leaves,
which correspondwith the elements of the array. However, we
will formulate our algorithm in such a way that it also works
for trees with a non-uniform fan-out, for reasons explained in
Sect.4.

Every leafl has an attributel.value : int that must be set
to 1. The relation between the tree and the cube from Fig.3
is straightforward. Each level in the tree corresponds with a
dimension, and a cell(c0, c1, c2) of the cube corresponds with

the leaf that we arrive at if we travel down the tree first taking
the c0-th branch, then thec1-th branch, and finally thec2-th
branch.

The internal nodes of the tree maintain information on
how far the corresponding subtree has been processed already.
Every internal noden has the following three attributes.

• n.fan : int
This constant denotes the number of children of the node.

• n.nl : 0 .. n.fan, initially 0
This variable denotes the number of child nodes that have
already been processed, from left to right.

• n.nr : 0 .. n.fan, initially 0
This variable denotes the number of child nodes that have
already been processed, from right to left.

Note that the subtree of noden has been processed com-
pletely if n.nl + n.nr ≥ n.fan.

The root of the tree is denoted byroot and the predicate
is leaf determines if a node is a leaf. Similar to algorithm
T in [3], we make use of an atomiccompare-and-swap-like
instruction (see e.g. [5]). In the algorithmbelow this is denoted
by placing angular brackets around the statement (‘〈’ and ‘〉’).

2.4 The algorithm

All processes operate in parallel and perform the same recur-
sive proceduretraversewith as the first argument the process
identifier and the second argument the root of the tree. The
recursive calls have as arguments smaller bit strings and other
nodes of the tree. We use notation from [9] to express this.

forall pid in PID parbegin
traverse(pid,root)

parend

Proceduretraverseis defined below.

procedure traverse(bs,node)
var i: 0 .. node.fan;
begin
if is leaf(node) then
node.value:= 1
else
if head(bs) = 0 then
i := node.nl;
while i + node.nr < node.fando
traverse(tail(bs),child(node,i));
〈 if node.nl= i then node.nl:= i + 1 fi 〉;
i := node.nl

od
else
i := node.nr;
while node.nl + i < node.fando
traverse(tail(bs),child(node,node.fan− 1 − i));
〈 if node.nr= i then node.nr:= i + 1 fi 〉;
i := node.nr

od
fi
fi

end
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Fig. 3.Generalization of the collision principle illustrated in a cube

In the base case where the node is a leaf, the procedure
writes the intended value in the array. Otherwise, the proce-
dure treats the children of the node in a repetition from left
to right or from right to left. The choice between starting left
or right is irrelevant for correctness. For the sake of the com-
plexity calculations, we let the choice depend on the head of
the first argumentbs, which is a suffix of the process’spid.
The recursive calls have the tail of the bit stringbs as first
argument, so that the processes start their actions at different
points in the array. Private variablei is introduced to allow
modification of the shared variablesnode.nlandnode.nrby
other processes.

It is worthwhile to notice that in the case thatN = P the
above algorithm is equal to algorithmX (see [3]). Since in this
case we havex = 2 and the tree becomes a binary tree, which
is traversed in exactly the same way as in algorithmX. The
work calculations from Sect.3.3 will show that in this case
the upper bounds of theGeneralized Collisionalgorithm and
algorithmX are also identical.

3 Analysis of the algorithm

3.1 Correctness

The proof of correctness of the distributed algorithm consists
of two steps. First, we prove partial correctness (i.e. if one of
the processes successfully finishes, the whole tree has been
processed) and, next, we prove termination (at least one pro-
cess finishes successfully). If all leaves of a (sub)tree have
been set to 1, we say that the (sub)tree has been processed.

Lemma 1. TheGeneralized Collisionalgorithm is partially
correct.

Proof. Assuming that at least one of the processes finishes
successfully, we have to prove that the whole tree has been
processed. This follows immediately from the following two
properties.

1. For every internal noden of the shared tree, it invariably
holds thatn.nl subtrees of noden from left to right have
been processed. Likewisen.nr subtrees have been pro-
cessed from right to left.

2. If a calltraverse(σ,n)(for some bit stringσ and some node
n) finishes successfully, the subtree rooted in noden has
been processed.

These two properties are proven with simultaneous induction
on the depth of noden. The base case, where noden is a leaf
is trivial. For the inductive case, we suppose that noden is an
internal node.

1. The value of shared variablen.nl is only incremented from
i to i + 1 if proceduretraversehas finished on theith

subtree of noden. By induction we then have that this
subtree has been processed, which certifies this invariant.
The variablen.nr is treated similarly.

