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Summary. The problem of using” processes to write a given reliable programs for general purpose parallel computers with
value to all positions of a shared array of si¥ds called the typically a few dozen processes that run under widely varying
Write-All problem. We present and analyze an asynchronouads.

xz+4+1

algorithm with work complexity) (N - Pos(57)), wherer = A common problem on such machinesis to carry out a task,
N1/102(P) (assumingV = z* andP = 2¥). Our algorithmis  consisting of N independent subtasks, wifh processes, as

a generalization of the naive two-processor algorithm wherequickly as possible. Such tasks are, for instance, copying an
the two processes each start at one side of the array and walitray, searching an unordered table, and applying a function to
towards each other until they collide. all elements of a matrix. We encountered this problem when
we had to find a parallel solution to refresh a hashtable by
copying all valid elements to a new array [4].

Key words: Write-all problem —Wait-free — Distributed algo-
rithms —Work complexity — PRAM — Dynamic load balancing If we abstract from the nature of the subtasks, the problem
of executingV independent tasks is adequately characterized

by theWrite-All problem.

In this paper we present a rather straightforward algorithm
to solve théVrite-All problem on an asynchronous PRAM, i.e.
1 Introduction a machine on which the processes can be stopped and restarted
atwill. This meansthatitis also suitable for all other fault mod-
TheWrite-All problem is defined as follows. Ugeprocesses els as mentioned in Kanellakis and Shvartsman, page 13 [9].
(or processors) to write a given value to all positions of a sharedJsing different terminology we can say that our algorithm is
array of sizeN. Without loss of generality, we shall assume wait-free, which means that each non-faulty process will be
that the array is an integer array and that 1 is the value to bable to finish the whole task, within a predetermined amount
written to all its positions. of steps, independent of the actions (or failures) of other pro-
If the processes are reliable and run equally fast, it is easgesses.
to come up with straightforward, optimal solutions for this  For a shared array of siz& and P processes, our al-
problem. The situation is quite different, however, |f_processesgorithm has to carry ouO(N PE(*)) amount of work
can be faulty or run at widely varying speeds while at least 1 i )
one process remains active. Kedem et al. [10] have shown thiYheréx = NT=7. The complexity of parallel algorithms
under these circumstances An+ 2(Plog N) lower bound S generally characterized by the total amount of steps that
exists on the amount of work processes must carry out whefl!! Processes must execute, which is called wogk of the

processes can fail. This means that even if all processes ri@9°rithm, instead of the execution time, which under ideal
fully in parallel and no process is actually failing, at least €rcumstances, can be obtained by dividing the work by the
Q(log N) time is required to set the array. number of available processes. It should be noted that the worst

L. : _ . . . 1 z+1

The original motivation for th&Vrite-All problem comes ~ case behaviour leading to the upper bouddVv P'os(*="))
from [7]. Here it was shown that any program ofP@rocess can only be achieved under arare lock step scenario of the pro-
synchronous PRAM (Parallel Random Access Machine) runCesses. So, we expect average complexity to be much better,
ning in time7" can be executed on any unreliable PRAM with Which has been confirmed by experiment. In order to under-
work complexity W (P).T where W (P) is the work com-  stand the asymptotic behaviour of the bodndV Plos(*=))
plexity of any algorithm solving th@/rite-All problem of size it is interesting to look at the role af. The valuer roughly
P. In [9] an overview is given of the algorithms and PRAM denotes the ratio between the length of the arrdy4nd the
simulations that have been developed so far. number of processes’j. In the limit case, where goes to

Our mativation is quite different. It comes from the design infinity, the work complexity converges t8(N). This means
of wait-free or asynchronous algorithms [4-6], to obtain fast,that if there are only few processes, relative to the length of
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the array, complexity of our algorithm becomes linear in thep; 0
length of the array. 0 !
There are a number of existing solutions to Wate-All
problem (see [9] for an excellent overview). We compare our
algorithm to the algorithmst, X/, AW, AW andY that
are all suitable for asynchronous PRAMSs, ignoring the solu-
tions suitable for more restricted fault models. From certain

