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The vibrational spectrum of XD as given by an effective spectroscopic Hamiltonian based on the existence

of a superpolyad number is analyzed and assigned in terms of classical motions. The effective Hamiltonian
includes a large number of resonances of which only one is dominant for low and intermediate superpolyad
numbers. In this energy range, the corresponding classical system is quasi-integrable and can be described in
terms of a system with only one nontrivial degree of freedom. This integrable system can be analyzed by
considering the so-called “quantizing trajectories” on a “polyad sphere”. This method is no longer applicable
when the superpolyad number is further increased and classical chaos comes into play. We then turn to a
powerful universal method based on the graphical representation of semiclassical wave functions on a naturally
appearing toroidal configuration space. These wave functions are obtained using the already known
transformation matrix used in fitting the effective Hamiltonian. Experience with the interpretation of the
resulting figures allows one to draw conclusions on the classical internal motions and therefore on the
assignment of the quantum states without any further calculation. As such, the method is of particular interest
to nontheorists and to nonspecialists in the fields of nonlinear dynamics and quantum calculation. For higher
superpolyad numbers, the chaos remains mainly concentrated about the direct neighborhood of a separatrix
of the former integrable system so that a great part of the vibrational spectrum can still be assigned in terms
of the EBK quantum numbers of quantized tori.

1. Introduction assignment of the quantum states but of further importance
Following experiments on carbon dioxié@effo, Perevalov, because it contains, for example, information needed to under-

and Lyulin introduced a spectroscopic Hamiltonian for nitrous stand isomerization and reactivity.

oxide? based on the approximate relations between harmonic In this paper, we are concerned with the assignment of the
frequencies pure vibrational spectrum of /. The first step toward an

assignment is already given through the existence of a super-
ww,~ 2:1, wlws~ 1:4 (1) polyad numbef‘,wh@ch is directly connected to the resonances
in eq 1 and of which the conservation was the basis for the
construction of the spectroscopic Hamiltonian. One can proceed
with the assignment by looking at the corresponding classical
system. The spectroscopic Hamiltonian as given in the number
orepresentation can be translated to classical mechanics via the

which incorporates a large number of resonances, was confirme L tandard application of Heisenbera’s correspondence brinciole
by a combination of high-resolution Fourier transform spec- pp . €Iy espor ep pie.
The result is a classical Hamiltonian given in action angle

troscopy and intracavity laser absorption spectroscopy between X .
6500 and 11 000 cmt and between 11 700 and 15 000 Tin vanabl_es G, ¢’i?' The appearance of action angle vanqbles
respectively® From a general point of view of physics émd underlies the idea that originally there exists a classically

chemistry, the fit of a quantum spectrum to a spectroscopic m_tegrable system derived from the_ quantum H_amHtoman
Hamiltonian cannot be the final step in the analysis of a without off-diagonal elements for which the inclusion of the

vibrational spectrum. In addition the question of the relation of °ff-diagonal elements acts as a perturbation. For an integrable

the spectra to the underlying classical motion has to be answeredSYStem. the Liouville-Arnold theorerf says that phase space

The answer to this question is not only necessary for the is generically foliated by invariant tori. Here, action angle
variables are the most suitable coordinates with the angles

* To whom correspondence should be addressed. Phén6:421 218- parametrizing the tori for fixed actions. Accordingly, Hamilton’s
4566. Fax:+49 421 218-4869. E-mail: waalkens@physik.uni-bremen.de. equations of motion assume the simple form

wherew;, w,, andws refer to the harmonic frequencies of the
symmetric stretch, the bend, and the asymmetric stretch,
respectively. The quality of the spectroscopic Hamiltonian,

