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Abstract. – Bose-Einstein condensation of ultra cold atoms is typically realized in magnetic
traps which effectively lead to an axially symmetric harmonic potential. This letter shows that
the spectrum of collective vibrational modes of a repulsive condensate in a prolate potential
displays a defect known as quantum monodromy. The monodromy is analysed on the basis of
the dynamics of quasiparticles. In terms of the quasiparticles the regime of collective modes or
the so-called hydrodynamic regime is characterized through kinetic energies much smaller than
the chemical potential. In this limit the classical dynamics of the quasiparticles is integrable.
The monodromy is quantitatively described by a monodromy matrix that is calculated from
classical actions.

Introduction. – In the context of integrable Hamiltonian systems with two degrees of
freedom the notion monodromy was first introduced by Duistermaat [1]. It there describes the
effect of a global twisting of a family of invariant 2-tori parameterized by a circle of regular val-
ues of the energy momentum mapping of the integrable system. A consequence of monodromy
is the obstruction in the global definition of single-valued smooth action variables. In this way
monodromy carries over to quantum mechanics via Einstein-Brillouin-Keller quantization as
was first illustrated for the quantum spherical pendulum by Cushman and Duistermaat [2]
followed by other systems [3] in atomic physics [4] as well as in molecular physics [5, 6].

This letter reports on the monodromy of the spectrum of collective excitations of a Bose
condensate of atoms trapped in a prolate axially symmetric harmonic potential. To describe
the monodromy the quantum-mechanical spectrum is related to the underlying integrable
classical dynamics of the corresponding quasiparticles.

Classical quasiparticle dynamics. – Bose condensates are most suitably described in
terms of quantum field theory (see [7] for a review and for the references). The essential
idea due to Gross and Pitaevskii is to separate off the ground-state wave function from the
rest and to consider the rest as a kind of perturbation. This way the field operator of the
condensate Ψ̂(x) splits into two parts, Ψ̂(x) = ψ0(x)+ϕ̂(x), where the first-order contribution
of the residual field operator ϕ̂(x) vanishes if the scalar wave function ψ0(x) fulfills the Gross-
Pitaevskii equation

− �
2

2m
∇2ψ0(x) + (U(x) − µ)ψ0(x) + V0|ψ0(x)|2ψ0(x) = 0 , (1)
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where µ is the chemical potential. The scalar wave function is normalized to the number of
condensed atoms,

∫ |ψ0(x)|2 d3x = N0. U(x) is the outer potential which in case of a magnetic
trap is effectively of harmonic type,

U(x) =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2) . (2)

Usually, the traps are axially symmetric, i.e. ωx = ωy = ω0 without restriction. The factor V0

determining the strength of the two-particle interaction is given by V0 = 4π�
2a/m, where a is

the s-wave scattering length which is positive for a repulsive condensate. In the Thomas-Fermi
approximation the kinetic term in the Gross-Pitaevskii equation is neglected giving

|ψ0(x)|2 =
1
V0

(µ − U(x)) . (3)

A quasiparticle interpretation of the excitations is obtained from the Bogoliubov transform
of the residual field operator ϕ̂(x),

ϕ̂(x) =
∑

j

(
Uj(x)α̂j − V ∗

j (x)α̂†
j

)
, (4)

where the creation and annihilation operators α̂†
j and α̂j fulfill bosonic commutator relations

and the amplitudes obey the normalization condition
∫ (|Uj(x)|2 − |V ∗

j (x)|2) d3x = 1.
The field equations become diagonal to second order in the residual operator if the ampli-

tudes Uj and Vj fulfill the coupled Bogoliubov equations

ĤHF Uj − K Vj = Ej Uj , −K Uj + ĤHF Vj = −Ej Vj (5)

with the Hartree-Fock Hamiltonian ĤHF = −�
2/(2m)∇2+U(x)+2V0|ψ0(x)| and the coupling

term K = V0|ψ0(x)|.
Following [8] we obtain a classical Hamiltonian H from replacing the kinetic term

