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The vibrational spectrum of N2O as given by an effective spectroscopic Hamiltonian based on the existence
of a superpolyad number is analyzed and assigned in terms of classical motions. The effective Hamiltonian
includes a large number of resonances of which only one is dominant for low and intermediate superpolyad
numbers. In this energy range, the corresponding classical system is quasi-integrable and can be described in
terms of a system with only one nontrivial degree of freedom. This integrable system can be analyzed by
considering the so-called “quantizing trajectories” on a “polyad sphere”. This method is no longer applicable
when the superpolyad number is further increased and classical chaos comes into play. We then turn to a
powerful universal method based on the graphical representation of semiclassical wave functions on a naturally
appearing toroidal configuration space. These wave functions are obtained using the already known
transformation matrix used in fitting the effective Hamiltonian. Experience with the interpretation of the
resulting figures allows one to draw conclusions on the classical internal motions and therefore on the
assignment of the quantum states without any further calculation. As such, the method is of particular interest
to nontheorists and to nonspecialists in the fields of nonlinear dynamics and quantum calculation. For higher
superpolyad numbers, the chaos remains mainly concentrated about the direct neighborhood of a separatrix
of the former integrable system so that a great part of the vibrational spectrum can still be assigned in terms
of the EBK quantum numbers of quantized tori.

1. Introduction

Following experiments on carbon dioxide,1 Teffo, Perevalov,
and Lyulin introduced a spectroscopic Hamiltonian for nitrous
oxide2 based on the approximate relations between harmonic
frequencies

whereω1, ω2, andω3 refer to the harmonic frequencies of the
symmetric stretch, the bend, and the asymmetric stretch,
respectively. The quality of the spectroscopic Hamiltonian,
which incorporates a large number of resonances, was confirmed
by a combination of high-resolution Fourier transform spec-
troscopy and intracavity laser absorption spectroscopy between
6500 and 11 000 cm-1 and between 11 700 and 15 000 cm-1,
respectively.3 From a general point of view of physics and
chemistry, the fit of a quantum spectrum to a spectroscopic
Hamiltonian cannot be the final step in the analysis of a
vibrational spectrum. In addition the question of the relation of
the spectra to the underlying classical motion has to be answered.
The answer to this question is not only necessary for the

assignment of the quantum states but of further importance
because it contains, for example, information needed to under-
stand isomerization and reactivity.

In this paper, we are concerned with the assignment of the
pure vibrational spectrum of N2O. The first step toward an
assignment is already given through the existence of a super-
polyad number,4 which is directly connected to the resonances
in eq 1 and of which the conservation was the basis for the
construction of the spectroscopic Hamiltonian. One can proceed
with the assignment by looking at the corresponding classical
system. The spectroscopic Hamiltonian as given in the number
representation can be translated to classical mechanics via the
standard application of Heisenberg’s correspondence principle.
The result is a classical Hamiltonian given in action angle
variables (Ii, φi). The appearance of action angle variables
underlies the idea that originally there exists a classically
integrable system derived from the quantum Hamiltonian
without off-diagonal elements for which the inclusion of the
off-diagonal elements acts as a perturbation. For an integrable
system, the Liouville-Arnold theorem5 says that phase space
is generically foliated by invariant tori. Here, action angle
variables are the most suitable coordinates with the angles
parametrizing the tori for fixed actions. Accordingly, Hamilton’s
equations of motion assume the simple form

* To whom correspondence should be addressed. Phone:+49 421 218-
4566. Fax:+49 421 218-4869. E-mail: waalkens@physik.uni-bremen.de.

ω1/ω2 ≈ 2:1, ω2/ω3 ≈ 1:4 (1)
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that is, the actions are constants of the motion and the angles,
φi, increase in time with constant frequencies,ωi. Action angle
variables are, for example, essential for the discussion of how
an integrable system reacts to a small perturbation. In such a
case, KAM theory guarantees the survival of tori with suf-
ficiently irrational frequency ratios. For the classical analogue
of the quantum mechanical molecule with vibrational degrees
of freedom, the integrability-destroying perturbation appears
quantum mechanically through the inclusion of off-diagonal
elements. This perturbation is, in general, not small. Neverthe-
less, the action angle variables of the unperturbed system are
quite useful even for the description of a perturbed system,
which usually exhibits significant features of chaos. This is
especially valid in molecular physics in which the energies
reached before the dissociation of the molecule are often high
enough to destroy most of the original tori and to produce a
complex phase space with a number of resonance zones6 but
which fortunately are not high enough to destroy all regular
structures in phase space. Furthermore, very small structures,
which might exist in phase space, are not visible in quantum
mechanics because of a nonvanishing Planck’s constant, and
in this way, quantum mechanics seems to average over the
classical motions. Therefore, a great number of the quantum
states of a vibrational molecule are roughly localized on more
or less pronounced KAM tori or the tori that surround stable
periodic orbits, which are the centers of the resonance zones
and which are characterized by a phase lock of the angle
variables. This offers the opportunity to associate whole series
of quantum states with KAM primary tori or periodic orbits
and to assign them by quantum numbers of EBK type.

The common procedures of the classical analysis remain
feasible for systems with up to two effective degrees of freedom
in which the four-dimensional phase space can still be analyzed
in terms of two-dimensional Poincare´ surfaces of section. For
systems in molecular physics with a superpolyad number, there
exists the opportunity to separate off explicitly the trivial degree
of freedom connected to the superpolyad number. The corre-
sponding separating coordinates are some linear combination
of the angle variables. Although this separability is taken
advantage of in many works in this field as far as the classical
analysis is concerned,7 the separability is utilized for the
quantum mechanics only in rare exceptions.8 A classification
of the quantum states is usually attempted through the repre-
sentation of wave functions in the original Cartesian type of
coordinates, which may be either normal- or local-mode
coordinates. The fact that there is still hidden a trivial degree
of freedom in these coordinates because they do not allow for
a separation makes it difficult to find a classification scheme.
Instead, it is ultimately simpler to carry out the analysis in the
reduced dimension space of the separated angle variables even
for the quantum mechanical analysis. A representation of the
quantum states with respect to these angles can be easily
obtained with no new calculation. This representation is only
meaningful in a semiclassical sense but is totally sufficient for
the purpose of an assignment and the analysis of the classical
motions. The result is a wave function on a two-dimensional
toroidal configuration space, which is easy to present graphically
in terms of density plots and plots of the phases of the wave
functions. The density plots serve for the identification of the
underlying classical motion and for the sorting of the states in
a polyad into ladders of levels, each based on a unique classical
motion. Quantum numbers are obtained from either counting

nodal lines in the density plots or counting phase advances in
the phase plots. The simplicity of this method on one hand and
its great power on the other hand were already demonstrated
via the application to the complex vibrational spectra of
acetylene9,10 and CHBrClF.11 The method is especially useful
for those who are not specialists in the fields of nonlinear
dynamics and quantum calculations because, as mentioned
above, the representation needs no serious calculation. The only
hurdle that remains is the ability to mentally and visually work
with action angle variables, which at first are rather abstract
variables. Once done, there is no difficulty to lift the motion
described with respect to action angle variables back to the
corresponding motion with respect to the original Cartesian type
of coordinates. This is made possible by the observation that,
although the formal relation of the action angle variables to the
original Cartesian type of coordinates generally may be very
complicated, it usually is a very good approximation to lift the
action angle variables back to the Cartesian type of coordinates
as if they were related via a first-order canonical perturbation
theory.12-14

Our analysis of N2O is mainly divided into two parts. For
low and intermediate superpolyad numbers, a resonance between
the symmetric stretch and the bend is so dominant that other
resonances are of minor importance and can be neglected. The
quantum number corresponding to the asymmetric stretch
remains a second good quantum number along with the
superpolyad number. In this case, it is appropriate to replace
the superpolyad number by a linear combination of only those
quantum numbers that are no longer good quantum numbers.7