10.1021/jp013057w CCC: $22.00 © 2002 American Chemical Society
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= O _ 0, ¢ = oA o @) nodal lines in the density plots or counting phase advances in
i o, AP i the phase plots. The simplicity of this method on one hand and
its great power on the other hand were already demonstrated
that is, the actions are constants of the motion and the anglesyia the application to the complex vibrational spectra of
#i, increase in time with constant frequencies, Action angle acetylen&1% and CHBrCIF!! The method is especially useful
variables are, for eX&mp'e, essential for the discussion of hOWfor those who are not Speciaﬁsts in the fields of nonlinear
an integrable SyStem reacts to a small perturbation. In such adynamics and quantum calculations because, as mentioned
case, KAM theory guarantees the survival of tori with suf- ahove, the representation needs no serious calculation. The only
ficiently irrational frequency ratios. For the classical analogue hyrdle that remains is the ability to mentally and visually work
of the quantum mechanical molecule with vibrational degrees \yith action angle variables, which at first are rather abstract
of freedom, the integrability-destroying perturbation appears yariables. Once done, there is no difficulty to lift the motion
quantum mechanically through the inclusion of off-diagonal gescribed with respect to action angle variables back to the
elements. This perturbation is, in general, not small. Neverthe- ¢orresponding motion with respect to the original Cartesian type
less, the action angle variables of the unperturbed system aresf coordinates. This is made possible by the observation that,
quite useful even for the description of a perturbed system, gthough the formal relation of the action angle variables to the
Whlch'usually' e>§h|b|ts significant featgres qf chaos. ThIS. IS original Cartesian type of coordinates generally may be very
especially valid in molecular physics in which the energies compjicated, it usually is a very good approximation to lift the
reached before the dissociation of the molecule are often high 5tion angle variables back to the Cartesian type of coordinates

enough to destroy most of the original tori and to produce a 45 it they were related via a first-order canonical perturbation
complex phase space with a number of resonance Zdnzs theory12-14

which fortunately are not high enough to destroy all regular

structures in phase space. Furthermore, very small structures
which might exist in phase space, are not visible in quantum
mechanics because of a nonvanishing Planck’s constant, an
in this way, quantum mechanics seems to average over the
classical motions. Therefore, a great number of the quantum

states of a vibrational molecule are roughly localized on more . i, .
superpolyad number. In this case, it is appropriate to replace

or less pronounced KAM tori or the tori that surround stable h vad ber by a li binati f onlv th
periodic orbits, which are the centers of the resonance zonest'€ Superpolyad number by a finear combination of only those

and which are characterized by a phase lock of the angle dUantum numbers that are no longer good quantum nunfibers.
variables. This offers the opportunity to associate whole series © distinguish it from the superpoyad number, this quantum
of quantum states with KAM primary tori or periodic orbits number will bg referred to as the polyad number. Classically,
and to assign them by quantum numbers of EBK type. the asymmgtnc strgtch can be approxmgtely separated off,land
The common procedures of the classical analysis remain there remains an integrable system with only one effective
feasible for systems with up to two effective degrees of freedom degree of freedom. The phase space of the one degree of
in which the four-dimensional phase space can still be analyzed{rédom system has the topology of a sphere. The dynamics on
in terms of two-dimensional Poincaseirfaces of section. For  this so-called “polyad sphere” is discussed, and it is related to
systems in molecular physics with a superpolyad number, thereth® gquantum system through the representation of so-called
exists the opportunity to separate off explicitly the trivial degree “quantizing trajectories”, which are the projections of the
of freedom connected to the superpolyad number. The corre-duantized tori onto this sphere. This is the subject of the first
sponding separating coordinates are some linear combinationP@rt in which we particularly concentrate on superpolyad 14 of
of the angle variables. Although this separability is taken Which 8 of its 20 bands could be measured by Campargue et
advantage of in many works in this field as far as the classical &° In the second part, the superpolyad number is further
analysis is concernedthe separability is utilized for the increased and the other resonances become important. The
guantum mechanics only in rare exceptiéns.classification ~ asymmetric stretch can no longer be separated off, and the
of the quantum states is usually attempted through the repre-classical dynamics becomes chaotic. A polyad sphere no longer
sentation of wave functions in the original Cartesian type of €Xists, and an analysis as in the first part is no longer possible.
coordinates, which may be either normal- or local-mode We then switch to our procedure mentioned above and illustrate
coordinates. The fact that there is still hidden a trivial degree it for the eigenstates of superpolyad 22 of which 2 of its 42
of freedom in these coordinates because they do not allow forbands could be measured Campargue étAlternatively, it
a separation makes it difficult to find a classification scheme. Will be seen that from the relations of the two remaining angles
Instead, it is ultimately simpler to carry out the analysis in the of the reduced dimension toroidal configuration space to the
reduced dimension space of the separated angle variables evetiree original angles and from the visually recognizable location
for the quantum mechanical analysis. A representation of the of the wave function density on the 2 torus most conclusions
quantum states with respect to these angles can be easilyabout the motion in original molecular coordinates can be
obtained with no new calculation. This representation is only inferred without further calculation. Moreover, this analysis is
meaningful in a semiclassical sense but is totally sufficient for also applicable to the one-resonance case. This all means that
the purpose of an assignment and the analysis of the classicathe classification of states can be effectively done without using
motions. The result is a wave function on a two-dimensional nonlinear classical analysis. The outline of this paper is as
toroidal configuration space, which is easy to present graphically follows. In section 2, the classical Hamiltonian is derived from
in terms of density plots and plots of the phases of the wave applying Heisenberg's correspondence principle to the spec-
functions. The density plots serve for the identification of the troscopic Hamiltonian, which is explicitely represented in terms
underlying classical motion and for the sorting of the states in of creation and annihilation operators. In section 30ONs
a polyad into ladders of levels, each based on a unique classicabnalyzed by incorporating exclusively the dominating Fermi
motion. Quantum numbers are obtained from either counting resonance between the symmetric stretch and the bend. The

