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Abstract 

Nonlinear Passivity-based control (PBC) algorithms for 
power converters have proven to be an interesting alterna- 
tive for other, mostly linear, control techniques. The control 
objective is usually achieved through an energy reshaping 
process and by injecting damping to modify the dissipation 
structure of the system. However, a key question that arises 
during the implementation of the controller is how to tune 
the various parameters. From previous work we know that 
a PBC controller forces the closed-loop dynamics to behave 
as if there are artificial resistors connected to the real circuit 
elements. This has led to conservative tuning rules stemming 
from characteristic impedance matching conditions. In this 
paper an alternative solution is provided that uses the classi- 
cal Brayton-Moser equations. The criteria derived from these 
equations result in fairly sharp and less conservative tun- 
ing rules to guarantee stability and non-oscillatory responses. 
Both criteria are compared and tested using the elementary 
single-switch boost converter. 

1 Introduction 

In recent years passivity-based control (PBC) design for 
switch-mode power converters has become quite an active 
area in both the field of system and control theory and 
power electronics. This technique stems from classical Euler- 
Lagrange dynamics and the closely related field of robotics. 
The application to single-switch DC-to-DC power converters 
was first proposed by Sira-Ram’rez et al. [9] and is ,general- 
ized to larger networks, like the coupled-inductor Cuk con- 
verter, three-phase rectifiers and inverters, in e.g. [2, 5, 81 
and the references therein. In these works it is shown that a 
PBC design method is applicable to the average pulse-width 
modulated (PWM) models of switch regulated power con- 
verters, provided that such (idealized) models correspond to 
systems derivable from the classical Euler-Lagrange (EL) dy- 
namics theory. One of the major advantages of underscoring 
the physical structure, e.g., energy and interconnection, of 
these networks is that the nonlinear phenomena and features 
are explicitly incorporated in the model, and thus in the cor- 
responding PBC. This in contrast to conventional techniques 
which are mainly based on linearized dynamics and corre- 
sponding PI, PID or lead-lag control. Many power electronic 

converters are nonlinear non-minimum phase systems where 
the resonance frequency is varying with the desired output 
voltages or currents. For that reason, controllers stemming 
from linear techniques are sometimes difficult to tune as to 
ensure robust performance, especially in the presence of large 
setpoint changes and disturbances that cause circuit operation 
to deviate from the nominal point of operation. 

The basic idea behind PBC design is to modify the energy 
of the system and add damping by modification of the dissi- 
pation structure. During this process two fundamental ques- 
tions arise: “Which variable(s) have to be stabilized to a cer- 
tain value in order to regulate the output(s) of interest toward 
a desired equilibrium value? In other words, are the zero- 
dynamics of the output(s) to be controlled stable with respect 
to the available control input(s), and i f  not, for which state 
variables is it stable?”, and “Where to inject the dumping 
and how to tune the various parameters associated to the en- 
ergy modijication and to the damping assignment stage?”. In 
general it remains hard to give an answer to the first question 
for general circuits since we are not able to give explicit for- 
mulations of the zero-dynamics for a general converter struc- 
ture. Because the PBC relies on a partial system inversion we 
can not control the non-minimum phase states directly. Ap- 
plication of PBC to for qxample the boost, buck-boost [9] and 
the (coupled-inductor) Cuk [8] converters leads to an indirect 
regulation scheme of the output voltage through regulation of 
the input current. 

The first attempt to develop some guidelines to adjust the 
damping parameters is to study the disturbance attenuation 
properties and look for upper and lower bounds on these 
parameters using &-gain analysis techniques [7]. Unfortu- 
nately, the necessary calculations become quite complex and 
cumbersome, especially when dealing with large converter 
structures. In previous works the location where to add the 
damping is mainly motivated by the form of the dissipation 
structure, in the sense that damping is added to those states 
that do not contain any damping terms a priori. For example, 
in the boost converter case this means that only damping is 
injected on the input current (series damping), as the output 
voltage already contains a damping term due to the load re- 
sistance. However, this leads to a PBC regulated circuit that 
is highly sensitive to load variations and also needs an ex- 
pensive current sensor to measure the inductor current. This 
disadvantage holds for many other switching networks too. 
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Recently, in [2] we have proposed a solution to overcome 
this problem using the concept of parallel damping. Addi- 
tionally, this approach enables us to control a non-minimum 
phase system by measuring its non-minimum phase outputs 
only. 