−(�2/(2m))∇2 by the classical expression p2/(2m) and solving the secular equation corre-
sponding to the Bogoliubov equations (5) for H = E. This gives the classical Hamiltonian

H(x,p) =
√

HHF(x,p) − K(x) (6)

with HHF(x,p) = p2/(2m) + U(x) + 2V0|ψ0(x)|. For x within the boundary U(x) = µ
of the condensate in Thomas-Fermi approximation (see eq. (3)) H(x,p) can be written as
H(x,p) = (T (p) (T (p) + 2K(x)))1/2 with T (p) = p2/(2m). The hydrodynamic regime is
defined as the limit where the kinetic energy is much smaller than the chemical potential
µ, i.e. the coupling K(x) is much bigger than T (p) = p2/(2m). The classical Hamiltonian
which describes the quasiparticle dynamics in this limit is obtained from rewriting H in the
form H =

√
TK

√
2 + T/K and neglecting T/K in the second square root. This gives the

hydrodynamic Hamiltonian
Hhyd(x,p) =

√
2T (p)K(x) . (7)

Prolate trap potential. – For the harmonic potential U(x) in eq. (2) the equations of
motion generated by Hhyd are separable [8]. In the following we will concentrate on a po-
tential with harmonic frequencies ω0 > ωz. In this case the boundary of the Thomas-Fermi
condensate is the prolate ellipsoid

�2

a2
�

+
z2

a2
z

= 1 , �2 = x2 + y2 (8)
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Fig. 1 – a) Ellipsoidal coordinates in the plane (x, z). b) Trajectory of a generic Liouville-Arnold
torus in configuration space (x, �). c) “Whispering gallery” orbit in the plane (x, z). d) “Bouncing
ball” orbit in the plane (x, z).

with semi-axes a2
� = 2µ/(mω2

0) < a2
z = 2µ/(mω2

z), focus points (x, y, z) = (0, 0,±σ) with
σ2 = 2µ/m(1/ω2

z − 1/ω2
0), and eccentricity ε = (1 − ω2

z/ω2
0)1/2. The equations of motion are

then separable in prolate ellipsoidal coordinates:

(x, y, z) = σ(� cos φ, � sin φ, ηξ) , � =
√

(ξ2 − 1)(1 − η2) (9)

with coordinate ranges φ ∈ [0, 2π], η ∈ [−1, 1] and ξ ∈ [1,∞), see fig. 1a. The boundary of
the Thomas-Fermi condensate is the coordinate surface ξ = 1/ε.

The angle φ is a cyclic variable in the transformed Hhyd and, accordingly, the angular
momentum l about the symmetry axis is a further constant of motion besides the energy
E = Hhyd. A third constant appears as a separation constant. Ordering terms in the equality
E2 = H2

hyd yields

B = Ẽ2 1
1 − ε2η2

+ (1 − η2)p2
η +

1
1 − η2

l2 = Ẽ2 1
1 − ε2ξ2

− (ξ2 − 1)p2
ξ −

1
ξ2 − 1

l2 , (10)

where pη and pξ denote the momenta conjugate to η and ξ, respectively, and Ẽ2 = 2E2/ω2
0 .

Incorporating in eq. (10) the fact that η varies in the interval [−1, 1] shows that B is always
positive, wherefore we write b2 instead of B. Since the second and the third expression in
eq. (10) are identical up to a relabeling of the phase space variables, the squared momenta
can be written in the same form,

p2
s = Ẽ2 1

(1 − s2)2(1 − ε2s2)
P2(s2) , s = η, ξ , (11)

where P2 is the binomial P2(z) = b2(1− z)(1− ε2z)− Ẽ2(1− z)− l2(1− ε2z) . Equation (11)
scales with respect to the energy.