Our analysis of MO is mainly divided into two parts. For
low and intermediate superpolyad numbers, a resonance between
Othe symmetric stretch and the bend is so dominant that other
resonances are of minor importance and can be neglected. The
qguantum number corresponding to the asymmetric stretch
remains a second good quantum number along with the
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energy regime in which chaos comes into play and the analysis
based on the presentation of semiclassical wave functions on

the torus of the angle variables is the subject of section 4.
Concluding remarks and an outlook are given in section 5.

2. Quantum and Classical Hamiltonian

To derive the classical analogue to the effective quantum
Hamiltonian presented by its matrix elements by Teffo, Per-
evalov, and Lyulire we write the effective Hamiltonian
explicitly in terms of creation and annihilation operators. It can
be divided into three terms,

A=Ay + A"+ A, (3)
whereHg" is the harmonic termi3™ is the nonharmonic part
of the Dunham expansion, aftj includes all of the off-diagonal

terms. To write the terms explicitly, we introduce the abbrevia-
tions

S R ~ A
I = E(alal + alaD 4)
I P A at | ata A at
l,= E( haPod T Bogog T Baglog T Bogfag) )
i,= 1@, + aa) ©)
3= 5% T g

wherea;d,g andéygg are the creation and annihilation operators

for the degenerate bend degrees of freedom with d and g

referring to droit (right) and gauche (left) in the notation of
Cohen-Tannoudji, Diu, and Laldé The linear term and the
second- and third-order anharmonic term then read

Alin A A
Ho = oy, + w,l, + w4l

(7)
~anh_ % R R - R
Ho = Xqal 1o 1 Xpol 115 Xygl 113 1 Xool )7 4 Xl ol 3 +
<5 <3 o I o
Xagls™ T Yinaly™ 1 Va1l + Yazalalols + Yigdl 15 +
a s PP < g o S
Yizol1lo™ 1 Yasglals™ + Yool 7 1 Vaogl o 153 1 Yaggl ol 3™+
~3
Yasds (8)

The termH; is the sum of a 1:2 Fermi resonance for the
symmetric stretch and the bend

|:|1s:2b= Ft(EZ)Z(QIaZdaZQ + adj) + F(lz)z(alélalazdéZg + adj) +
Doata a at a ata ata a -
FS )Z(alazdaZQaZgaZQ T &880 04 T ad)) +

Fg2>2(a‘{aZdazg|3 + adj) (9)

a 2:1 Fermi resonance for the symmetric stretch and the

asymmetric stretch

Has1a= + adj) + FP(all ala, + adj) + FY)

+ adj) (10)