To distinguish it from the superpoyad number, this quantum
number will be referred to as the polyad number. Classically,
the asymmetric stretch can be approximately separated off, and
there remains an integrable system with only one effective
degree of freedom. The phase space of the one degree of
freedom system has the topology of a sphere. The dynamics on
this so-called “polyad sphere” is discussed, and it is related to
the quantum system through the representation of so-called
“quantizing trajectories”, which are the projections of the
quantized tori onto this sphere. This is the subject of the first
part in which we particularly concentrate on superpolyad 14 of
which 8 of its 20 bands could be measured by Campargue et
al.3 In the second part, the superpolyad number is further
increased and the other resonances become important. The
asymmetric stretch can no longer be separated off, and the
classical dynamics becomes chaotic. A polyad sphere no longer
exists, and an analysis as in the first part is no longer possible.
We then switch to our procedure mentioned above and illustrate
it for the eigenstates of superpolyad 22 of which 2 of its 42
bands could be measured Campargue et al.3 Alternatively, it
will be seen that from the relations of the two remaining angles
of the reduced dimension toroidal configuration space to the
three original angles and from the visually recognizable location
of the wave function density on the 2 torus most conclusions
about the motion in original molecular coordinates can be
inferred without further calculation. Moreover, this analysis is
also applicable to the one-resonance case. This all means that
the classification of states can be effectively done without using
nonlinear classical analysis. The outline of this paper is as
follows. In section 2, the classical Hamiltonian is derived from
applying Heisenberg’s correspondence principle to the spec-
troscopic Hamiltonian, which is explicitely represented in terms
of creation and annihilation operators. In section 3, N2O is
analyzed by incorporating exclusively the dominating Fermi
resonance between the symmetric stretch and the bend. The

İ i ) - ∂H
∂φi

) 0, φ̇i ) ∂H
∂Ii

≡ ωi (2)
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energy regime in which chaos comes into play and the analysis
based on the presentation of semiclassical wave functions on
the torus of the angle variables is the subject of section 4.
Concluding remarks and an outlook are given in section 5.

2. Quantum and Classical Hamiltonian

To derive the classical analogue to the effective quantum
Hamiltonian presented by its matrix elements by Teffo, Per-
evalov, and Lyulin,2 we write the effective Hamiltonian
explicitly in terms of creation and annihilation operators. It can
be divided into three terms,

whereĤ0
lin is the harmonic term,Ĥ0

anh is the nonharmonic part
of the Dunham expansion, andĤ1 includes all of the off-diagonal
terms. To write the terms explicitly, we introduce the abbrevia-
tions

whereâ2d/g
† andâ2d/g are the creation and annihilation operators

for the degenerate bend degrees of freedom with d and g
referring to droit (right) and gauche (left) in the notation of
Cohen-Tannoudji, Diu, and Laloe¨.15 The linear term and the
second- and third-order anharmonic term then read

The termH1 is the sum of a 1:2 Fermi resonance for the
symmetric stretch and the bend

a 2:1 Fermi resonance for the symmetric stretch and the
asymmetric stretch

a Fermi resonance involving a three-mode interaction

plus higher-order terms

In the expressions above, the creation and annihilation
operators appear symmetrically for each degree of freedom. A
classical Hamiltonian can therefore be obtained directly from
Heisenberg’s correspondence principle

whereIi andφi are the canonical action angle variables of the
corresponding classical system. The creation and annihilation
operators,â2d/g

† and â2d/g, only appear in such a way that they
conserve the total number of quanta in the degenerate bend
degrees of freedom, 2d and 2g. This is necessary to secure a
vanishing vibrational angular momentum. It is therefore con-
venient to introduce the classical actionI2 ≡ I2d + I2g of which
the classical interpretation is the radial action of a two-
dimensional isotropic oscillator separated in polar coordinates.
The expressions forH 0

lin and H 0
anh are immediately obtained

from replacing in eqs 7 and 8 the operatorsÎ i by the classical
actionsIi. For the interaction term one finds

The appearance of action angle variables underlies the idea
that we originally had a classically integrable system described
by the HamiltonianH0 ) H0

lin + H0
anh, which only depends on

the action variables to which a perturbationH1 is added, which
explicitly depends on the angles so that the actions are in general
no longer constants of the motion. The resonances,n1

(i)
φ1 +

n2
(i)
φ2 + n3

(i)
φ3 with (n1

(i), n2
(i), n3

(i)) ∈Z3, in the argument of the
cosine functions are linear combinations of the two approximate
resonance conditions,〈n,ω 〉 ) 0 with n ) (1,-2,0) and〈m,ω〉
) 0 with m ) (0,4,-1), given by eq 1. Because a perturbation
f(i)(I1,I2,I3) cos(n1

(i)
φ1 + n2

(i)
φ2 + n3

(i)
φ3) is constant on a

hyperplanen1
(i)
φ1 + n2

(i)
φ2 + n3

(i)
φ3 ) 0 in the three-dimensional

space of the angles (φ1,φ2,φ3), the hyperplane is not affected
by the perturbation. The actions corresponding to the angles,
which span that hyperplane, would remain being constants of
the motion. Because the perturbationH1 consists of a mixture
of the two linearly independent resonancesn and m, there
remains only a single line in angle space that is invariant under
the perturbation. The direction of this line isn × m ) (2,1,4).
Let us derive a canonical transform from the old anglesO )
(φ1,φ2,φ3) and actionsI ) (I1,I2,I3) to new anglesψ ) (ψ1,ψ2,ψ3)
and actionsJ ) (J1,J2,J3) so thatψ1 points in the invariant
directionn × m in the space of the old angles. Then, the action
J1, conjugate toψ1, is automatically a constant of the motion.

Ĥ ) Ĥ0
lin + Ĥ0

anh+ Ĥ1 (3)

Î1≡ 1
2
(â1

†â1 + â1â1
†) (4)

Î2≡ 1
2
(â2d

† â2d + â2dâ2d
† + â2g

† â2g + â2gâ2g
† ) (5)

Î3≡ 1
2
(â3

†â3 + â3â3
†) (6)

Ĥ0
lin ) ω1Î1 + ω2Î2 + ω3Î3 (7)

Ĥ0
anh) x11Î12 + x12Î1Î2 + x13Î1Î3 + x22Î2

2 + x23Î2Î3 +

x33Î3
2 + y111Î1

3 + y112Î1
2Î2 + y123Î1Î2Î3 + y113Î1

2Î3 +

y122Î1Î2
2 + y133Î1Î3

2 + y222Î2
3 + y223Î2

2Î3 + y233Î2Î3
2 +

y333Î3
3 (8)

Ĥ1s:2b) Fe
(2)2(â1

†â2dâ2g + adj) + F1
(2)2(â1

†â1â1
†â2dâ2g + adj) +

F2
(2)2(â1

†â2dâ2gâ2g
† â2g + â1

†â2dâ2d
† â2dâ2g + adj) +

F3
(2)2(â1

†â2dâ2gÎ3 + adj) (9)

Ĥ2s:1a) Fe
(3)(â1

† â1
†â3 + adj) + F1

(3)(â1
†Î1â1

†a3 + adj) + F2
(3)

(â1
† â1

†a3Î2 + adj) + F3
(3)(â3â3

†â3â1
† â1

† + adj) (10)

Ĥ1s:2b:1a) Fe
(4)2(â1

†â2d
† â2g

† â3 + adj) + F1
(4)2(â1

† â1 â1
†â2d

† â2g
† â3 +

adj) + F2
(4)2(â2g

† â2gâ2g
† â2d

† â1
†â3 + â2d

† â2dâ2d
† â2g

† â1
†â3 + adj) +

F3
(4)2(â3â3

†â3â1
†â2gâ2d + adj) (11)

F(10)4(â3â2d
† â2d

† â2g
† â2g

† + adj) + (12)

F(11)4(â1
† â1

†â2dâ2dâ2gâ2g + adj) + (13)

F(12)(â1
† â1

† â1
† â1

†â3â3 + adj) + (14)

F(13)2(â1
† â1

† â1
†â2dâ2gâ3 + adj) (15)

âi
† f xIi exp(iφi), âi f xIi exp(-iφi) (16)