The physical ranges of the constants of motion E, B and l are determined from the
requirement that they simultaneously must allow for real momenta pη and pξ in eq. (11).
This means that there have to exist in both intervals [−1, 1] and [1, 1/ε] subintervals where
P2(x2) is positive. For l �= 0 the only way for this to occur is that the roots s2

1 and s2
2 of P2

are real and satisfy

0 < s2
1 < 1 < s2

2 <
1
ε2

. (12)
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Fig. 2 – a) Phase portraits (η, pη) and (ξ, pξ) and the binomial P2(s
2). b) Regularization of the singular

reflection at the condensate boundary ξ = 1/ε via the canonical transformation (ξ, pξ) �→ (λ, pλ) with

ξ = 1
ε

sin(ελ) and pλ = dξ

dλ
pξ.

The phase portraits (η, pη) and (ξ, pξ) for a corresponding Liouville-Arnold 3-torus are shown
in fig. 2a, i.e. η oscillates in [−s1, s1] and ξ in [s2, 1/ε]. Similarly, the corresponding trajectory
in configuration space is bounded by the η-caustics η = ±s1, the ξ-caustic ξ = s2 and the
condensate boundary ξ = 1/ε, see fig. 1b.

Critical motions essentially correspond to the boundaries in (12). s1 = 0 or, equivalently,
b2 = l2 + Ẽ2 represents invariant 2-tori of elliptic stability. In configuration space the corre-
sponding motions are restricted to the equatorial plane z = 0. In particular, l = 0 represents
the resonant 2-torus foliated by the one-parameter family of periodic orbits obtained from
rotating, e.g., the periodic orbit along the x-axis about the z-axis. s2 = 1/ε is equivalent to
E = 0 and represents motion on the surface of the Thomas-Fermi condensate. s1 = 1 and
s2 = 1 correspond to l = 0. In addition to the critical cases already mentioned, l = 0 is critical
only for s1 = 1 and s2 = 1, simultaneously, or b2 = b∗2 = Ẽ2/(1 − ε2). The corresponding
motion is the unstable periodic orbit running along the z-axis. The non-critical motions with
l = 0 are resonant 3-tori foliated by invariant 2-tori of planar motions. For s1 = 1 and
1 < s2 < 1/ε or b2 > b∗2 the η-caustics have collapsed and the “whispering gallery” type
of motion crosses the z-axis outside of the focus points (x, y, z) = (0, 0,±σ), see fig. 1c. For
s2 = 1 and 0 < s2 < 1 or b2 < b∗2 the ξ-caustic has collapsed and the “bouncing ball” type of
motion crosses the z-axis between the focus points, see fig. 1d.

Disregarding the critical case E = 0, we represent the critical values of the constants of
motion in a bifurcation diagram in terms of the scaled constants lsc = l/Ẽ and bsc = b/Ẽ.
The resulting diagram shown in fig. 4a below contains the isolated point (lsc, bsc) = (0, b∗sc) =
(0, (1−ε2)−1/2), wherefore the range of regular values of the constants of motions is not simply
connected.

Quantum monodromy. – The quantum-mechanical spectrum of the Bose condensate,
i.e. the spectrum of the quasiparticles in our approximation, is obtained from the EBK
quantization of classical actions. For the integration of actions we have to decide on a triple
of fundamental loops γi on the 3-tori in phase space along which the differential pdq is
integrated. A natural choice is a triple that is related to the separating coordinates giving the
actions

Iϕ = l , Iη =
2
π

∫ s1

0

pη dη , Iξ =
1
π

∫ 1/ε

s2

pξ dξ . (13)
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Fig. 3 – Complex plane C(z) with slits between the pairs of branch points (0, s2
1) and (s2

2, 1/ε2),
respectively, and integration paths cs and c′s for the calculation of actions and their derivatives with
respect to the angular momentum, respectively. The square root w is defined so that its values along
the real axis are as indicated in the figure.