2. If a calltraverse(σ,n)finishes, oneof theguardsi+n.nr <
n.fan andn.nl + i < n.fan must be false. Notice that
in the first case we havei ≤ n.nl and in the second
casei ≤ n.nr. This is due to the fact that the values
of n.nr and n.nl are non-decreasing. Therefore, if the
call traverse(σ,n) finishes we haven.nl + n.nr ≥ n.fan.
Using the induction hypothesis, we can conclude that all
subtrees of noden are processed, so the tree rooted inn is
processed. 
�
Next, we will prove termination of the algorithm.

Lemma 2. TheGeneralized Collisionalgorithm terminates,
i.e. at least one of the processes finishes successfully.

Proof. For this we formulate the following termination func-
tion: ∑

n∈internalnodes

n.nl + n.nr

The fact that this is a proper termination function follows
from the following observations.

First, the function isbounded.Since for every internal node
n the values ofn.nlandn.nrare bounded by the constantn.fan,
the function is bounded by2N2 (which is not a tight bound,
see Sect.3.3). Second, recall that the fault model implies that
all but one process may fail. Since there are no blocking state-
ments, the surviving process will continually invoke calls to
proceduretraverse, as long as it is not finished.After every call
of this procedure (to, say, noden), the value ofn.nl+n.nr is
strictly larger than before this call. Namely, it is incremented
with 1 by the calling process, or it is incremented with at least
1 by one or more other processes. 
�

In conclusion, we have that at least one call of
traverse(pid,root)finishes successfully (termination) and that
this implies that the complete tree rooted inroot has been
processed.

Corollary 1. TheGeneralized Collisionalgorithm solves the
asynchronousWrite-All problem.

3.2 Space usage

We will show that the processes have only moderate space
requirements.

Lemma 3. The space complexity of theGeneralizedCollision
algorithm isO(N logN + P log2 N).

Proof. The shared data structure consists of the given array
of N bits, together with the data at the internal nodes of the
tree (see e.g. [9] for a description of how to represent a tree
in a heap without overhead). There are less thanN internal
nodes.Every internal nodenholds two shared variables of size
log n.fan. So the shared memory has size ofO(N logN).

Every process needs a private data structure with space for
k stack frames, since the recursiondepth isk. Each stack frame
holds a local variable of sizelog n.fanand two parameters of
sizesk and logN . Sincek is of orderlogN , each process
needs memory of orderlog2 N . 
�
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3.3 Work complexity

As was mentioned before, the work complexity of a parallel
algorithm is the worst case total amount of work performed
by the processes involved. With ‘total amount of work’ one
generally means the number of instructions executed by all
processes.Wemeasure the work by counting the total number
of calls of proceduretraversein a worst case scenario. The
program text clearly shows that the number of instructions ex-
ecuted per call of traverse is bounded by a constant. Therefore,
the total number of procedure calls is an appropriate estimate
here.

In the calculations below we will assume that the number
of processes is2k and that the length of the array isxk for
somek ≥ 1 andx ≥ 2. This allows for the construction of a
tree with a uniform fan-out. We will briefly consider the case
of a tree with non-uniform fan-out in Sect.4.

Because of the recursive structure of the input of the al-
gorithm, the shared tree with fan-outx, we define the work
inductively, i.e. express the work associated with a tree of
heighti in terms of the work associated with its subtrees of
height i − 1. Note, that the number of processes, which of
course plays an important role in determining the work, is2i

(given a tree of heighti). In our first inductive definition of
work, however, we will decouple the number of processes and
the height of the input tree, because, as we will see, subtrees
of the input tree can be overloaded with processes (andwill
be overloaded in a worst case scenario).

We introduceWi,j as an upper bound on the work on a
tree of heighti ≤ j for a subsystem of2j processes withpids
uniformly distributed fori. Here, we use the definition that a
subsystem of2j processes haspidsuniformly distributed for
i if every bit sequence of lengthi is a suffix of thepids of
precisely2j−i processes of the subsystem.

Lemma 4. The work estimatesWi,j satisfy the following re-
cursive equations.

W0,j = 2j (1)

Wi+1,j = 2j + (x − 1)Wi,j−1 + Wi,j (2)

Proof. Equation (1) is justified by the observation that, when
2j processes start to work on a tree of height0, a single leaf,
they will all call proceduretraverseonce to set the array item
associated with the leaf to1, resulting in a work of2j .