H1 ) 2(Fe
(2)xI1I2 + F1

(2)I1
3/2I2 + F2

(2)xI1I2
2 +

F3
(2)xI1I2I3) cos(φ1 - 2φ2) + 2(Fe

(3)I1xI3 + F1
(3)I1

2xI3 +

F2
(3)I1xI3I2 + F3

(3)I1I3
3/2) cos(2φ1 - φ3) + 2(Fe

(4)xI1I2xI3 +

F1
(4)I1

3/2I2xI3 + F2
(4)xI1I2

2xI3 + F3
(4)xI1I2I3

3/2) cos(φ1 +

2φ2 - φ3) + 2F(10)I2
2xI3 cos(4φ2 - φ3) +

2F(11)I1I2
2 cos(2φ1 - 4φ2) + 2F(12)I1

2I3 cos(4φ1 - 2φ3) +

2F(13)I1
3/2I2xI3 cos(3φ1 - 2φ2 - φ3) (17)
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For the canonical transform, we choose a generating function
of type 3 in the notation of Goldstein,16 that is, a function that
in our case depends on the old actions and the new angles. We
make the ansatz

with some 3× 3 matrixM , which we define in the following.
Then the new and old phase-space coordinates are related via

that is, when the angles transform with a matrixM , the actions
transform with the inverse transpose ofM . We require thatψ1m
× n ) (φ1,φ2,φ3). This fixes the first row ofM to m × n. Then,
the first new action,J1, which by construction is a constant of
the motion, is equal to〈n × m, (I1,I2,I3)〉 giving in our case

In principle, we are free in the choice of the remaining
components of the matrixM . In practice, however, we would
like the new actions to be related to the old actions in a simple
way to have a simple interpretation of these actions. In our case,
we require thatJ2 ) I1 andJ3 ) I3, that is, we choose the second
and the third row ofM equal to (1,0,0) and (0,0,1). The
transformations in eq 19 become

and

Note that the matrixM defined this way is unimodular, that is,
it has integer components and unit determinant. This secures
that its inverse again has integer components so that the new
anglesψi again run over intervals of length 2π. In fact, this
gives the new variables,Ji, the meaning of action variables
according to the strong definition of action variables as, for
example, formulated by Arnold.5

The conserved actionJ1 for which we will write from now
on P is the classical analogue of the so-called superpolyad
number

with n1, n2, and n3 as the number of quanta in the original
degrees of freedom, that is, in the symmetric stretch, in the bend,
and in the asymmetric stretch. Becausen2 is the sum of the
quanta of two degenerate bend degrees of freedom that have to
be the same to have a vanishing vibrational angular momentum,
it can assume only even integer values. Incorporating the zero-
point energies, the classical superpolyad is quantized according
to P ) P + 4. The conservation of the superpolyad number
was the basis for the construction of the effective quantum
Hamiltonian, that is, because of the approximate resonances,
in eq 1 the Hamiltonian should have off-diagonal elements,
which interchange the quanta between the different degrees of
freedom only in such a way that the superpolyad number is

conserved. For the classical system, the existence of a conserved
quantity simplifies the analysis because it reduces the number
of the effective degrees of freedom, in our case from 3 to 2.
For a general discussion of how to reduce the degrees of freedom
of a spectroscopic Hamiltonian, see the work of M. E.
Kellman.17

The Hamiltonian H in terms of the new phase space
coordinates (ψ1, ψ2, ψ3, J1, J2, J3) reads

plus

all of which is parametric inJ1.
The numerical values for the parameters of the effective

Hamiltonian are taken from the eighth row of Table 3 in the
work of Teffo, Perevalov, and Lyulin,2 which we list once more
in Table 1 of this work. The relatively large size of the parameter
Fe

(2) ) -17.9632 indicates on the first inspection that the 1:2
Fermi resonance of the symmetric stretch and the bend should
have a dominating effect on the quantum mechanics as well as
on the classical mechanics. That this is indeed the case can be
proven to be correct by various considerations. In Figure 1 the
amplitudes,〈s,P|n1,n2,n3〉, of the normal-mode basis states,
|n1,n2,n3〉 (which are the eigenstates of the unperturbed effective
Hamiltonian withĤ1 ) 0) for the eigenstates,|P,s〉, of the full
effective Hamiltonian are shown forP ) 14. Here,s counts
the eigenstates with a fixed superpolyad numberP ordered
according to magnitude in energy. Let us remark that the
superpolyad number has to be even and that the number of
eigenstates in a superpolyadP is

giving N(14) ) 20 andN(22) ) 42. The figure shows two
important things. First, it proves that it is generally not
reasonable to assign normal-mode quantum numbers (n1, n2,
n3) to the states|P,s〉. As a reasonable limit for the ability to
assign normal-mode quantum numbers to an eigenstate, the
criterion can be taken that|P,s〉 should have at least a 50%

F3(I ,ψ) ) -〈I , Mψ〉 ) -∑
i,j

I iMijψj (18)

φi ) -∂F3/∂Ii ) ∑
j

Mijψj, Ji ) -∂F3/∂ψi ) ∑
j

MjiIj (19)

J1 ) 2I1 + I2 + 4I3 (20)

(J1

J2

J3
)) MT(I1

I2

I3
)) (2I1 + I2 + 4I3

I1

I3
) (21)

(ψ1

ψ2

ψ3
)) M-1(φ1

φ2

φ3
)) (φ2

φ1 - 2φ2

φ3 - 4φ2
) (22)

P ) 2n1 + n2 + 4n3 (23)

H 0
full ) ω1J2 + ω2(P - 2J2 - 4J3) + ω3J3 + x11J2

2 +

x12J2(P - 2J2 - 4J3) + x13J2J3 + x22(P - 2J2 - 4J3)
2 +

x23(P - 2J2 - 4J3)J3 + x33J3
2 + y111J2

3 + y112J2
2(P -

2J2 - 4J3) + y123J2(P - 2J2 - 4J3)J3 + y113J2
2J3 +

y122J2(P - 2J2 - 4J3)
2 + y133J2J3

2 + y222(P - 2J2 -

4J3)
3 + y223(P̃ - 2J2 - 4J3)

2J3 + y233(P - 2J2 - 4J3)J3
2 +

y333J3
3 (24)

H 1
full ) 2(P - 2J2 - 4J3)(Fe

(2)xJ2 + F1
(2)J2

3/2 + 2F2
(2)(P -

2J2 - 4J3)xJ2 + F3
(2)xJ2J3) cosψ2 + 2(Fe

(3)J2xJ3 +

F1
(3)J2

2xJ3 + F2
(3)J2xJ3(P - 2J2 - 4J3) +

F3
(3)Jb

3/2J2) cos(2ψ2 - ψ3) + 2(P - 2J2 - 4J3)(Fe
(4)xJ2J3 +

F1
(4)J2

3/2xJ3 + F2
(4)(P - 2J2 - 4J3)xJ2J3 +

F3
(4)J3

3/2xJ2) cos(ψ2 - ψ3) + 2F(10)xJ3(P - 2J2 -

4J3)
2 cosψ3 + 2F(11)J2(P - 2J2 - 4J3)

2 cos(2ψ2) +

2F(12)J2
2J3 cos(4ψ2 - 2ψ3) + 2F(13)J2

3/2xJ3(P - 2J2 -
4J3) cos(3ψ2 - ψ3) (25)

N(P) ) {P2/16 + P/2 + 1 if P/2 is even

P2/16 + P/2+ 3/4 if P/2 is odd
(26)
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contribution from the corresponding basis state|n1,n2,n3〉.18 This
is only the case for very few eigenstates of superpolyad 14 and
for almost no eigenstates of superpolyad 22 for which we omit
the presentation of a separate figure. Second, Figure 1 shows
that only those normal basis states that have the same quantum
numbern3 mix for a given eigenstate|P,s〉. To a great extent,
this even holds for superpolyadP ) 22. Accordingly, to a very
high degree of approximation,n3 is a further good quantum
number besides the superpolyad number, that is, the superpolyad
blocks of the matrix representation of the quantum Hamiltonian
in terms of the basis set{|n1,n2,n3〉} can be further block
diagonalized so that each block corresponds to a fixed quantum
numbern3. For a system in which one quantum number can be
separated off, it is common to deal with a polyad number that
is a linear combination of the those quantum numbers that are
no longer good quantum numbers. We define the polyad number

so that we are left with two good quantum numbersn3 andP̃.
Like the superpolyad numberP, the polyad numberP̃ can only

assume even integer values. The number of states in a polyad
P̃ does not depend onn3 and is given by

Figure 2 shows how the superpolyadsP are distributed over
the polyadsP̃ and the blocks with fixedn3.