-

Fig. 1. Initial configuration

perspectives our algorithm improves upon all of these.
Algorithm X is the first asynchronous algorithm for the
Write-All problem [3]. It is designed for the situation where
P > N and has worlkO (N Plog(%)). In[9] a generalisation of
X, called X' is presented for the cage < N which has the
same upper boun@ (N P'°5(3)) for the amount of work. For

e« o o 0o 0

B

P

0

Fig. 2. Possible paths of the processes

N = Pthe algorithm presented here has the same upper bound

asX’. For P < N our algorithm is an improvement ovef’,
since forP < N we haver > 2 and therO(N P°s(*)) is
better tharO(N Ple&(3)),

In [1] two particularly clever algorithms are proposed,
calledAW andAW?”.

Algorithm AW requires workO(P? + N log P). When
P < /N this reduces t@(N log N) which is particularly

processesif = 2), allows for a very intuitive and optimal
solution. This algorithm solves the problem for any value of
Nin N +o(N) steps. One process starts at the left of the array
and walks to the right, in the meanwhile setting the values of
the array elements encountered to 1. The other process does
the same from right to left. If the two processes collide, the
whole array is processed and the processes can stop. In the

good. However, this bound can only be achieved assumingyorst case, one element of the array is processed twice. We

that a set of permutations af. . . P with a specific property

is given, which requires exponential time to calculate. Such a

call this algorithm theBasic Collisionalgorithm.
In [3] an extension of this algorithm is described, which

set can be generated at random, but then the result ‘only’holdgorks with three processes. It is called algorithinTwo pro-

with high probability. In order to overcome this problem al-
gorithmY” has been proposed [8]. Algorithimis conjectured
to have (non probabilistic) work upper boud N log V),
which is confirmed by experiments, but which is unproven.
Algorithm AW7” needs work©@(q N P¢) where e

cesses have the same behaviour as described above, but the
third process behaves differently. It starts in the middle of the
array and fills the array alternately to the left and to the right.
If the first two processes collide, it means that the whole array
is processed. If, e.g., the first and the third process collide, it

log,, log ¢° for some constantthat can be freely chosen, and a means that the left part of the array is processed. Therefore
constant which, according to the proofin [9], can be chosen they move to the segment of the array that is not processed
to be2. Aslog, log ¢* goes to) wheng goes to infinity, algo-  yet. The first process starts at the left of this segment, the
rithm AWT has superior complexity. However, the constantthird process starts again in the middle of this segment, and
amount of work that must be done in the preprocessing phastiie second process is still busy filling the segment from the

(which is independent oV and P) is exponential iny (see
[1])- In order to outperform algorithnX’ for any N and P,

it must be the case that< log(2). From this it follows that
g must be larger thaR0. Therefore, to outperform our algo-

right. This procedure repeats until the array is completely pro-
cessed. This algorithm is also optimal and the work of this
algorithm, measured in terms of actual elements processed, is
N + o(N). Algorithm T" does not appear to be generalizable

rithm, g must be chosen even larger. In the setting for which weto larger numbers of processes.

developed our algorithm, we generally hale< /N (and
thusz > 4), so one must choose< log g to make algorithm
AW perform better than our algorithm. This means that
needs to be larger thard®. This is the reason why we ex-

pect that our algorithm performs much better under practica

circumstances.
The present paper has the following structure. In Sect.

we present the algorithm. In Sect. 3 we prove its correctness

ol

considerations on using a non-uniform tree as the shared da

and show space and time bounds. Section 4 contains so

structure. Finally, Sect.5 is reserved for conclusions and fur
ther considerations.