This way 2πIη and 2πIξ are the areas enclosed by the respective phase portraits in fig. 2. The
quantum spectrum is defined from the EBK quantization conditions (Iϕ, Iη, Iξ) = �(nϕ, nη +
αξ/4, nη + αξ/4) with quantum numbers nϕ ∈ Z and nη, nξ ∈ N0 and Maslov indices αη = 2
for a simple oscillation and αξ = 3 for an oscillation involving a reflection at the condensate
boundary ξ = 1/ε. The quantum spectrum is a point set (E, l, b)(nϕ,nη,nξ) in the three-
dimensional space of the constants of motion. It has a natural lattice structure due to the
EBK quantum numbers. As we will see in the following, this lattice has a defect known as
quantum monodromy due to the isolated point of the bifurcation diagram in fig. 4a below.

In order to recover the quantum monodromy let us first have a look at the analytical
nature of the action integrals. For this purpose it is convenient to substitute z = s2 and write
them as

Is =
ns

4π

∮
cs

P2(z)
1 − z

dz

w
, s = η, ξ , (14)

where ns are integer coefficients, cs are integration paths in the complex plane, and w is the
square root of the fourth-order polynomial z(1− ε2z)P2(z) indicating that the action integrals
are of elliptic type. The square root w can only be defined properly if the complex plane is
slit twofold between two pairs of branch points of w, see fig. 3. With the integration paths
cη and cξ defined as in fig. 3, the expressions for the actions Iη and Iξ in eqs. (13) and (14)
become identical if (nη, nξ) = (2, 1).

Despite the fact that the half-line l = 0, bsc > 1 in fig. 4a represents critical motions only
for bsc = b∗sc, the actions Iη and Iξ are continuous but nowhere differentiable across this half-
line. To see this, note that Iη and Iξ are symmetric functions of l, wherefore their derivatives
with respect to l would have to vanish along l = 0 if the actions were smooth. The derivatives

∂Is

∂l
= l

ns

4π

∮
cs

1 − ε2z

z − 1
dz

w
, s = η, ξ , (15)

contain the vanishing pre-factor l but, in addition, either the η-integral or the ξ-integral
becomes singular for l → 0 because of the collision of the branch point s2

1 with the pole at
z = 1 for b > b∗ or of s2

2 with z = 1 for b < b∗. To evaluate the integrals for l → 0 it is best
to modify the integration paths cs as shown in fig. 3, i.e. the cs are wrapped across the pole
z = 1 to give the paths c′s, where the capture of the pole is subtracted by the small integration
path encircling the pole in the opposite direction. Noticing that the integrals (15) along the
c′s are not critical and that the differential (1− ε2z)/((z − 1)w) dz has residue −i/|l| at z = 1,
we find

lim
l→0+

(
∂Iη

∂l
,
∂Iξ

∂l

)
=

{
(−1, 0), b > b∗

(0,−1/2), b < b∗ . (16)
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Fig. 4 – a) Bifurcation diagram in the plane of the scaled constants of motion lsc and bsc. The shaded
region represents regular motions. b) Magnification of the dashed rectangle in a) with the eigenvalues
of quantum states with ñ2 = −20. The open circle marks the isolated point of the bifurcation diagram.

From the Liouville-Arnold theorem we know that there exist smooth actions for regular
values of the constants of motion. To find them we retain the actions I = (Iϕ, Iη, Iξ)t for l > 0
and define new actions J = T I for l < 0 related to the old actions by a unimodular matrix
T . Since the actions I are continuous along l = 0, the matrix T can differ from the identity
only in its first column which we write as (1, tη, tξ)t. The integers tη and tξ are obtained from
the requirement of a continuous derivative of the action with respect to l,

lim
l→0+

∂Is

∂l
= lim

l→0−
∂Js

∂l
⇔ ts = 2 lim

l→0+

∂Is

∂l
. (17)