The approximate separability ofn3, of course, also further
simplifies the analysis of the classical system. If we neglect all
of the resonances up to the 1:2 resonance between the symmetric
stretch and the bend, then the actionI3 and the classical analogue
of the polyadP̃,

are two constants of the classical motion besides the total energy
so that the classical system is integrable. To describe the
integrable system, we change to the new actions

that is, J̃1 is the polyadP̃ and J̃3 remains the conserved third
action,I3. The angles transform with the inverse of the matrix,
M̃ , giving

TABLE 1: Parameters of the Spectroscopic Hamiltonian

ω1 ω2 ω3 x11 x12 x13 x22

1298.590 11 596.2937 2281.998 14 -3.9178 -3.0087 -27.207 21 0.5432

x23 x33 y111 y112 y113 y122 y123

-14.585 13 -15.165 16 -0.004 714 -0.116 084 -0.343 11 -0.035 329 0.515 13

y133 y222 y223 y233 y333 Fe
(2) F1

(2)

0.059 79 -0.013 188 7 0.046 411 0.009 261 0.015 737 -17.963 240 0.2365

F2
(2) F3

(2) Fe
(3) F1

(3) F2
(3) F3

(3) Fe
(4)

0.3899 0 -0.329 69 -0.265 334 1.009 89 1.9716 0

F1
(4) F2

(4) F3
(4) F(10) F(11) F(12) F(13)

0 0 -0.229 66 0 0 0 0.233 32

Figure 1. Amplitudes〈P,s|n1,n2,n3〉 (horizontal ticks) of the basis states
for the eigenstates of superpolyadP ) 14. The dashed lines bounding
each solid line mark a “confidence interval” of width 2/x2. On the
abscissa,s labels the states within the superpolyad ordered according
to magnitude in energy. The numbers above are the quantum numbers
n3, which can be approximately assigned to the quantum states|P,s〉.

Figure 2. Distribution of the eigenstates (dots) of the one-resonance
system with polyad numberP̃ and quantum numbern3 over the states
of the full system, which incorporates all resonances with superpolyad
numberP. Note that each dot in each line of constantP̃ representsP̃/2
+ 1 eigenstates.

Ñ(P̃) ) P̃/2 + 1 (28)

P̃ ) 2I1 + I2 (29)

(J̃1

J̃2

J̃3
)) (2I1 + I2

I1

I3
)) M̃T(I1

I2

I3
) (30)

P̃ ) P - 4n3 ) 2n1 + n2 (27)
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The classical Hamiltonian in terms of the phase-space variables
(ψ̃,J̃) is given by

plus the interaction term

The system described byHone is effectively a one degree of
freedom system in the canonical variables (J2, ψ2). In Table 2,
we list the energy spectrum obtained from the quantum
Hamiltonian with all of the resonances together with the
assignment in terms of the quantum numbers of the one-
resonance system, which is the subject of the following two
sections.

3. N2O with Only the 1s:2b Fermi Resonance

As mentioned above, in the one-resonance approximation,
the classical dynamics is integrable. We can discuss the
integrable system from different perspectives: First, it is a three
degree of freedom system with phase-space coordinates (ψ̃1,
ψ̃2, ψ̃3, J̃1, J̃2, J̃3) whereψ̃1 andψ̃3 are cyclic variables, that is,
they do not appear in the HamiltonianHoneand therefore the
conjugate momentum variablesJ̃1 and J̃3 are constants of the
motion. Second, we can treat the system as a family of two
degree of freedom systems parametrized by the conserved action
J̃3 with phase-space variables (ψ̃1, ψ̃2, J̃1, J̃2). Third, we can
consider the system as a two-parameter family of one degree
of freedom systems with family parameters,J̃1andJ̃3, and phase-
space variables (ψ̃2, J̃2). In the following, we will mainly adopt
the latter point of view and we will, for short, write (ψ̃, J̃) instead
of (ψ̃2, J̃2).

The phase space of an integrable system with three degrees
of freedom is foliated by invariant 3-tori. The energy eigenstates
tend to concentrate on those 3-tori the actions of which fulfill
the EBK quantization conditions. In our case,J̃1 and J̃3 are
quantized withP̃ + 2 andn3 + 1/2, respectively, giving two of
the three EBK quantization conditions that define the quantized
3-torus. The third EBK quantization condition is

Interpreting our system as a one degree of freedom system, we
can plug the quantized values for the parametersJ̃1 andJ̃3 into
the classical HamiltonianHone and display the “quantizing
trajectories” in the phase portrait (ψ̃2, J̃2) ≡ (ψ̃, J̃). The
quantizing trajectories are defined as the level sets ofHone set
equal to the quantum mechanical energy eigenvalues. Figure 3
shows the quantizing trajectories of polyadsP̃ ) 14 with n3 )
0 and the correspondingÑ(14)) 8 energy eigenvalues of Table
2.

The quantizing trajectories fall into three groups. If we
consider the termH 1

one as an integrable perturbation ofH 0
one

and refer to the tori of the system described byH 0
one alone as

the primary tori, one can say that states 3-6 of polyadP̃ ) 14
correspond to deformed primary tori. Note that the tori of
H 0

one alone would appear as horizontal lines in the phase
portrait (ψ̃, J̃). Because of the integrable perturbationH 1

one,
there appear two new regions of which the centers are elliptic
points of the one degree of freedom system, which are denoted
by e1 ande2 in Figure 3. The tori aboute1, which correspond to
the statess ) 1 ands ) 2, ande2, which correspond to states
7 and 8, will be referred to as secondary tori. At first, it seems
as if there were two separatrices: a first separatrix separating
the secondary tori aboute1 and the primary tori and a second
separatrix separating the primary tori and the secondary tori
aboute2. They are indicated by dashed lines in Figure 3. In the
following, we will see that the first separatrix is not a separatrix
in the sense that it is connected to unstable motion. In fact, the
secondary tori aboute1 transform smoothly to the primary tori.
To see this, let us interpret the integrable system as a two degree
of freedom system with a parameterJ3, that is, let us forget
about the asymmetric stretch for a moment. At the top of the
(ψ̃, J̃) phase portrait,J̃1 reaches its maximum value,P̃ /2. This
implies that the original actionI2 vanishes whileI1 reaches its
maximum,P̃ /2. Accordingly, the whole top line of the phase
portrait represents a single symmetric stretch periodic orbit of
the two degree of freedom system. Conversely, at the bottom
of the (ψ̃, J̃) phase portrait,J̃ vanishes and, accordingly, the
original actionI1 vanishes while the original actionI2 reaches
its maximum value, which is equal toP̃. The whole bottom
line represents a single bend periodic orbit of the two degree
of freedom system. In contrast to that, the circles of the (ψ̃, J̃)
phase portrait correspond to 2-tori in phase space of the two
degree of freedom system. From the perspective of the one
degree of freedom system, the top and the bottom line each
represent a single point. Taking into account the periodic
boundary condition in theψ direction, the phase portrait (ψ̃, J̃)
has the topology of a sphere. If we want to present the dynamics
on a “true” sphere by some change of coordinates, it is to be
taken into account that the change of coordinates must be
canonical to preserve the form of Hamilton’s equations of the
motion and to preserve the ability to draw any conclusion on
the original system. For a one degree of freedom system, this
means that the transformation has to be area preserving. This
leads one to the map

whereæ ∈[0,2π] andϑ ∈[0,π] are the usual angles on a sphere
(x,y,z) ) (R cosæ sin θ,R sin æ sin θ,R cosθ), which is the
so-called “polyad sphere” invented by M. E. Kellman and co-
workers.19-22 If the radius of the sphere is chosen to be equal
to R ) xP/2 one immediately proves the area preserving
property, dψ̃ dJ̃ ) R2 sin ϑ dϑ dæ. Following eq 34, the top of
the (ψ, J) phase portrait maps to the south pole and the bottom
maps to the north pole.