2 A collision-based algorithm
2.1 Basic case

Although the asynchronold/rite-All problem in its general
setting is far from trivial, the case that there are only two

2.2 Generalized case

pur algorithm generalizes tHgasic Collisionalgorithm in a

different way. We will call it theGeneralized Collisioralgo-

ithm. It is best explained by looking at a simple example with

our processesH = 4). We chooséV = 25 in our example.

The processes operate in pairs. Every pair of processes ex-

utes thaBasic Collisionalgorithm on successive segments
the array. Each segment has length 5, so there are 5 seg-

ments. The four processes start at the locations indicated in

Fig. 1. The arrows indicate the direction in which each pro-

cess traverses the segment.

Every time that a segment of the array has been processed
by a pair, operation continues at the next segment. The first
process of a pair to finish a segment can directly continue with
the next segment, without having to wait for the other process.
In this way, the pairs walk towards each other through the
array in steps of length 5 until they collide. A typical path
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of the four processes in our example is shown in Fig. 2. Thisthe leaf that we arrive at if we travel down the tree first taking
figure shows just one possible path, in which all processeshe c¢y-th branch, then the;-th branch, and finally the,-th
roughly operate at the same speed. The algorithm, howevehranch.

is completely robust with respect to process delays, failures The internal nodes of the tree maintain information on
and restarts. This is because every process potentially visitsow far the corresponding subtree has been processed already.
all array elements. As long as one process survives, the wholEvery internal node has the following three attributes.

array will be processed.

From a higher point of view, the four processes also ex-
ecute theBasic Collisionalgorithm where the grain size of
the work is 5. To see this, we have to consider every pair as a
single aggregated process and every segment of length 5 as a .
single aggregated array element. A collision now takes place &/ready been processed, from left to right.
at a complete segment, rather than at a single array element® 772 : 0. n.fan, initially 0

This explains why the middle segment in Fig. 2 is processed This variable denotes the number of child nodes that have
twice. ' already been processed, from right to left.

Itis now clear how to generalize this example if we double  Note that the subtree of nodehas been processed com-
the numbers of processes and assume 125 array elements. WRtely if n.nl + n.nr > n.fan.
simply add one level to the hierarchy and have clusters of four - The root of the tree is denoted loyot and the predicate
processes operate on segments of length 25, until the clustej$|eaf determines if a node is a leaf. Similar to algorithm
colide. _ T in [3], we make use of an atomiompare-and-swafike
This implies that our algorithm works for any number of jnstryction (see e.g. [5]). In the algorithm below this is denoted

processes which is a power of two,Bo= 2" forsomek > 1.y placing angular brackets around the statemerard *)’).
Furthermore, we have that the length of the array is the length

of a basic segment to the same power\se= z* for some
x> 2. Irjthe above exam_ple_we have cho_keﬁ 2 f_md:c = 5. 2.4 The algorithm
In Fig.3 the generalization of thBasic Collisionalgo-

rithm is illustrated in a cube which has to be filled with 1's rocesses operate in parallel and perform the same recur-
by 8 processes. The picture shows pairs of processes, clustéar‘g X P 1P ndp
Ve proceduré¢raversewith as the first argument the process

?r: tzhgoecxzsrﬁgféﬁaid3C|gﬁge:jsirggﬁ'sl?é?f§fs tsﬁ es (r:ﬁgen)gseoa::hh e?éh?" entifier and the second argument the root of the tree. The

are 8 processes, and the length of an edge of the cubes recursive calls have as arguments smaller bit strings and other
that there are? cells to be filled. This is the biggest example nodes of the tree. We use notation from [9] to express this.
that we can easily visualize in this way. An example with 16
processes would require a 4-dimensional figure.