Equation (2) is proved in the following way (see also
Fig.4). When2j processes withpids uniformly distributed
for i+1 treat a tree of heighti+1, all of them first have to call
proceduretraverseat the root of the subtree. This accounts for
the summand2j in the right-hand side of (2). Next, the pro-
cesses split up in two groups of processes, according to the bit
at positioni+ 1 from the end of theirpids. Since thepidsare
uniformly distributed overi + 1, both groups have size2j−1

and havepidsuniformly distributed overi. One group treats
the subtrees from left to right and the other group vice versa.
The collision principle implies that the two groups interfere
in at most one of thex subtrees, the one where they collide
(the shaded sub-tree in Fig.4). The work associated with the
subtrees can therefore be split inx−1 times the work of2j−1

processes on a tree of heighti (the summand(x− 1)Wi,j−1),
and the work of2j processes on a single tree of heighti (the
summandWi,j). 
�

Fig. 4.Worst case distribution of processes over subtrees

In order to be able to simplify the recurrence relation from
Lemma 4, we need the following property which states that
doubling the number of processes doubles the work:

Lemma 5. For j > i, we have

2 · Wi,j−1 = Wi,j (3)

Proof. We prove this by induction oni. For i = 0 we have
2 · W0,j−1 = 2 · 2j−1 = 2j = W0,j . Assuming that the
property holds fori, we derive fori + 1: 2 · Wi+1,j−1 =
2 · (2j−1 + (x − 1) · Wi,j−2 + Wi,j−1) = 2j + (x − 1) · 2 ·
Wi,j−2 +2 ·Wi,j−1 = 2j +(x−1)Wi,j−1 +Wi,j = Wi+1,j .


�
The above property can also be explained in terms ofpids.

When the number of processes is doubled, they will have to
sharepids (becausej > i). Each process will have a dop-
pelgänger that follows the exact same route through the tree.
This imitative behaviour explains the doubling of the work.

This leads to the introduction ofwi, which, for i ≥ 0,
denotes the work of2i processes on a tree of heighti, so
wk = Wk,k.

Lemma 6. The work estimateswk satisfy the following re-
cursive equations.

w0 = 1 (4)

wi+1 = 2i+1 + (x + 1)wi (5)

Proof. Because of Lemma 5 we can rewrite the second equa-
tion of the definition ofW as follows:

Wi+1,j = 2j + (x − 1)Wi,j−1 + 2 · Wi,j−1

= 2j + (x + 1)Wi,j−1

The equations now follow easily by settingj = i + 1. 
�
Finally, we calculate an appropriate upper bound forwk.

Theorem 1. TheGeneralized Collisionalgorithm solves the
asynchronousWrite-All problemwith work complexityO(N ·
P log( x+1

x )), wherex = N1/ log(P ).
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Proof. Starting from the equations of Lemma 6, we arrive at
the desired result with straightforward calculations.

wk

= { solve the recurrence relation}
k∑

i=0

2k−i(x + 1)i

= { simple math}
(x + 1)k+1 − 2k+1

x − 1
= { even more simple math}
x + 1
x − 1

(x + 1)k − 2k+1

x − 1

≤
{
x ≥ 2, hence

x + 1
x − 1

≤ 3 and
2k+1

x − 1
> 0

}
3 · (x + 1)k

Hence, we havewk = O((x+1)k). We would like to express
thework in termsofN andP , sowedosomemorecalculations
on (x + 1)k, using the equalitiesN = xk andP = 2k:

(x + 1)k = xk (x + 1)k

xk

= xk

(
x + 1
x

)k

= N ·
(
x + 1
x

)log(P )

= N · P log( x+1
x )


�

4 Non-uniform fan-out

Although we were able to prove correctness of the algorithm
for trees with non-uniform fan-out, we did assume uniform
fan-out for our complexity calculations. This assumption
proved very useful for obtaining a result which can easily be
compared with work calculations for other algorithms.

Nonetheless, we claim that this assumption is not critical
for the performance of our algorithm. Calculations and ex-
perimentation support this claim. Examples show that, strictly
speaking, an optimal work complexity is almost never
achieved with a uniform fan-out. In almost all cases the work
complexity can be slightly improved by rebalancing the tree,
while still keeping it quasi-uniform. By quasi-uniform we
mean that the nodes at the same level of a tree have equal
fan-out.