The main contribution of the work presented in this paper can 
be summarized as follows. In Section 2, we briefly introduce 
the classical Brayton-Moser equations (BM) and accommo- 
date them for the inclusion of controlled switches. Interest- 
ingly enough, due to their passive nature, the BM equations 
also appear to be naturally suited for application of PBC. Be- 
cause the PBC design is based on the energy and the inter- 
connection structure of the circuit, it is not surprising that 
this allows an interpretation in similar physical terms of the 
controlled closed-loop system. From a circuit-theoretic point 
of view, as is discussed in [2], the controller produces a com- 
puted duty ratio function which forces the closed-loop dy- 
namics to act as if there are virtual resistors connected in 
series and/or in parallel to the real circuit elements. This 
directly leads us to an alternative methodology to tune the 
various control parameters based on modified versions of the 
stability theorems proposed in [ 13. The fairly sharp criteria 
following from these theorems offer a systematic and straight 
forward tool for solving the tuning problem. The details are 
worked out in Section 3. Section 4 treats a tuning example 
using the single-switch boost converter illustrating both the 
concept of series and parallel damping injection. Finally, we 
conclude the paper with some computer simulations and the 
conclusions. 

2 The Switched Brayton-Moser Equations 

In [3] we have shown that the classical Brayton-Moser equa- 
tions [ l ]  may be written as 

d dH* d P  
d t  dx - [-(.)I = T-(z). dX 

Here IC = [ZI, . . . ,z,,zU+1,. . . ,zJT E R", n = o + p, 
denote the currents through the o inductors and the voltage 
across the p capacitors, and 'Y = diag[I,,,, -Ipxp]. The 
total stored co-energy is defined by H * (z) : R" --$ R as 

U ".7. 

where L;(Ic~,. . . ,IC") and ~ Z ( I C ~ + ~ , .  . . ,IC,) denote the 
constitutive relations of the inductors and the capacitors, re- 
spectively. The scalar function P ( z )  is called the mixed- 
potential function, to be specified later. As stated in [4], 
equations (1)  do not establish a Lagrangian system in the 
classical sense, but they can be viewed as some degenerate 
Lagrangian form. On the other hand, in [3] it is shown that 
if Lf(z1, .  . . ,IC") and e;(z,+, , . . . , zn) are invertible then 

(1) establishes aport-controlled co-Hamiltonian (PCH') sys- 
tem due to the fact that its structure is dual in the coordinate 
and energy sense to a PCH system [6]. One of our main mo- 
tivations to use the Brayton-Moser equations is that the dy- 
namics are directly expressed in terms of measurable quanti- 
ties (currents and voltages), while Lagrangian or Hamiltonian 
dynamics are usually based on charges and/or fluxes. 

The next step is to accommodate (1) to properly define 
the dynamic behavior of circuits with controllable switches. 
Without loss of generality we restrict ourselves to circuits 
containing voltage sources only. In that case the mixed- 
potential function can be decomposed into 

where PT(z) : R" + R represents the internal power pre- 
served at the ports of the circuit following from Kirchhoff's 
laws, to be specified in a moment. The scalars PR(IC) : R" -+ 

R and PG(IC) : Rp 4 R are related to the dissipated power 
in the resistive and conductive elements, respectively, i.e., 

where R(z1,. . . ,z,) and 5(zu+1,. . . ,zn) denote the con- 
stitutive relations of the resistances and the conductances 
(Ohm's law). In a similar fashion we define the total sup- 
plied power PE(z) : R' -+ R as 

For circuits that contain one or more switches, we denote the 
switch position(s) by U = [ u I , .  . . , um], where u j  E U := 
(0,  l}, j = 1, . . . , m, i.e., ON or OFF, or in other words 
U is in the discrete set Um. Depending on the application, 
re-definition of the switching function may also result in for 
example uj E U := { -1,O, l}. The mixed-potential func- 
tion is modified to include switching functions U by letting 
P(z )  = P"(Ic). For circuits containing a single switch the 
separate potentials P;(Ic) are defined as 

PT(Z) := UP,'(IC) + (1 - u)Pyo(z), (3) 

where 7 E {T, E ,  R, G}, P,'(Ic) are the potentials' for the 
switch position U = 1, and P,"(Ic) are the potentials for the 
switch position U = 0. The dynamics of a switched system 
are then expressed by means of a five-tuple C" called the 
BM-parameters: 