S CHEICR
(8] alayl, + adj) + F$(a;al8,4] &
a Fermi resonance involving a three-mode interaction

Hls:Zb:la: FéA)Z(aIQZQé;ga3 + adj) + F(14)2(é1 zAil alé;dagga3 +
ad)) + F3 2@ oo sg 818 T B Po o ocfids T adj) +
F(34)2(éaé;asélazg32d +adj) (11)

plus higher-order terms
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F9%4 (8,8} 4080 A0, + adj) + (12)
FOY4@) 418,804, + ad)) + (13)
F2al al al ala,a, + adj) + (14)
FO22(a] &) aja, A8 + adj) (15)

In the expressions above, the creation and annihilation
operators appear symmetrically for each degree of freedom. A
classical Hamiltonian can therefore be obtained directly from
Heisenberg’s correspondence principle

&' — I expie), &— /1, exp=ig)

wherel; and¢; are the canonical action angle variables of the
corresponding classical system. The creation and annihilation
operatorsﬁ;d,g andéyqg only appear in such a way that they
conserve the total number of quanta in the degenerate bend
degrees of freedom, 2d and 2g. This is necessary to secure a
vanishing vibrational angular momentum. It is therefore con-
venient to introduce the classical actipn= loq + lo4 of which

the classical interpretation is the radial action of a two-
dimensional isotropic oscillator separated in polar coordinates.
The expressions fasZy' and 3" are immediately obtained
from replacing in eqs 7 and 8 the operat@rby the classical
actionsl;. For the interaction term one finds

& (16)

= 2FQ ), + FOLYA, + FO/1L,2 +
FEZ)«/Elzls) oS, — 2¢,) + 2(F£33)|1\/|_3 + F(13)I12“/E *
FOTal, + F1L1Y) cos(@, — bg) + 2FON 1,01 +
FOLY,15 + FOL2 + FOL1L1) cosg, +
26, — ¢3) + 2FC0 21, cos(4p, — p2) +
2F(Y) i 22 COS(2p, — 4¢,) + 2F2) 12|3C03(4751 26y +
SE(13) l3/2| , x/E cos(3p, — 2¢, — ¢5) (17)

The appearance of action angle variables underlies the idea
that we originally had a classically integrable system described
by the Hamiltonian7s = 7&" + 2™, which only depends on
the action variables to which a perturbati@fi is added, which
explicitly depends on the angles so that the actions are in general
no longer constants of the motion. The resonanu%’ail +
N, + ndgs with (¥, nY), n) €73, in the argument of the
cosine functions are linear combinations of the two approximate
resonance condition&,w (= 0 with n = (1,—2,0) andin,w
= 0 withm= (0,4,-1), given by eq 1. Because a perturbation
fO(I1,15,13) coshg)dn + ng>¢2 + ng)¢3) is constant on a
hyperplaneng)q)l + ng>¢2 + ng)q)g = 0 in the three-dimensional
space of the angles{,¢.,¢3), the hyperplane is not affected
by the perturbation. The actions corresponding to the angles,
which span that hyperplane, would remain being constants of
the motion. Because the perturbatigfi consists of a mixture
of the two linearly independent resonanaesand m, there
remains only a single line in angle space that is invariant under
the perturbation. The direction of this linensx m = (2,1,4).

Let us derive a canonical transform from the old angles
(p1.92.¢3) and actiond = (11,12,13) to new anglegy = (y1,12,13)

and actions) = (J1,J2,J3) so thatiy; points in the invariant
directionn x m in the space of the old angles. Then, the action
Ji, conjugate tay;, is automatically a constant of the motion.
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For the canonical transform, we choose a generating function
of type 3 in the notation of Goldsteifithat is, a function that

Waalkens et al.

conserved. For the classical system, the existence of a conserved
guantity simplifies the analysis because it reduces the number

in our case depends on the old actions and the new angles. Wef the effective degrees of freedom, in our case from 3 to 2.

make the ansatz

Fi(ly) = —0, Myl= _ZIiMijwj (18)
7

with some 3x 3 matrixM, which we define in the following.