e n.fan: int

This constant denotes the number of children of the node.
e n.nl :0..n.fan, initially 0
This variable denotes the number of child nodes that have

forall pidin PID parbegin
traversépid,root)
parend

2.3 Data structures Procedurdraverseis defined below.

Additional data structures are needed in order to enable thprocedure travers¢bsnodg
processes to decide which array element should be processedr i: 0 .. node.fan;

next. First of all, every process has a process identifiel) (  begin

consisting of a bit string of length. The set of all process if isleaf(nodg then
identifiers is calledP1D. We use the functionsead andtail to node.value=1

return the first element of a bit string and the bit string with the  else

first element deleted. The bit strings will be used to direct the  if headbs) = Othen

processes to different parts of the array. Thereisanice relation i :=node.nj

between the pids of the processes and the initial position ofthe  while ¢ + node.nr < node.fando
processes in the cube from Fig. 3. If we consider the general traversdtail (bs),child(nodei));
Boolean k-dimensional hypercube, the pids correspond to the (if node.nl=i thennode.nl:=4 4 1 fi );
processes’s initial co-ordinates. i :=node.nl

Next, we assume that the processes share a tree of depth  od
k. According to the above explanation, the tree should have a  else

uniform fan-outz. This means that there are exactfyleaves, i ;== node.nr
which correspond with the elements of the array. However, we while node.nl + i < node.fando
will formulate our algorithm in such a way that it also works traversdtail(bs),child(nodgnode.fan — 1 — 7));
for trees with a non-uniform fan-out, for reasons explained in (if node.nr=i thennode.nri=14 + 1 fi );
Sect. 4. i :=node.nr
Every leafl has an attributévalue : int that must be set od

to 1. The relation between the tree and the cube from Fig.3 fi
is straightforward. Each level in the tree corresponds with a fi
dimension, and a cefky, c1, c2) of the cube corresponds with end
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Fig. 3. Generalization of the collision principle illustrated in a cube

In the base case where the node is a leaf, the procedure

writes the intended value in the array. Otherwise, the proce
dure treats the children of the node in a repetition from left
to right or from right to left. The choice between starting left

or right is irrelevant for correctness. For the sake of the com-

J.F. Groote et al.

1. The value of shared variallenlis only incremented from
i to i + 1 if proceduretraversehas finished on theé'"
subtree of node. By induction we then have that this
subtree has been processed, which certifies this invariant.
The variablen.nris treated similarly.

. Ifacalltraverseg,n)finishes, one of the guards-n.nr <
n.fan andn.nl + ¢ < n.fan must be false. Notice that
in the first case we havée < n.nl and in the second
casei < n.nr. This is due to the fact that the values
of n.nr andn.nl are non-decreasing. Therefore, if the
call traverseg,n) finishes we have.nl + n.nr > n.fan.
Using the induction hypothesis, we can conclude that all
subtrees of node are processed, so the tree rooted i
processed. ad

Next, we will prove termination of the algorithm.

plexity calculations, we let the choice depend on the head of

the first argumenbs, which is a suffix of the processjsd.
The recursive calls have the tail of the bit stribgas first
argument, so that the processes start their actions at differe
points in the array. Private variablds introduced to allow
modification of the shared variablesde.nland node.nrby
other processes.

It is worthwhile to notice that in the case thdt= P the
above algorithm is equal to algorith(see [3]). Since in this
case we have = 2 and the tree becomes a binary tree, which
is traversed in exactly the same way as in algoritknThe
work calculations from Sect. 3.3 will show that in this case
the upper bounds of th@eneralized Collisioralgorithm and
algorithmX are also identical.

3 Analysis of the algorithm

3.1 Correctness

The proof of correctness of the distributed algorithm consists

Lemma 2. TheGeneralized Collisioralgorithm terminates,
i.e. at least one of the processes finishes successfully.

froof. For this we formulate the following termination func-

tion: Z
n€internalnodes

The fact that this is a proper termination function follows
from the following observations.