In the case of quasi-uniform fan-out the work load can be
given as a closed expression that contains sum and product
quantifiers. This goes as follows. Let us assume that every
node at leveli has fan-outxi. The nodes at level 0 are leaves.
So we havex0 = 0. The analysis of Sect.3.3 can be repeated
and then yields instead of formula (5) the recursive equation

wi+1 = 2i+1 + (xi+1 + 1)wi

This implies that the total work load satisfies

wk =
k∑

i=0

2i
k∏

j=i+1

(xj + 1)

We now have tominimize the value ofwk under the constraint∏k
j=1 xj ≥ N for given value ofk. It is not hard to make a

functional program, e.g., in the language Haskell, to solve this
optimization problem for given values ofN andk.

It is even possible to find an approximate solution by an-
alytic means. For that purpose, we define the real functions
f(x) andg(x) with x = (x1, . . . , xk) ∈ IRk by

f(x) =
k∑

i=0

2i
k∏

j=i+1

(xj + 1) , g(x) =
k∏

j=1

xj − N

Weare only interested in vectorsxwith all coordinatesxi > 0
(and preferably natural). So, now we have to minimizef(x)
under the constraintg(x) = 0 and allxi > 0. According
to the method of Lagrange multipliers (see e.g. [2] p. 315),
we have that, if functionf has an extremum atx under the
constraintg(x) = 0, the gradient off at x is a real multiple
of the gradient ofg. In this way, one finds that there is one
optimal vectorx and that it satisfies the recurrence relation

xr = x1

/
1 + 2

r−1∑
i=1

i∏
j=2

2(xj + 1)−1




Note that this formula is independent ofk. It implies that the
numbersxr form a decreasing sequence of positive reals. In
particular, we havex2 = 1

3x1. Of course, this only yields the
optimum if the numbersxi are allowed to be real.

TheHaskell programmentionedaboveshows that forN =
12000 andk = 5, the optimal work load is obtained for the
sequencex with x1 = 16, x2 = 6, andx3 = x4 = x5 = 5
In the general case we see that an optimal work complexity
is obtained if the fan-out for all levels are approximately the
same,except for the fan-out at the level above the leaves,which
should be three times larger.

We expect that in practice rebalancing the tree will yield
at most a constant speed up in performance.

5 Observations and conclusions

We have presented an algorithm for the asynchronousWrite-
All problem. This algorithm is suitable for a multiprocess en-
vironment. It has good performance due to the lack of explicit
synchronization. In particular this is the case when the task of
setting a variable to one is replaced by a more time consum-
ing operation. Moreover, the algorithm is fault tolerant in the
sense that it works correctly even if individual processes can
fail or can stop and resume arbitrarily, assuming that not all
processes die. Finally, our algorithm performs a kind of dy-
namic load balancing. Every process checks in a specific order
all the tasks that must be executed and if it finds one that has
not been performed, it carries it out. Due to the data structures
involved, this can be done with minimal duplication of work.
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This guarantees a distribution of tasks over processes, where
no process will idle when work can be done.

A potential drawback of our algorithm is that it utilizes on
compareandswap registers.An interestingquestion iswhether
these can be replaced by atomic reads and writes. We believe
that correctnessof thealgorithm ismaintainedby replacing the
compare and swap register in a straightforward way by atomic
reads and writes, but that the work increases. We believe that
this is even the case when the compare and swap register is
replaced by a test and set register.

Our algorithm improves upon existing asynchronous al-
gorithms in several ways. In comparison with most published
algorithms it has a better order of performance. This does not
hold for algorithmsAW andAW T , which are based on a
rather different algorithmic concept than our algorithm. Al-
gorithmAW ‘only’ improves upon our algorithm with high
probability, although we expect that in practice this algorithm
has a good performance. From a theoretical perspectiveAW T

performs better than our algorithm, but due to a high initial
constant amount ofworkAW T is not suitable for any practical
purposes.

Toascertain thesefindings,wehave implementedouralgo-
rithmandhave run it for different numbers of processes,where
we compared the number of process steps with the worst case
estimate of the amount of work that needs to be done.Without
going into detail, as we believe that it is very hard to draw uni-
versal conclusions from experiments, we found that the work
always remained far below our worst case estimate.

Finally, we make some observations concerning the re-
strictions on the values forN andP. In the case that we use
a tree with uniform fan-out as the shared data structure, an
array of sizeN = xk can be accommodated. However, such
uniform fan-out is not needed for obtaining an optimal work
complexity. By adjusting the fan-out of the nodes in the tree,
it is possible to accommodate an array with arbitrary sizeN .
Furthermore, since processes need not execute, we can take
P ≤ 2k, provided all process identifiers differ and have a
length at least equal to the depth of the tree. The work remains
essentially the same.
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