But as we have seen above the limits liml→0+ ∂Is/∂l, s = η, ξ, depend on whether b > b∗ or
b < b∗. We therefore obtain two matrices Twg and Tbb derived from T with (tη, tξ) = (2, 0)
and (tη, tξ) = (0, 1), respectively, where the “whispering gallery” matrix Twg leads to smooth
actions across l = 0 for b > b∗ and the “bouncing ball” matrix Tbb leads to smooth actions
across l = 0 for b < b∗. Upon a full counterclockwise circle about the isolated point of the
bifurcation diagram in fig. 4a the actions map by the monodromy matrix

M = (TbbR1)−1 TwgR1 =


 1 0 0

2 1 0
−1 0 1


 , (18)

where R1 is the reflection matrix diag(−1, 1, 1) introduced to map actions to one another
which differ only in the sign of l. The fact that the matrix M is not the identity is the reason
for monodromy. If the actions related to the separating coordinates for l > 0 are smoothly
continued about the isolated point there results a multivalued action function whose different
leaves are related by powers n ∈ Z of the monodromy matrix. Equivalently, we could have
started with any other choice of actions Ĩ = T̃ I with T̃ unimodular. This would have given
another monodromy matrix M̃ , i.e. the monodromy matrix is well defined up to conjugation
with unimodular matrices. The special choice

T̃ =


 1 0 0

0 −1 −2
0 0 −1


 leads to M̃ = T̃ M T̃−1 =


 1 0 0

0 1 0
1 0 1


 . (19)
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From this representant of the monodromy matrix we see that there exists a choice of actions
with the first two of its components remaining invariant under the monodromy. In terms of
quantum mechanics this means that there exist two “good” quantum numbers in the sense
that they correspond to smooth single-valued action components.

To illustrate the quantum monodromy graphically we start from the actions Ĩ with EBK
quantization �(ñ1, ñ2 − (αη + 2αξ)/4, ñ3 −αξ/4) and quantum numbers ±ñ1,−ñ2,−ñ3 ∈ N0.
The eigenvalues with fixed “good” quantum number ñ2 lie on a smooth hypersurface in the
three-dimensional space of the constants of motion (E, l, b). Projecting out the energy gives
the planar eigenvalue lattice in fig. 4b. This lattice has a defect, as becomes apparent if a
lattice cell is transported on a loop about the isolated point. As expected from the monodromy
matrix (19), the lattice cell returns distorted by one lattice site.

Conclusions. – Relating the quasiparticle dynamics back to the collective excitations of a
condensate in a prolate harmonic trap, we conclude that there exists only a single generic type
of modes with amplitudes confined to a region kept away from the poles and the symmetry axis
of the condensate by the caustics of the classical motion. For vanishing angular momentum
the excitations degenerate to two types of modes with amplitudes either concentrated about
a surface layer of the condensate (whispering-gallery modes) or about its equatorial plane
(bouncing-ball modes) as indicated by the two types of collapses of the classical caustics.
The quantum operator analog of the classical separation constant B can be deduced from
rewriting B in Cartesian coordinates giving B = L2 + σ2p2

z + 2H2
hyd/ω2

0 − 2ε2mTz2. It has
a simple interpretation only in the limit of an isotropic trap where it becomes the square of
the total angular momentum L plus the total energy with a pre-factor. More important than
the form of the operator is its existence. Since we have three commuting observables, the
collective excitations can be assigned by three quantum numbers allowing to unzip the energy
spectrum. As a consequence of the quantum monodromy a smooth continuation of quantum
numbers across the two types of modes for vanishing angular momentum leads to ambiguous
assignments. One might also speculate on a dynamical signature of the monodromy which,
e.g., could be displayed by an excitation made up of a superposition of modes with eigenvalues
in the neighborhood of the isolated critical point of the classical motion. This remains to be
clarified. The monodromy discussed here is similar to the monodromy in prolate ellipsoidal
billiards [9].
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