First, the function is bounded. Since for every internal node
nthe values of.nlandn.nrare bounded by the constanfan,
the function is bounded byN? (which is not a tight bound,
see Sect. 3.3). Second, recall that the fault model implies that
all but one process may fail. Since there are no blocking state-
ments, the surviving process will continually invoke calls to
proceduraraverse as long asitis notfinished. After every call
of this procedure (to, say, nodg the value ofr.nl + n.nris
strictly larger than before this call. Namely, it is incremented
with 1 by the calling process, or it is incremented with at least
1 by one or more other processes. O

In conclusion, we have that at least one call of

n.nl + n.nr

of two steps. First, we prove partial correctness (i.e. if one ofyayerse(pid, rootfinishes successfully (termination) and that
the processes successfully finishes, the whole tree has beggig implies that the complete tree rootedroot has been
processed) and, next, we prove termination (at least one prgsrpcessed.

cess finishes successfully). If all leaves of a (sub)tree have

been setto 1, we say that the (sub)tree has been processed

Lemma 1. TheGeneralized Collisiomlgorithm is partially
correct.

Corollary 1. TheGeneralized Collisiomlgorithm solves the
asynchronouyVrite-All problem.

3.2 Space usage

Proof. Assuming that at least one of the processes finishegye will show that the processes have only moderate space
successfully, we have to prove that the whole tree has beequuirements.

processed. This follows immediately from the following two
properties.

1. For every internal node of the shared tree, it invariably

holds thatn.nl subtrees of noda from left to right have

been processed. Likewigenr subtrees have been pro-

cessed from right to left.

. Ifacalltraverseg,n) (for some bit stringr and some node
n) finishes successfully, the subtree rooted in nodas

been processed.

Lemma 3. The space complexity of tleeneralized Collision
algorithm isO(N log N 4+ Plog? N).

Proof. The shared data structure consists of the given array
of N bits, together with the data at the internal nodes of the
tree (see e.g. [9] for a description of how to represent a tree
in a heap without overhead). There are less thamternal
nodes. Every internal nodeholds two shared variables of size
log n.fan. So the shared memory has siz&dfN log N).

Every process needs a private data structure with space for

These two properties are proven with simultaneous inductiork stack frames, since the recursion depth iBach stack frame

on the depth of node. The base case, where nadss a leaf
is trivial. For the inductive case, we suppose that nogean
internal node.

holds a local variable of siZleg n.fan and two parameters of
sizesk andlog N. Sincek is of orderlog NV, each process
needs memory of ordéog® N. O



An algorithm for the asynchronoWgrite-All problem based on process collision 79

3.3 Work complexity =2 proc,

As was mentioned before, the work complexity of a parallel
. . D |

algorithm is the worst case total amount of work performed <2 proc,
by the processes involved. With ‘total amount of work’ one
generally means the number of instructions executed by al W S &
processes. We measure the work by counting the total numbe i ™
of calls of procedurdraversein a worst case scenario. The l/fr—f,\{'—* _‘:‘t‘/—‘ . }:—\ ;
program text clearly shows that the number of instructions ex=* = =%~ £ B S
ecuted per call of traverse is bounded by a constant. Therefor /% / \ ./ \
the total number of procedure calls is an appropriate estimat ~ * ¥ & 4 >
here. x subtrees

In the calculations below we will assume that the numberFig. 4. Worst case distribution of processes over subtrees
of processes 8" and that the length of the array i$ for
somek > 1 andx > 2. This allows for the construction of a

tree with a uniform fan-out. We will briefly consider the case  |n order to be able to simplify the recurrence relation from
of a tree with non-uniform fan-out in Sect. 4. Lemma 4, we need the following property which states that

Because of the recursive structure of the input of the al-doubling the number of processes doubles the work:
gorithm, the shared tree with fan-out we define the work

inductively, i.e. express the work associated with a tree of L

heighti in terms of the work associated with its subtrees of -émma 5. For j > i, we have

heighti — 1. Note, that the number of processes, which of

course plays an important role in determining the worlk/is 2-Wij1=Wi; 3)
(given a tree of height). In our first inductive definition of

work, however, we will decouple the number of processes andProof. We prove this by induction on Fori = 0 we have
the height of the input tree, because, as we will see, subtrees- Wy j_; = 2-2/7! = 2/ = W, ;. Assuming that the
of the input tree can be overloaded with processes (@tid  property holds fori, we derive fori + 1: 2 - Wi ;1 =