'Notice that the way the switching function enters the potential function 
as defined in (3) differs from the definition of the switched Rayleigh dissi- 
pation function as defined in [2,5,81 in the sense that here we have used the 
concept of superposition of the power flows. 
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Consequently, for every admissible switch vector U E U we 
have a different but unique set of parameters E”. At this 
point, it is worth mentioning that PT(x) reflects the power 
preserving interconnection (Dirac) structure, deduced from 
Kirchhoff’s laws, as defined for the PCH systems (see [l, 31 
for more details), i.e, 

T 

-(x) 8x2 = - [%(.)I , (skew-symm.), 

which forms a necessary and sufficient condition for the ap- 
plication of passivity-based controller design [5,6]. 

Example 1 k t  us consider the BM dynamics of the DC-to- 
DC boost type converter [S] with a linear inductance L, a 
linear capacitor C and a nonlinear unknown load conduc- 
tance described by the characteristic function !3(x2). Fur- 
thermore let x1 denote the current through the inductor, 2 2  
denote the voltage across the capacitance and let R represent 
the losses of the switch U and the source E. In terms of the 
BM-parameters the dynamics are completely determined by 
letting 

P+(x) = -(1 -u)x1x* 
PE(,) = LRx2 2 1  

P;(x) = 1,“2 s(z;)dxi 
PZ(x) = XlE, 

and define the total co-energy stored in the circuit 

H*(x)  = lxl Lxidx’, + lx2 Cx;dx;. 

Hence, afer plugging the latter into ( I ) ,  the differential equa- 
tions describing the circuit are given by 

Lk1 = E - Rxl - (1 - U ) X ~  
(5) 

cx2 = (1 - u)x1 - 9 ( 4 .  
The aim of defining the above properties is to reveal and to 
study the physical relations in terms of the five-tuple defined 
in (4). In the next section, these properties form the basis for 
the developments to arrive at a PBC design. For complete- 
ness, we note that the switched BM equations are also closely 
related to the average PWM (pulse-width modulation) mod- 
els (See, e.g., [5] for a detailed discussion on this subject in 
the Lagrangian framework). This means that x is replaced by 
the average state z ,  representing the average inductor currents 
and capacitor voltages, and the discrete control U is replaced 
by its duty ratio function vector p. For the average value of 
the switch position we thus have the following consistency 
conditions 

p,”(~)l,=l = P,’(Z) 

pr”(”l,=o = P,”(Z). 
Note that P; (2 )  can be considered as a weighted ratio, with 
weighting parameter p, between P,(z) and P,(z). In the 
sequel we will use the average models with z as the states 
and p as the duty ratio of the switch, operating in the closed 
set U .  

3 PBC in the BM Framework 

We now continue with the average PWM models. In the 
Lagrangian framework the design of a passivity-based con- 
troller (PBC) is to modify the Lagrangian, and add damping 
by modification of the Rayleigh dissipation function, see [5]. 
For the Brayton-Moser framework this means that we have 
to modify the co-energy function H * (2) and the dissipative 
potentials Pi(.) andor Pg(z) of (4) to arrive at a desired 
co-energy and dissipation functions that preserve the origi- 
nal structure and ensure asymptotic stability. To do this, let 
Z := z - E define the error state, and let E denote the de- 
sired auxiliary states of the controller. Furthermore, for sake 
of brevity we split the mixed-potential into an interconnec- 
tion part P+(x), a supplied part P;(x) and a dissipated part 
definedby P;1(x), where P;1(x) = Pz(x)  + P;(x). Notice 
that P;1(x) can be considered as some sort of generalized 
Rayleigh dissipation function. Hence, we may define the de- 
sired closed-loop error co-energy and dissipation functions 

HXZ,E)  = H*(Z)l*=z (6) 

PL(z,E) = p;(z)I,=z +%(z,E), (7) 

with Pc(z ,  t )  the injected dissipation (damping) and where 
we have assumed that the voltage sources do not explicitly 
depend on the inductor currents. Consequently, the minimum 
of these functions will be located at the desired equilibrium 
points Z - 5. The average closed-loop error dynamics asso- 
ciated to the desired storage function (6) are then given by 

where the term @ is defined as 

(9) 