In Figure 4, the polyad sphere is shown for polyadP̃ ) 14
andn3 ) 0 with the quantizing trajectories of Figure 3. On the
polyad sphere, the “separatrix” between states 2 and 3 maps to
a smooth circle, which runs smoothly across the north pole.
The reason for the smoothness is that in the (ψ̃, J̃) phase portrait
the “separatrix” intersects the bottom lineJ̃ ) 0 perpendicularly
at ψ̃ ) π ( π/2. Accordingly, the secondary tori aboute1

transform smoothly to the primary tori. The separatrix between

(ψ̃1

ψ̃2

ψ̃3
)) M̃ -1(φ1

φ2

φ3
)) (φ2

φ1 - 2φ2

φ3
) (31)

H 0
one) ω1J̃2 + ω2(P̃ - 2J̃2) + ω3J̃3 + x11J̃2

2 + x12J̃2(P̃ -

2J̃2) + x13J̃2J̃3 + x22(P̃ - 2J̃2)
2 + x23(P̃ - 2J̃2)J̃3 +

x33J̃3
2 + y111J̃2

3 + y112J̃2
2(P̃ - 2J̃2) + y123J̃2(P̃ - 2J̃2)J̃3 +

y113J̃2
2J̃3 + y122J̃2(P̃ - 2J̃2)

2 + y133J̃2J̃3
2 + y222(P̃ -

2J̃2)
3 + y223(P̃ - 2J̃2)

2J3 + y233(P̃ - 2J2)J̃3
2 + y333J̃3

3 (32)

H 1
one) 2(P̃ - 2J̃2)(Fe

(2)xJ̃2 + F1
(2)J̃2

3/2 + F2
(2)(P̃ -

2J̃2)xJ̃2 + F3
(2)xJ̃2J̃3) cosψ̃2 (33)

1
2π

IJ̃2 dψ̃2 ≡ 1
2π∫0

2π
J̃2 dψ̃2 ) ñ2 + 1

2
(34)

æ ) ψ̃, ϑ ) arccos(P̃ - 4J̃
P̃ ) (35)
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the primary tori and the secondary tori aboute2 maps to a circle
with a cusp at the south pole.

The polyad sphere is not only introduced for esthetic reasons,
but the fact that phase space of the one degree freedom system
(ψ̃, J̃) has the topology of a sphere has important implications.
The most striking one is the limitation on the number of periodic
orbits of different stability due to the Poincare´ index theorem.
If each (isolated) periodic orbit, po, is mapped to a stability
index, σ, according to

then the Poincare´ index theorem tells that

The role of the unstable cusp orbit is special because it
corresponds to a singularity of the polar coordinates in which
the isotropic oscillator of the degenerate bend degrees of
freedom is separated. We will shortly come back to this point.
Equation 37 is consistent with our result of two elliptic points,
e1 ande2, and one cusp.

In Figure 5, we show how far the quantizing trajectories fulfill
the EBK quantization condition in eq 33. The figure shows the
effective quantum number

where the integrals are taken along the quantizing trajectories.
The EBK quantization condition in eq 33 is discontinuous at
the separatrix because of the discontinuity of the action defined

TABLE 2: Energy Levels, Efull , of the Spectroscopic Hamiltonian Which Includes All of the Resonances for SuperpolyadsP )
14 and P ) 22 and the Assignment in Terms of the Quantum Numbers of the One-Resonance Hamiltoniana

Efull (cm-1) (P, s) Eoneb (cm-1) (P̃, n3, s̃) torusc Efull (cm-1) (P, s) Eoneb (cm-1) (P̃, n3, s̃) torusc

10 032.0 (14, 1) 10 033.2 (2, 3, 1) p 14 600.2 (22, 12) 14 601.0 (10, 3, 3) p
10 089.3 (14, 2) 10 091.3 (6, 2, 1) e1 14 721.2 (22, 13) 14 711.8 (22, 0, 1) e1

10 149.5 (14, 3) 10 149.9 (2, 3, 2) p 14 724.6 (22, 14) 14 725.2 (10, 3, 4) p
10 189.6 (14, 4) 10 190.7 (10, 1, 1) e1 14 729.5 (22, 15) 14 727.0 (18, 1, 2) e1

10 240.8 (14, 5) 10 241.6 (6, 2, 2) p 14 736.4 (22, 16) 14 735.5 (14, 2, 3) p
10 330.3 (14, 6) 10 327.1 (14, 0, 1) e1 14 818.9 (22, 17) 14 819.4 (10, 3, 5) p
10 360.4 (14, 7) 10 360.9 (10, 1, 2) p 14 881.4 (22, 18) 14 882.6 (14, 2, 4) p
10 365.2 (14, 8) 10 365.6 (6, 2, 3) p 14 894.5 (22, 19) 14 896.8 (10, 3, 6) e2

10 450.8 (14, 9) 10 451.3 (6, 2, 4) p 14 901.6 (22, 20) 14 902.8 (18, 1, 3) e1

10 512.5 (14, 10) 10 513.5 (10, 1, 3) p 14 918.9 (22, 21) 14 909.8 (22, 0, 2) e1

10 515.5 (14, 11) 10 513.3 (14, 0, 2) e1 15 009.2 (22, 22) 15 010.7 (14, 2, 5) p
10 643.4 (14, 12) 10 644.0 (10, 1, 4) p 15 065.9 (22, 23) 15 066.9 (18, 1, 4) p
10 686.6 (14, 13) 10 685.9 (14, 0, 3) p 15 103.0 (22, 24) 15 098.9 (22, 0, 3) e1

10 743.3 (14, 14) 10 744.1 (10, 1, 5) p 15 110.8 (22, 25) 15 112.9 (14, 2, 6) p
10 820.1 (14, 15) 10 821.5 (10, 1, 6) e2 15 192.2 (22, 26) 15 196.0 (14, 2, 7) e2

10 842.9 (14, 16) 10 842.6 (14, 0, 4) p 15 215.8 (22, 27) 15 217.0 (18, 1, 5) p
10 980.4 (14, 17) 10 980.1 (14, 0, 5) p 15 279.6 (22, 28) 15 278.0 (22, 0, 4) e1

11 092.6 (14, 18) 11 092.0 (14, 0, 6) p 15 290.5 (22, 29) 15 297.4 (14, 2, 8) e2

11 178.2 (14, 19) 11 177.1 (14, 0, 7) e2 15 348.5 (22, 30) 15 350.3 (18, 1, 6) p
11 274.9 (14, 20) 11 272.4 (14, 0, 8) e2 15 446.5 (22, 31) 15 446.0 (22, 0, 5) p
14 210.4 (22, 1) 14 215.7 (2, 5, 1) p 15 458.7 (22, 32) 15 460.8 (18, 1, 7) p
14 226.7 (22, 2) 14 229.5 (6, 4, 1) e1 15 546.1 (22, 33) 15 548.9 (18, 1, 8) e2

14 287.0 (22, 3) 14 292.2 (10, 3, 1) e1 15 601.8 (22, 34) 15 601.2 (22, 0, 6) p
14 330.6 (22, 4) 14 332.9 (2, 5, 2) p 15 644.7 (22, 35) 15 648.5 (18, 1, 9) e2

14 374.3 (22, 5) 14 376.4 (6, 4, 2) p 15 742.6 (22, 36) 15 741.2 (22, 0, 7) p
14 393.6 (22, 6) 14 398.5 (14, 2, 1) e1 15 765.9 (22, 37) 15 771.2 (18, 1, 10) e2

14 452.8 (22, 7) 14 455.1 (10, 3, 2) p 15 864.2 (22, 38) 15 861.7 (22, 0, 8) p
14 496.6 (22, 8) 14 497.3 (6, 4, 3) p 15 961.3 (22, 39) 15 957.4 (22, 0, 9) p
14 540.5 (22, 9) 14 541.0 (18, 1, 1) e1 16 057.8 (22, 40) 16 051.1 (22, 0, 10) e2

14 571.5 (22, 10) 14 573.3 (14, 2, 2) e1 16 178.1 (22, 41) 16 167.9 (22, 0, 11) e2

14 580.5 (22, 11) 14 580.7 (6, 4, 4) p 16 317.0 (22, 42) 16 303.5 (22, 0, 12) e2

a The energies are internal energies, that is, they include the ground-state energy.b The corresponding levels calculated from the one-resonance
Hamiltonian.c The type of torus on which the wave functions condense (see section 4).