’ /
ot i .
height § + 7

I

height §

'

be overloaded in a worst case scenario). 2.2 (2 —1) Wijo+Wij1) =2+ (x—1)-2-

We introducelV; ; as an upper bound on the work on a Wi j_o+2-W; j_1 = 2/ 4+ (x = )W ;1 + W; j = Wip1 ;.
tree of height < j for a subsystem di’ processes witpids |
uniformly distributed fori. Here, we use the definition that a
subsystem o2’ processes hasids uniformly distributed for The above property can also be explained in ternpsasf
i if every bit sequence of lengthis a suffix of thepids of When the number of processes is doubled, they will have to
precisely2’~¢ processes of the subsystem. sharepids (becausej > 7). Each process will have a dop-

pelganger that follows the exact same route through the tree.

This imitative behaviour explains the doubling of the work.
This leads to the introduction af;, which, for: > 0,

Wo,; =27 (1)  denotes the work o2’ processes on a tree of heightso

Wi+1,j — Qj + (1. _ 1)Wi,j71 + Wi,j (2) Wy = Wk,k.
Proof. Equation (1) is justified by the observation that, when

27 processes start to work on a tree of heigha single leaf,
they will all call procedurdraverseonce to set the array item

Lemma 4. The work estimatel/; ; satisfy the following re-
cursive equations.

Lemma 6. The work estimates, satisfy the following re-
cursive equations.

associated with the leaf t resulting in a work of’. we — 1 @)
Equation (2) is proved in the following way (see also 0 1
Fig.4). When2/ processes witlpids uniformly distributed ~ @i+1 =2 + (z + Dw; (%)

fori+ 1 treat atree of heighit+ 1, all of them first have to call

procedurdraverseat the root of the subtree. This accounts for Proof. Because of Lemma 5 we can rewrite the second equa-
the summana’ in the right-hand side of (2). Next, the pro- tion of the definition ofi¥ as follows:

cesses split up in two groups of processes, according to the bit

at position: + 1 from the end of theipids Since thepidsare Wit =2+ (x—-1)W; ;1 +2- Wi

uniformly distributed ovei + 1, both groups have siz& ! j '

and havepids uniformly distributed ovei. One group treats =2+ (@ + Wi

the subtrees from left to right and the other group vice versa. i _ o

The collision principle implies that the two groups interfere The equations now follow easily by settifg= i +1. O
in at most one of the: subtrees, the one where they collide , .

(the shaded sub-tree in Fig.4). The work associated with the ~Finally, we calculate an appropriate upper boundigr
subtrees can therefore be splitin- 1 times the work op/ 1 _ o .

processes on a tree of he|g|f(the Summan(@r — 1)Wi,j—1)r Theorem 1. TheGeneralized CO”lS|0raIgor|thm solves the

and the work oB? processes on a single tree of heigkthe asyn(;?[onouWrite-All problem with work complexit§ (V -
summand¥; ;). O Ple(*57)), wherex = N1/ 1og(P),
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Proof. Starting from the equations of Lemma 6, we arrive at This implies that the total work load satisfies
the desired result with straightforward calculations.

k k
W we =Y 2 [] (& +1)
= { solve the recurrence relatign i=0  j=i+1
k N .
Z 2k—i(x 1) We now have to minimize the value @f, under the constraint

H§:1 x; > N for given value ofk. It is not hard to make a
functional program, e.g., in the language Haskell, to solve this
optimization problem for given values of andk.