The next step of the design procedure is to derive, using (9), 
the control signals p and the relations for t ,  required to assign 
the desired storage function and thus to ensure that = 0. 
That is, to achieve the co-energy reshaping plus damping in- 
jection. Hence, the closed-loop error dynamics satisfy 

The implicit definition of the control law which ensures the 
closed-loop error dynamics to be of the form (10) is obtained 
by 

Finally, an explicit definition of the control law is obtained 
after solving for p with respect to a minimum phase state (or 
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So far we have derived the procedure to obtain a PBC strat- 
egy from the BM equations, as is developed in [5] for the 
Lagrangian framework. However, since (10) can be consid- 
ered as a system resulting from standard feedback intercon- 
nection, the closed-loop system forms a BM or a passivity- 
preserving interconnection. For that, we are able to use 
some interesting and important ideas developed in [l]. In- 
teresting enough, in [l], Theorem 3 and 4, page 19 and 21, 
stability criteria are developed that use the mixed-potential 
function. These criteria can be used to rule out the exis- 
tence of self-sustained oscillations. Moreover, if we trans- 
late their ideas to the setting as presented above, we have 
strong criteria to tune the various control parameters. In 
other words, we can assign values to the injected dissipa- 
tion functions to assure a desired dynamic behavior in terms 
of, for example, overshoot and robustness against load van- 
ations. Brayton and Moser’s theorems can be restated and 
accommodated for the inclusion of the functions p as fol- 
lows. For the closed-loop error mixed-potential function 
P”(Z), a Lyapunov-based stability condition for the sys- 
tem (10) is stated as follows. Let Z = [ET,GTIT, where 
E = [ZI, . . . and G = [&+I, .  . . denote the 
error-currents through the inductors and error-voltages across 
the capacitors. Furthermore, let 

represent the inductance matrix, the capacitance matrix, the 
resistance matrix and the conductance matrix, respectively, 
and let 

where 1c, is a matrix of appropriate dimensions, possibly de- 
pending on the switching functions, deduced from the Kirch- 
hoff’s laws, then 

Theorem 1 
J,” s(G’)~G’ + I - $ ( p ) ~ l  ---f o as 

r f  R is a positive definite constant matrix, 
4 0, and 

states) as discussed in the introduction. This results for the 
controller in a partial system inversion. It is well-known from 
Lyapunov’s stability theory that if H &  (Z) along the solution 
of (10) strictly decreases with time except at the equilibrium 
points, then an equilibrium solution is asymptotically stable 
if and only if H&(Z) has, at least, a local minimum there. It 
is easily checked that for every admissible QL(Z) > 0 

(12) 

with QL(Z) the total dissipated power. Notice that in case 
P&(Z) is polynomial then QL(Z) = aP&(Z), with a some 
positive constant (in the linear case a = 2). From (12) we 
may conclude that, if the error dynamics coincide with (lo), 
the closed-loop error behavior Z is asymptotically stable at 
zero, i.e., Z -+ 0 as t -+ 00. 

I&(?) = -QL(Z) < 0, VZ # 0, 
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with 0 5 p < 1, then for all (C, 6) the solutions of (IO) tend 
(in a non-oscillatory way) to the set of equilibrium points 
( E , & )  - - -*Oast  -+ ca2 

Although it is assumed that R is constant in the first place, the 
criterion of Theorem 1 places a constraint on R that bounds 
the lower limit in terms of the possibly nonlinear storage ele- 
ments, L(E) and C(22,). Therefore, it may occur that R needs 
to be chosen as a function of E and 22, in order to fulfill (13), 
i.e, R(6,G) .  and therefore may become nonlinear as well. 
Notice that if Theorem 1 is satisfied, stability is guaranteed 
regardless of G(22,)! A similar criterion for the G-matrix is 
derived as follows 

Theorem 2 lf G is a positive definite constant matrix, 
X(E’)dG’ + I$T(p)ijI --+ 0 as 161 -+ 0, and 

with 0 5 p < 1, then for all ( E ,  6) the solutions of (IO) tend 
(in a non-oscillatory way) to the set of equilibrium points 
(E,G) -+ Oast  -+ 00. 