Figure 3. Phase portraits (ψ̃, J̃) for P̃ ) 16 (P̃ ) 14) andI3 ) 1/2 (n3

) 0).

σpo ) {1 if po is stable
-1 if po is unstable
0 if po is unstable cusp orbit

(36)

Figure 4. Polyad sphere forP̃ ) 14 andn3 ) 0 with the quantizing
trajectories of Figure 3.

∑
po

σpo ) 2 (37)

ñ2
eff ≡ 1

2π
IJ̃ dψ̃ - 1

2
(38)
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in eq 33. This causes the jumps ofñeff in Figure 5 between
states 6 and 7 for polyad 14. The agreement with integer values
is very good. It becomes only a little bit worse for states close
to the separatrix, which is a feature generally faced in the EBK
quantization of integrable systems with separatrices. In such a
case, the semiclassical quantization has to be improved by a
so-called uniformization,23,24 which we will not perform here.

To see the meaning of the quantum numberñ2, let us have a
look at the wave functions in the space of the normal
coordinates,qi. They are given by

where Ψn is the nth wave function of a one-dimensional
harmonic oscillator,Ψn

(r) is the nth radial wave function of a
two-dimensional isotropic harmonic oscillator (see the work of
Joyeux25 for the details), and the amplitudes are the matrix
elementsã(P̃,n3,s̃),(n1,n2,n3)

≡ 〈P̃,n3,s̃|n1,n2,n3〉. The prime at the
summation symbol means that the summation runs over alln1

andn2 with 2n1 + n2 ) P̃.
In Figure 6, we represent the projections of the wave functions

of eq 38 for the eigenstates of polyadP̃ ) 14 with n3 ) 0. For
comparison, we also show the projections of classical trajectories
started on the corresponding quantized tori where the solutions
of Hamilton’s equations of the motions in action angle variables
are lifted back to the original normal coordinates via

As mentioned in the Introduction, the trajectories obtained by
eq 39 are, in practice, generally very close to the true trajectories
in the original coordinates. As expected, the quantum classical
correspondence is very transparent. States̃ ) 1 is localized on
a thin torus, which surrounds the periodic orbits corresponding
to the elliptic pointe1. At e1, the angleψ̃2 is locked at 0. With
the use of eq 31, this givesφ2 ) φ1/2, which leads to a left
open “u” shaped periodic orbit in the space of the normal
coordinates (q1, q2). The quantum numberñ2 can be considered
as the excitation perpendicular to this periodic orbit. The
excitation along the periodic orbit is related toP̃ - ñ2. In

accordance with our statement above, the projections of the tori
change smoothly across the pseudoseparatrix between eigen-
statess̃ ) 2 ands̃ ) 3. In contrast to that, the projections of the
tori change discontinuously across the true separatrix between
eigenstatess̃ ) 6 and s̃ ) 7. Between the two states, one
classically finds an unstable periodic orbit running along theq1

axis. This is the periodic orbit that corresponds to the cusp on
the polyad sphere in Figure 4. The states̃ ) 8 corresponding to
the largest energy in polyadP̃ ) 14 with n3 ) 0 is localized on
a thin torus surrounding the periodic orbit that corresponds to
the elliptic pointe2. Here,ψ̃2 is locked atπ or φ2 ) φ1/2 +
π/2, which gives a right open “u” shaped periodic orbit.

The complete wave function in the three-dimensional space
of the normal coordinatesqi is obtained from the multiplication
of the wave functions represented in Figure 6 by a harmonic
oscillator wave function with quantum numbern3 and argument
q3. Accordingly,n3 counts the number of nodal surfaces parallel
to the planes (q1, q2) in Figure 6.

The bifurcation diagram, which is shown in Figure 7, divides
the plane (J̃3, P̃ ) into two regions, which we denote by I and
II, where we follow the general classification scheme of
bifurcation diagrams for 1:2 Fermi resonance systems given by
Svitak, Rose, and Kellman.26 In region I, there is no true
separatrix and there are two elliptic points on the polyad sphere,
of which both are located on the longitude,æ ) 0. One of them
corresponds to the elliptic pointe1 shown in Figure 4 and is
located away from the poles. The other one corresponds to the
top line of phase portrait (ψ̃, J̃) in this parameter range and is
located at the south pole. In region II, one faces the situation
already shown in Figure 4, that is, there are two elliptic points
both located away from the poles on the longitudeæ ) 0 and
a separatrix connected to a cusp at the south pole. Because
quantum mechanicallyP̃ can only assume even integer values
and the line separating regions I and II is rather flat, one can
say that in the energy range where the one-resonance ap-
proximation is valid the polyad spheres for polyad numbersP̃
) 0 or P̃ ) 2, independently ofn3, have no separatrix.
According to Figure 7, the situation changes forn3 of the order
of 30, which lie beyond the applicability of one resonance
approximation.

For quantum mechanics, the size of structures in phase space
compared to Planck’s constant is essential. The bifurcation
diagram in Figure 7 does not give information on how in region
II the quantizing trajectories of the quantum states are distributed
relative to the separatrix. We therefore show in Figure 8 the
location of the eigenstates in diagrams in which energy is plotted
against the classical polyadP̃ for fixed quantum numbern3.
Figure 8 shows both the energy of the cusp and the energy of
the pseudoseparatrix running through the north pole. Although
there already is a separatrix forP̃ ) 4, the first eigenstate located
on a secondary torus aboute2 appears for polyadP̃ ) 8. This
holds at least for 0e n3 e 3. Similarly, the first eigenstates
located on secondary tori aboute1 appear forP̃ ) 6 for all 0 e
n3 e 3. The number of eigenstates associated with primary tori
decreases with increasing quantum numbers,P̃ andn3.

4. The Full System

Let us now incorporate all of the resonances and turn to the
Hamiltonian Hfull of eqs 24 and 25. We want to read this
Hamiltonian as the integrable HamiltonianHone, which in-
cludes only the dominant resonance term discussed in the
preceding section plus a perturbation, which incorporates all of
the other resonance terms. This perturbation destroys the in-
tegrability.

Figure 5. Effective quantum numbers of eq 37 for the quantizing
trajectories of Figure 3. The bars indicate the differences to integer
values.

Ψ(P̃,n3,s̃)
norm (q1,q2,q3) )

∑
n1,n2

′ã(P̃,n3,s̃),(n1,n2,n3)
Ψn1

(q1)Ψn2/2
(r) (q2)Ψn3

(q3) (39)

qi(t) ) x2Ii(t) cos(φi(t)) (40)
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As expected for low and intermediate superpolyad numbers,
classical phase space is still very regular as can be seen from
Poincare´ surfaces of section. Instead of showing Poincare´
surfaces of section of superpolyadP ) 14 for different energies,
we show in Figure 9 a superposition of those sets of points that
are obtained from starting on the quantized tori of Figure 3,
that is, with initial conditionJ3 ) 1/2. This figure is meaningful
because the tori are only slightly distorted by the other
resonances so that there are no intersections. The similarity of
Figures 9 and 3 demonstrates that the quantum states of the
full system with moderate superpolyad numbers can still be
assigned in terms of the EBK quantum numbers of the quantized
tori of section 3.