=0
= { simple math}

(x4 1)k+L — 2k +1 It is even possible to find an approximate solution by an-
r—1 alytic means. For that purpose, we define the real functions
= { even more simple math f(x) andg(z) with = = (z1,...,zx) € R* by
x+1(z+1)k72k+1 ok k
v—1 z—1 - o) =32 ] @+1) . g@)=][=-N
. 1 9k+ i—0 i 1
§{x22, hencel+1§3and >O} ' = !
Tr — xTr —

We are only interested in vectotsvith all coordinates:; > 0
3-(z+1)F (and preferably natural). So, now we have to minimiZe)
under the constraing(x) = 0 and allz; > 0. According
to the method of Lagrange multipliers (see e.g. [2] p. 315),
Hence, we have), = O((z +1)"). We would like to express  we have that, if functiory has an extremum at under the
the workinterms ofV andP, so we do some more calculations constraintg(z) = 0, the gradient off atz is a real multiple
on (z + 1), using the equalitied = z* and P = 2*: of the gradient ofy. In this way, one finds that there is one
optimal vectorzr and that it satisfies the recurrence relation

+ 1)k
1k = F (z
(@+1) ! ak r—1 i
_xk,(x—Fl)k wr—xl/ 142> [ 2 +1)7"
o T i=1j=2
41 log(P) . .. . .
- N. ( ) Note that this formula is independent/aflt implies that the
x numberse,. form a decreasing sequence of positive reals. In
_ N . plos(=h) par_ticular_, we have, = %:cl. Of course, this only yields the
optimum if the numbers; are allowed to be real.
O The Haskell program mentioned above shows thatfoes

12000 andk = 5, the optimal work load is obtained for the
_ sequence: with 1 = 16, xo = 6, andz3 = x4 = x5 = 5
4 Non-uniform fan-out In the general case we see that an optimal work complexity

is obtained if the fan-out for all levels are approximately the

,fAIthough w_ehwere abl_? to pfrove correctggass of the alg‘_)frithmsame, except for the fan-out at the level above the leaves, which
or trees with non-uniform fan-out, we did assume uniform g0 14 e three times larger,

fan-out for our complexity palculations. This assumption We expect that in practice rebalancing the tree will yield
proved very _useful for obtaln_lng a result which can easily beat most a constant speed up in performance.
compared with work calculations for other algorithms.
Nonetheless, we claim that this assumption is not critical
for the performance of our algorithm. Calculations and Xt Shservations and conclusions
perimentation support this claim. Examples show that, strictly
speaking, an optimal work complexity is almost never _ .
a?:hieveg with a L?niform fan-out. In Fzjllmogt all cases the workVe have presented an.algo_nthm_ for the asynchroWuEa-
complexity can be slightly improved by rebalancing the tree,A_” problem. This algorithm is suitable for a multiprocess en-
while still keeping it quasi-uniform. By quasi-uniform we vironment. It_has good performa_nge due to the lack of explicit
mean that the nodes at the same level of a tree have equaynphronlzat_lon. In partlcylar this is the case Whe.” the task of
fan-out. setting a v_arlable to oneis replaced by_a more time consum-
In the case of quasi-uniform fan-out the work load can beiNd operation. Moreover, the algorl_th_m is .fault tolerant in the
given as a closed expression that contains sum and produ?ﬁnse that it works correctly even if -|nd|V|duaI Processes can
quantifiers. This goes as follows. Let us assume that ever{iII or can stop and resume arbitrarily, assuming that not all
node at level has fan-outr;. The nodes at level 0 are leaves. Processes die. Finally, our algorithm performs a kind of dy-
So we haver, — 0. The analysis of Sect. 3.3 can be repeatednam'c load balancing. Every process checks in a specific order

and then yields instead of formula (5) the recursive equation?!! the tasks that must be executed and if it finds one that has
not been performed, it carries it out. Due to the data structures

wip1 = 27+ (@01 + Dwy involved, this can be done with minimal duplication of work.
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This guarantees a distribution of tasks over processes, whefe P.C. Kanellakis, A.A. Shvartsman: Efficient parallel algorithms

no process will idle when work can be done. can be made robust. Distrib Comput 5(4): 201—217 (1992). A pre-
A potential drawback of our algorithm is that it utilizeson  liminary version appeared in Proceedings of the 8th ACM PODC,