For a general discussion of how to reduce the degrees of freedom
of a spectroscopic Hamiltonian, see the work of M. E.
Kellmanl?

The Hamiltonian .97 in terms of the new phase space
coordinates s, ¥, 3, J1, Jo, J3) reads

Then the new and old phase-space coordinates are related Vi%ull = w,d,+ 0P~ 23, — &) + wds + X11~]22 +

¢

] ]

that is, when the angles transform with a maivix the actions
transform with the inverse transposehdf We require thaty;m
x N = (¢1,¢2,¢3). This fixes the first row oM tom x n. Then,
the first new actionJ;, which by construction is a constant of
the motion, is equal toh x m, (I1,12,13)0giving in our case
J=2,+1,+4l, (20)
In principle, we are free in the choice of the remaining
components of the matrik. In practice, however, we would
like the new actions to be related to the old actions in a simple
way to have a simple interpretation of these actions. In our case,
we require thaf, = I; andJ; = I3, that is, we choose the second
and the third row ofM equal to (1,0,0) and (0,0,1). The
transformations in eq 19 become

3, L\ (20, + 1, + 4,
Ll=MTL =11, (21)
J3 I3 I3

and
2 ol (o3
Yy [= MY @, |= |01 — 26, (22)
Y3 ¢3 #3 — 49,

Note that the matrisM defined this way is unimodular, that is,

Xy do(P— 23, = 4d) + Xy 50,0y + X P — 2], — 4J))° +
Yoo = 235 = 433+ Xggds + Yiaady' + Yarod (F—
23, = A) + Yio5(F = 23, — 4Jg)d; + y113]22‘]3 +
Yiooo(#— 23, — 4J3)2 + 3/13332‘332 + Yoo d = 23, -
435)° + Yoo P — 23, — 4320 + Yy L — 23, — 4dp)J57 +

Y333~]33 (24)

plus

A = 2(P— 23, — 43)(FOI, + FP3,%% + 2FP( 7 —
23, — 433, + F\/3,35) cosp, + 2(F,/3; +
FP3,° 35 + FI,/ 352 — 23, — 43,) +
F33,323,) cos(2p, — ) + 2(#— 23, — 435)(F /3,0, +
F93,%2/3, + F(#— 23, — 43)) /3,3, +
F$3.%/3,) costp, — ) + 2F0 /(72— 23, —
43,)? cosy,+ 2FMV, (2 — 23, — 43)%cos(2p,) +
2F(193,23, cos(4p, — 2y,) + 2F193,32 [3,(r— 23, -

4J3) cos(3p, — ) (25)
all of which is parametric irJ;.
The numerical values for the parameters of the effective

Hamiltonian are taken from the eighth row of Table 3 in the
work of Teffo, Perevalov, and Lyulidywhich we list once more

it has integer components and unit determinant. This securesin Table 1 of this work. The relatively large size of the parameter
2) _ i T ; .
that its inverse again has integer components so that the NeW=@ — 17,9632 indicates on the first inspection that the 1:2

anglesy; again run over intervals of lengthz2 In fact, this
gives the new variables], the meaning of action variables
according to the strong definition of action variables as, for
example, formulated by Arnolel.

The conserved actiody for which we will write from now
on ¢ is the classical analogue of the so-called superpolyad
number

P=2n,+n,+4n, (23)

with ng, n;, and nz as the number of quanta in the original
degrees of freedom, that is, in the symmetric stretch, in the bend,
and in the asymmetric stretch. Becauseis the sum of the

guanta of two degenerate bend degrees of freedom that have to
be the same to have a vanishing vibrational angular momentum,

it can assume only even integer values. Incorporating the zero-

Fermi resonance of the symmetric stretch and the bend should
have a dominating effect on the quantum mechanics as well as
on the classical mechanics. That this is indeed the case can be
proven to be correct by various considerations. In Figure 1 the
amplitudes, [3,P|ny,ny,n30) of the normal-mode basis states,
Ing,nz,nsC(which are the eigenstates of the unperturbed effective
Hamiltonian withH; = 0) for the eigenstate$R,s] of the full
effective Hamiltonian are shown fd® = 14. Here,s counts

the eigenstates with a fixed superpolyad numBeordered
according to magnitude in energy. Let us remark that the
superpolyad number has to be even and that the number of
eigenstates in a superpoly®&dis