Classically, the situation is different forP ) 22 where
noticeable features of chaos arise in phase space and a figure
analogous to Figure 9 is no longer meaningful. Instead, we show
in Figure 10 usual Poincare´ surfaces of section for different
energies. We see that the energetic bottom and top of the
superpolyad still correspond to the elliptic pointse1 and e2

discussed in section 3. Chaos spreads out from the separatrix
between these two regular phase-space regions. The chaos band
is mainly concentrated about the direct neighborhood of the
former separatrix, and it becomes largest in the middle of the
superpolyad. But even for intermediate energies, there are
always large regular regions away from the chaos band. These
regions are so large that there is reason to believe that they will
host most of the quantum states and that only a small number
of the quantum states will be noticeably influenced by the chaos

band. To check this, we again have to look at the quantum
mechanical wave functions. The question arises as to which
variables to use to represent the wave functions. Because for
the full system the asymmetric stretch cannot be separated off,
we would have to look at three-dimensional wave functions if
we, for example, would represent them with respect to the
normal coordinatesqi. This is very inconvenient because on one
hand the corresponding plots are difficult to produce and on
the other hand the need of two-dimensional pictures requires
some kind of projection or cut by which essential information
often gets lost. In practice, it is very hard or even impossible to
classify the states from such plots. Instead, we find it useful to
stay with the configuration space parametrized by the angle
variables of our classical analysis. Although this space has the
disadvantage of being rather abstract, it has one great advantage
that makes it superior to any other configuration space: in angle
variables only, the trivial degree of freedom corresponding to
the superpolyad number can be separated off, that is, only for
the angle coordinates, it is possible to reduce the dimensions.
This advantage cannot be overemphasized. Quantum mechanical
wave functions in angle space are easily obtained. The
representation of the normal basis states|n1,n2,n3〉 in angle
coordinates is given by〈φ1,φ2,φ3|n1,n2,n3〉 ) exp(i(n1φ1 + n2φ2

+ n3φ3))/(2π)3/2, which are eigenfunctions of the action operators
if we interpret them to be given by-i∂/∂φi. This is meaningful
only in a semiclassical sense but totally sufficient for our
considerations. With the matrix elementsa(P,s),(n1,n2,n3) ≡
〈P,s|n1,n2,n3〉 already shown in Figure 1 forP ) 14, the

Figure 6. Projection of probability densities of the wave functionsΨ(P̃,n3,s̃)
norm of eq 38 and of trajectories of the corresponding classical tori to the

plane of the normal coordinatesq1 andq2 for polyad P̃ ) 14 with n3 ) 0. Each trajectory is integrated for a period of time equal to 0.1.
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representation of the eigenstates|P,s〉 becomes

where the factor exp(iPψ1) is just a negligible phase factor
wherefore the wave function is effectively a wave function on
the two-dimensional toroidal configuration space of the angles
ψ2 andψ3. In contrast to eq 38, the summation now also runs
over the quantum numbern3. The prime at the summation
symbol means that the summation is restricted to thoseni with
2n1 + n2 + 4n3 ) P.

In Figures 11 and 12, the probability densities|Ψ(P,s)
tor (ψ2,ψ3)|2

are shown together with the phase arg(Ψ(P,s)
tor (ψ2,ψ3)) for a

collection of eigenstates of superpolyadP ) 22. The shaded
regions mark phases between 0 andπ (mod 2π). The density
plots envision that the wave functions are mainly concentrated
on strips in directionψ3. This is the quantum mechanical
manifestation of the classical fact that the actionJ3 ) I3

approximately remains a constant of the motion and, accord-
ingly, the angleψ3 (the asymmetric stretch mode) is ap-
proximately decoupled. The mean phase advance in direction
ψ3 divided by 2π, that is, the number of shaded strips (or,
equivalently, the number of light strips) that are crossed upon
varyingψ3 from 0 to 2π for constantψ2 is the quantum number
n3. Accordingly, we can assign each state|P,s〉, besides the
superpolyad numberP, a quantum numbern3. Equivalently, the
states may be labeled byn3 and the polyad numberP̃ ) P -
4n3. In this way, we obtain the ladders of states with fixedP̃
andn3 in Figures 11 and 12. Within each ladder, the states are

ordered according to magnitude in energy. Energy increases
from the top to the bottom of the plot. A ladder (P̃,n3) contains
P̃/2 + 1 states (see eq 28). Note that in the full superpolyad
these ladders overlap in a complicated way.

Those states for which the quantum numbern3 can easily be
read off, which are the great majority of the states, are expected
to be located on the tori that remain of the integrable one-

Figure 7. Bifurcation diagram of the one-resonance system. The
abscissa is the classical actionJ̃3 ) n3 + 1/2. The ordinate is the classical
polyadP̃ ) P̃ + 2.

Ψ(P,s)
tor (ψ1,ψ2,ψ3) ≡ 〈ψ1,ψ2,ψ3|P,s〉 (41)

) ∑
n1,n2,n3

′a(P,s),(n1,n2,n3)
〈ψ1,ψ2,ψ3|n1,n2,n3〉

(42)

) eiPψ1
1

(2π)3/2
∑

n1,n2,n3

′a(P,s),(n1,n2,n3)
ei(n1ψ2+n3ψ3)

(43)

Figure 8. Location of the eigenstates (dots) relative to classical phase-
space structures for different polyadsP̃ with n3 ) 0 andn3 ) 3. The
abscissa is the classical polyadP̃ ) P̃ + 2. The ordinate is the energy,
which for reasons of graphical representation is shifted by the energy
of the elliptic pointe1.

Figure 9. Superposition of Poincare´ surfaces of section for superpolyad
P ) 14. The initial conditions are chosen on the quantized tori of Figure
3. In each case, the section condition isψ3 ) 0 with ψ̇3 > 0.
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resonance system after the perturbation. For these states, the
location of the strip on theψ2 axis gives information on the
type of the corresponding quantized torus. Taking into account
eq 2, one concludes from the densities of states located about
ψ2 ) 0 (mod 2π) (see the top and middle states in Figures 11
and 12) that they correspond to classical motions with〈ψ2〉t )
〈φ1〉t - 2〈φ2〉t ) 0 where〈...〉t denotes a time average. Taking
the time derivative gives〈ψ̇2〉t ) 〈φ̇1〉t - 2〈φ̇2〉t ) 0, that is, an
effective resonance,ω1

eff ) 2ω2
eff, whereωi

eff ≡ 〈∂H/∂Ii〉t are the
time-averaged effective frequencies of eq 2. By the general
relation between action angle variables (Ii, φi) and the normal
coordinatesqi in eq 39, the effective resonance maps to a “u”
shape in the (q1, q2) plane. For states with densities aboutψ2 )
π (see, for example, the bottom states in Figure 12), one finds
the same effective resonance, which again leads to a “u” shape,
which is now reflected about theq2 axes because of the phase
shift 〈φ1〉t - 2〈φ2〉t ) π. Note that these conclusions on the
classical motions may be drawn without performing any classical
analysis.

For the assignment of a third quantum number to the states
of a ladder with fixedP̃ andn3, we look at the phase advances
in the directionψ2. For a state with a good quantum number
n3, the expansion in eq 42 is effectively restricted to normal
basis states with quantum numbers 2n1 + n2 ) P̃ whereP̃ ) P
- 4n3. Within such a sum,n1 runs from 0 toP̃/2. Accordingly,
the maximum number of phase advances in units of 2π in
direction ψ2 is P̃/2. Obviously, the amplitudesa(P,s),(n1,n2,n3) in
eq 42 are distributed in such a way that the resulting densities
of the wave functions are in accordance with the ranges of the
classical motions. It is therefore natural to restrict the count of
nodal lines in the directionψ2 to intervals with a noticeable
density |Ψ(P,s)

tor |2. For states uniformly distributed aboutψ2 or
localized aboutψ2 ) 0 (see, for example, statess ) 4 ands )
5 in Figure 11), this is exactly the quantum numberñ2 de-
fined in eq 33 for states that are associated with classical motions
on primary tori or secondary tori about the elliptic pointe1. If
we recall that the indexs̃ labels the quantum states with
increasing energy within a polyadP̃ with fixed n3 and that the
elliptic pointe1 corresponds to the energetic bottom of a polyad,
the quantum numberñ2

(e1) can be identified withs̃ - 1. Within
each ladder (P̃, n3) in Figures 11 and 12, the top states
correspond toñ2 ) 0.