compare and swap registers. Aninteresting question is whether pp 211-222, 1989

these can be replaced by atomic reads and writes. We beliee P.C.Kanellakis, A.A. Shvartsman: Fault-tolerance and efficiency

that correctness of the algorithm is maintained by replacing the  in massively parallel algorithms. In: G.M. Koob, C.G. Lau (eds)

compare and swap register in a straightforward way by atomic ~ Foundations of Dependable Computing — Paradigms for Depend-

reads and writes, but that the work increases. We believe that 2Ple Applications, pp 125-154, Dordrecht: Kluwer 1994

this is even the case when the compare and swap register 93 P.C. Kanellakis, A.A. Shvartsman: Fault-tolerant parallel compu-

: tation. Dordrecht: Kluwer 1997

replaced by a test and set register. 10. Z.M. Kedem, K.V. Palem, A. Raghunathan, P. Spirakis: Com-

Our algorithm improves upon existing asynchronous al- .b' L o 'd def . A Ragh ; é ) % bl : el
orithms in several ways. In comparison with most published ning tentative and definite executions for dependable paralle
9 . . ) . computing in Proceedings of the 23rd ACM Symposium on The-
algorithms it has a better order of performance. This does not

) T s ory of Computing, 1991
hold for algorithmsAW and AW~ , which are based on a
rather different algorithmic concept than our algorithm. Al-

90”thm_ AW ‘only’ improves upon our algor'lthm W'th h'Qh Jan Friso Groote (1965) graduated as a computer science engineer

probability, although we expect that in practice this algorithmin, 1988. He obtained a PhD. degree in 1991 at the University of

has a good performance. From a theoretical perspedfiiié Amsterdam for work done at the CWI (Centrum voor Wiskunde en

performs better than our algorithm, but due to a high initial Informatica) in Amsterdam on process algebra and operational se-

constant amount of work W7 is not suitable for any practical mantics. Since that time he has pursued the ideal of provably correct

purposes. software for realistic systems. Currently he is full professor at Eind-
To ascertain these findings, we have implemented our algo?oven University of Technology.

rithm and have run it for different numbers of processes, where

we compared the number of process steps with the worst case

estimate of the amount of work that needs to be done. WithouYVim H. Hesselink (1946) received his PhD in mathematics from the

going into detail, as we believe that it is very hard to draw uni- Yniversity of Utrecht in 1975. He then moved to the University of

versal conclusions from experiments, we found that the WorkGroningen to work in the field of algebraic groups and Lie algebras.
always remained far below our Worst'case estimate Around 1983, his fascination for pure mathematics lessened and he

Finally, we make some observations concerning the refound a new challenge in computer science. In 1986/1987 he was

strictions on the values fdd andP. In the case that we use on sabbatical leave with E.W. Dijkstra at the University of Texas at

t ith unif f t the shared data struct Austin. He wrote a book on the weakest preconditions of recursive
a tree with uni ormk an-out as the shared aata structure, al|3rocedures. Since 1994, he holds a chair for Program Correctness at
array of sizeN = 2" can be accommodated. However, such

A - - - the Department of Computing Science at the University of Gronin-
uniform fan-out is not needed for obtaining an optimal work gen His current research concentrates on the design of algorithms, if

complexity. By adjusting the fan-out of the nodes in the tree,ngcessary with verification by means of amechanical theorem prover.
it is possible to accommodate an array with arbitrary $ize

Furthermore, since processes need not execute, we can take

P < 2%, provided all process identifiers differ and have a Sjouke Mauw (1961) is associate professor at the Eindhoven Uni-

length at least equal to the depth of the tree. The work remaingersity of Technology and senior researcher at CWI (Center of Math-

essentially the same. ematics and Computer science) in Amsterdam. He received his mas-
ter's degree in mathematics in 1985 from the University of Amster-

<o . dam, where he also obtained his Ph.D. degree in computer science
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