Detailed proofs for the case that $ is a constant matrix are 
given in 111. The proofs for $ ( p ) ,  for all 0 5 p < 1, fol- 
low in a similar way. Notice that the criteria of Theorem 
1 and Theorem 2 enables us to choose between two differ- 
ent damping injection strategies. Theorem 1 suggest to add 
damping on all the inductor currents by injecting series re- 
sistances, while the criterion of Theorem 2 suggests to inject 
damping on the capacitor voltages by injecting parallel con- 
ductances, i.e, we should modify either PL(z)  or P$(z) by 
letting 

P ~ ( z )  = PL(Z)I~=~ + P;(V), or (13) 

(14) 

respectively. Then, a non-oscillatory response is guaranteed 
by selecting either series damping (13) or parallel damping 
(14) satisfying the criteria of Theorem 1 or Theorem 2, re- 
spectively. It is interesting to remark that the concept of par- 
allel damping as it follows from the modified Brayton and 
Moser criteria naturally coincides with the ideas as recently 
proposed in [2]. 

P&(Z) = P;(z)l*=z + Pi%), 

4 lhning Example: The Boost Converter 

In this section we will consider an illustrative example using 
the single-switch DC-to-DC Boost converter for the applica- 
tion of the modified Brayton-Moser criteria. One motivating 
reason for studying this circuit is that it describes in form and 
function a major family of power electronic converters. Con- 
sider the dynamic equations (5 ) ,  but now with discrete states 

2Here E(.) and G(.) are defined for the error dynamics. In compari- 
son to the criterion in [I] this means that we have to take the opposite of 
S ( z )  + Iq!&l + 00 for some IzI -+ w, in the sense that Iz - € 1  -+ 0 
has to hold in order to obtain a stabilizing controller that fulfills the require- 
ments. The notation IlKll denotes the norm of K ,  defined as 11K112 = 
m=l,l=l{[KxITKx). 



2 replaced by the average states z. Furthermore, for sake of 
simplicity we assume R = 0 and that the elements are all 
linear, time-invariant and perfectly known. 

4.1 Series Damping PBC 
In [5, 91 a passivity-based controller is proposed which, 
using the terminology proposed in the previous section, 
makes use of the series damping concept. For sake of brevity 
and lack of space we do not repeat the design procedure 
but only discuss the tuning problem using the resulting 
closed-loop error dynamics (for details see, e.g., [5]). For 
the series damping injection PBC the desired closed-loop 
co-energy and dissipation are set to H&(.Z) = $ LZf + iCZg 
and P&(Z) = iGZ$ + i & Z f ,  respectively, which results in 
the following controller 

51 

52 . 
Ci2 = -[E - R(zi - G)] - G52, 

for every &(O) > 0, together with the closed-loop error- 
dynamics 

Li1 = -R,Zl - (1 - p)Zp 
(15) ct 2 2  - - (1 - p)Zl - G&, 

where Ri 2 0 is the injected series damping resistor and 
denotes the desired value for the inductor current. It is easy to 
show using Lyapunov’s stability theory that the closed-loop 
error system (15) is exponentially stable for every G ,  Ri > 0.  
However, we are interested to find a lower bound on Ri  as 
to ensure a fast and non-oscillatory response. For the boost 
converter$(p) = 1-p. Clearly, $GZz+1-(1-p)Z21 -+ 0 as 
1,221 .+ 0. Computing the norm of p, we find 11$(p)11* 5 p, 
for p E [O, 11, and therefore from Theorem 1 we have 

Hence, a lower bound on Ri for a non-oscillatory response 
is obtained if and only if 

for all 0 < p < 1. Unfortunately, as is shown in [SI, 
the series damping scheme is highly sensitive to unmodeled 
changes of the load conductance G. A possibly solution is 
to extend the controller with an adaptive mechanism to com- 
pensate for such uncertainties [5].  The major disadvantage 
is that the resulting controllers become quite involved, even 
for simple systems like the boost converter. Another problem 
that arises is how to tune the adaptive controllers as to ensure 

- stability and non-oscillatory responses. As is pointed out in 
[2], a simple solution to this problem is to use the concept of 
parallel damping injection to be treated next. 