Equivalently, for states located aboutψ2 ) π, the resulting
quantum number is to be identified with the quantum number

ñ2 defined in eq 33, now for motions on secondary tori about
e2. The quantum numberñ2

(e2) is equal toP̃/2 + 1 - s̃.
The localization of the wave functions aboutψ2 ) π at the

bottom of Figures 11 and 12 increases whenn3 decreases. The
localization is, for example, strongest forn3 ) 0 where the lines
of constant phase are vertical. For the bottom states in Figure
11 with a relatively broad density aboutπ for which the deter-
mination of the phase advances in directionψ2 on the range of
the nonvanishing density is not so obvious, it is more convenient
to count equivalently the number of valleys of the density.

The change from counting the phase advances for states
localized aboutψ2 ) 0 to counting the phase advances for states
localized aboutψ2 ) π is also reflected by the discontinuity of
the quantum numberñ2 in Figure 5. For transient states localized
close to the region of the narrow chaos band, that is, in the
region of the separatrix of the one-resonance approximation, a
third quantum number can be assigned by bothñ2

(e1) and ñ2
(e2)

(see, for example,s ) 40 in Figure 12). In particular, for large
n3, the bottom states in Figure 11 are still localized rather close
to the former separatrix and they can still be assigned byñ2

(e1)

(see, for example, statess ) 11 ands ) 19). For a ladder with
a largen3 (see, for example, the ladder (P̃, n3) ) (6, 4)), it is
apparent that the total phase advances in units of 2π in direction
ψ2 range from 0 toP̃/2. In contrast to that, the assignment of
the quantum numberñ2

(e1) cannot be continued very far across
the separatrix for ladders (P̃, n3) with a small quantum number
n3 because the density almost totally vanishes away fromψ2 )
π and the phase advances in these regions are no longer
identifiable in directionψ2 (see, for example, statess ) 41 and
s ) 42 in Figure 12).

By the above considerations, we were able to assign most of
the states and to produce Table 2, which can be considered as
the main result of this paper. For each state|P,s〉, Table 2 gives
the polyad quantum numberP̃ ) P - 4n3, the approximate good
quantum numbern3, and the labels̃, which is related to the
EBK quantum numberñ2 depending on whether the quantum
state is localized on a primary torus, a secondary torus aboute1

or a secondary torus aboute2. The fact that, classically, the
primary tori transform smoothly to the secondary tori aboute1

(see the previous section) is also reflected by the localization
of the wave functions; wherefore, we do not want to overem-
phasize this distinction.

There are a few states that do not fit easily into this scheme.
For these states, the matrix elements〈s,P|n1,n2,n3〉 with different

Figure 10. Poincare´ surfaces of section for superpolyadP ) 22. As in Figure 9, the section condition is againψ3 ) 0 with ψ̇3 > 0.
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n3 noticeably mix. But having assigned most of the states that
are easy to assign, there is no difficulty to include the remaining
more problematic states into the assignment scheme.

With the assignment and motions in normal-mode coordinates
now in hand, it is worth translating the results into internal
atomic and bond motions and excitations. Clearly,n3 tells us
the degree of excitation of the decoupled asymmetric stretch.
P̃ measures the amount of excitation energy preserved for the
other degrees of freedom. The effective resonance,ω1

eff ) 2
ω2

eff, following from the vertical nature of the wave densities in
Figures 11 and 12 means that the symmetric stretch variable
goes through its range of values twice for one sweep of the
bend variable. This can occur in two extreme ways, as at the
top and bottom rows of Figures 11 and 12. Centering aboutψ2

) 0 corresponds to the symmetric stretch being minimally
extended when the absolute value of the bend is maximal while
the symmetric stretch is maximal when the bend coordinate goes

to zero (see the upper left picture in Figure 6). In contrast,
centering aboutψ2 ) π means that the absolute value of the
bend coordinate and the symmetric stretch reach their minimum
and maximum values simultaneously (see the lower right picture
in Figure 6). Increasings̃ represents a transition between these
two extremes and is, in a sense, a measure of the dephasing
from them.

Note that the simple procedure illustrated in this section
almost gives all of the information obtained by different methods
for the one-resonance system in the preceding section. The
methods of the preceding section and their far-reaching analyti-
cal results were made possible by the neglect of all resonances
up to one resonance between the symmetric stretch and the bend.
For higher superpolayd numbers where the other resonances
have to be included, the methods of the preceding section break
down and there is almost no alternative to the procedure
explained in this section.

Figure 11. Densities and phases of the wave functionsΨ(P,s)
tor defined in eq 40 for superpolyadP ) 22 on the toroidal configuration space

parametrized by the anglesψ2 andψ3. Each column represents a ladder of constant quantum numbersP̃ andn3. Within a ladder, energy increases
from the top to the bottom.
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5. Conclusions

In this work, we represented an assignment of the vibrational
spectrum of N2O and analyzed the underlying classical motions.
We showed that for low and intermediate superpolyad numbers
N2O can be well approximated by a Hamiltonian with only a
single resonance between the symmetric stretch and the bend.
In this approximation, the corresponding classical system is
integrable and, accordingly, its phase space is foliated by
invariant tori. After a change of coordinates, the two trivial
degrees of freedoms, which correspond to the classical analogues
of the polyad number and the quantum number of the asym-
metric stretch, can be separated off and it remains a system
with one effective degree of freedom of which the dynamics
takes place on a so-called polyad sphere. We distinguished
between the primary tori of the system without resonances and
the secondary tori due to the one resonance. The centers of the

secondary tori are two periodic orbits, which have a “u” shape
of different orientation when projected to the space of the normal
coordinates of the symmetric stretch and the bend. These
periodic orbits correspond to the energetic ends of the polyads,
and they appear as elliptic points on the corresponding polyad
spheres. The secondary tori about the elliptic point at the
energetically lower end of each polyad transform smoothly to
the primary tori. In contrast to that, there is a separatrix between
the secondary tori about the elliptic point at the upper ends of
the polyads and the primary tori. On the polyad sphere, the
separatrix maps to a cusp. The quantum states are localized on
the invariant tori the actions of which fulfill EBK quantization
conditions. Besides the EBK quantum numbers consisting of
the polyad numberP̃ and the separated quantum numbern3,
there is one nontrivial EBK quantization to be solved. The
nontrivial quantization condition can be illustrated through the

Figure 12. Continuation of Figure 11.
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representation of the quantizing trajectories, which are the
projections of the quantized tori to the polyad sphere. This
representation especially gives information on which of the three
types of tori the quantum mechanical wave functions are
localized, which is important for the assignment in terms of
EBK quantum numbers.

For higher superpolyad numbers, other resonances gain
importance as was explicitly illustrated for superpolyad 22.
There remains only one good quantum number, which is the
superpolyad number and an analysis as for low and intermediate
superpolyad numbers is no longer possible. Instead, we switched
to the representation of semiclassical wave functions on the
toroidal configuration space of the angle variables that remain
after separating off the degree of freedom corresponding to the
superpolyad number. It turned out that the classical chaos is
mainly concentrated about a small band along the separatrix of
the former integrable system and most of the states can still be
assigned in terms of the EBK quantum number of quantized
tori. The graphical representation alone already included all
information on the assignment. Note that this procedure is
applicable to any system for which the number of effective
degrees of freedom is not greater than 2. In the application of
this scheme to N2O, the method does not display its full power
because the classical dynamics is to a great extent regular and
dominated by the tori of the integrable system. The scheme
becomes especially interesting when classical phase space is
complicated by a stronger impact of chaos and an assignment
is far from obvious. The great success of the application of this
procedure to acetylene9,10 and CHBrClF11 showed us that even
for such complicated systems the classical analysis can be
reduced to a minimum or might not even be necessary. Almost
everything that is needed is in the graphical representation of
the semiclassical wave functions on the toroidal configuration
space, which are obtained with almost no further calculation.
The patterns of wave functions clearly display the aspects of
the classical motion, which are relevant for quantum mechanics.
Some basic knowledge of action angle variables enables one to
translate the relevant aspects of the motion on the configuration
torus back to the motion in the original coordinates, which may
be normal- or local-mode coordinates. In forthcoming papers,
which will be in particular dedicated to people who are
nonspecialists in the field of nonlinear dynamics, a catalog of
rules for these translations will be established.
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