4.2 Parallel Damping PBC 
The main idea behind the parallel damping injection scheme 
is the following. Let the desired closed-loop dissipation be 

3502 

and take the closed-loop co-energy as before. For this case 
we find the controller as 

-5; 
52 

CG = G -  - GEz + Gi(z2 - 5 2 ) ,  

for every & (0) > 0, while Gi 2 0 denotes the injected paral- 
lel damping conductance and (2 is the desired capacitor volt- 
age. The corresponding closed-loop error-dynamics become 

One may interpret (16) as if there is an extra conductance 
connected in parallel to the output capacitor. Hence, for this 
case we have that 1(1 - p)Zl I -+ 0 if 121 I -+ 0, and thus the 
tuning criterion for G ,  stemming from Theorem 2 is given by 

Gi(p)  > /-- G 

for all 0 < p < 1. Notice that the right-hand side of (17) 
may become negative. In that case the injected damping be- 
comes negative as well, i.e., Gi(p )  < 0. Strictly speaking, 
the controller then provides energy to the circuit and loses its 
passivity properties. On the other hand, consider the time- 
derivative of H& (.) along the trajectories of (16) 

fih(Z) = -(G + Gi)Zg < 0,  VZ # 0. 

It is easily checked from (17) that the closed-loop dissipative 
energy P&(Z2) remains positive definite for all G + Gi > 
0,  even if Gi < 0. Hence, by using Lyapunov theory and 
by noting that (16) satisfies the Lipschitz condition, one can 
easily proof that the proposed controller indeed stabilizes the 
closed-loop dynamics of the system. Moreover, we conclude 
that the closed-loop remains passive for all lGbl < Go < M. 

4.3 Simulation Experiments 
Let us next test both the criteria using SIMULINK. We will 
use a Boost converter with the discrete values for the switch. 
This means that for the series damping injection scheme the 
only signal used for feedback is the ‘real’ inductor current 
2 1  2 0, and for the parallel damping scheme we only use 
‘real’ capacitor voltage 5 2  2 0. The design parameters of 
the Boost converter are chosen as follows: E = lOV, L = 
lopH, C = 50pH, R = G-’ = 552 and the PWM switching 
frequency is set to F, = 5OkHz. The initial conditions are 
set tozl(0)  = x2(0) = 0 and&(O) = 1. FromFigure 1 we 
observe that for both schemes the controller rapidly stabilizes 
the capacitor voltages without any overshoot and oscillations. 
However, the series damping (top) does not reach the desired 
voltages 5 2  (dashed line), while the parallel scheme (center) 
reaches the setpoints within 2% accuracy. From this we may 
conclude that the series damping scheme is highly sensitive 
to the current ripples. This is due to the fact that the ripple 
in the inductor current is usually much higher than the ripple 



in the output voltage. A better accuracy can be obtained by 
increasing the PWM frequency or by taking a larger inductor. 
Notice that the undershoot in the capacitor voltage is caused 
by the non-minimum phase nature of the converter. 

Figure 1: Closed-loop response for different setpoints 2 2 :  (top) 
Series damping PBC; (center) Parallel damping PBC; 
(bottom) Average injected damping R ( p )  and Gi(p). 

0 0 5  1 1 5  2 2 5  3 3 5  4 

me lrecl % l o a  

Figure 2: Closed-loop response for load perturbations AG: (top) 
Series damping PBC; (center) Parallel damping PBC; 
(bottom) Average injected damping R ( p )  and Gi(p). 

Furthermore, Figure 2 shows the closed-loop response for 
load perturbations. These perturbations are set to f3G-’S1, 
while both schemes are adjusted to a nominal capacitor volt- 
age of 30V. As can be seen, the parallel damping scheme 
rapidly manages to restore the capacitor voltage to its nomi- 
nal value, while the series damping scheme does not manage 
to restore but forces the closed-loop to deviate from the de- 
sired voltage. 

5 Conclusions 

In this paper, the passivity-based design procedure for Euler- 
Lagrange systems is rewritten in terms of the Brayton-Moser 
equations. The advantage is that in this setting the states to 
be used for feedback are directly in terms of physically mea- 
surable quantities, i.e., currents and voltages. This in contrast 
to Lagrangian or Hamiltonian systems, whereas the coordi- 
nates are usually the charges and the fluxes, which in most 
cases can not be measured directly. Additionally, the assign- 
ment of parallel damping does in general not involve the use 
of current sensors but only needs the measurements of the 
voltages. A major advantage of parallel damping in compar- 
ison with series damping injection is that it does not require 
adaptive extensions in case the load resistors are unknown. 
Additionally, the idea of parallel damping injection provides 
a method to control non-minimum phase circuits based on 
the corresponding non-minimum phase output(s) only. 
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