PY16+ P/2 +1 if P/2is even

N(P) =
P =1ro6+ P2+ %, if P/2is odd

(26)

point energies, the classical superpolyad is quantized according

to #2= P + 4. The conservation of the superpolyad number
was the basis for the construction of the effective quantum
Hamiltonian, that is, because of the approximate resonances
in eq 1 the Hamiltonian should have off-diagonal elements,

giving N(14) = 20 andN(22) = 42. The figure shows two
important things. First, it proves that it is generally not

reasonable to assign normal-mode quantum numberay,

nz) to the statesP,sC] As a reasonable limit for the ability to

which interchange the quanta between the different degrees ofassign normal-mode quantum numbers to an eigenstate, the

freedom only in such a way that the superpolyad number is

criterion can be taken thaP,slJshould have at least a 50%
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TABLE 1: Parameters of the Spectroscopic Hamiltonian

w1 w2 w3 X11 X12 X13 X22
1298.590 11 596.2937 2281.998 14 —3.9178 —3.0087 —27.207 21 0.5432

X23 X33 Y111 Y112 Y113 Y122 Y123
—14.585 13 —15.165 16 —0.004 714 —0.116 084 —0.34311 —0.035 329 0.51513

Y133 Y222 Y223 Y233 Y333 Ff) F(lz)
0.059 79 —0.0131887 0.046 411 0.009 261 0.015 737 —17.963 240 0.2365

F(Zz) F(SZ) F(e3) F(ls) F(23) F(33) Fg)
0.3899 0 —0.329 69 —0.265 334 1.009 89 1.9716 0

F(14) F(24) Fg4) E(0) [=CED) F@2) E13)
0 0 —0.229 66 0 0 0 0.233 32

3 2 1201221010110000[0
T T T T

TTTTT
(7.0,0)
(6,2,0)
(5,4,0)
5,0,1)
(4.6,0)
4.2,1)
(3,8,0)
(34,1)
3.0.2)

(2,10,0)
{2,6,1)
{2,2,2)

(1,12,0)
{1,8,1)
(14,2
(1,0,3)

0,14,0)

0,10,1)
(0,6.2)
0,2,3)

e
LR R g

T

|

|

|

|

Lhrrrreferfn

Pyl oo iepros
PEvrf e f oty tafrin
PEYEED P ey g
Prvrfref e pteyteprng
| P et rapn]n
| Pprepriiepngoeprebrepnr
| Phref ot roprapre] s
| IERAERRE AR AN NN RN RN
| N AR AN R A N
| Pl eyt
| P eyt
| et fn
| RN AR RN Y
| Pfrefeoprnfre]a
Ppvepref e piefre] o
e ficpiepreph
N AR AN N
|

|

|

|

|

|

|

|

|

|

|

|

normal basis states

Frpteprsprefpn
b
Frfrefrefiefn
trfrrpreprefrne

|
i
|
i
)
I
I
[N ARNEE RN SR R
I
)
I
)
I
I
I

rfveftofpiefn
e trfdieprfn

thftefrternfn

[
t
H
1
I
Pejenptaprp]rn]
It
I
Hl
Pefrnregnfrri
"

alalabn Figure 2. Distribution of the eigenstates (dots) of the one-resonance

). 3 8 0 12 14 16 18 20 system with polyad numbé? and quantum numbe; over the states
eigenstate s of the full system, which incorporates all resonances with superpolyad

numberP. Note that each dot in each line of constRrepresent®/2

+ 1 eigenstates.

Figure 1. AmplitudesP,s|n;,nz,nsC(horizontal ticks) of the basis states
for the eigenstates of superpolyBd= 14. The dashed lines bounding

each solid line mark a “confidence interval” of Wldth\ﬁ On the assume even |nteger Values_ The number Of states |n a polyad
abscissas labels the states within the superpolyad ordered according P does not depend om; and is given by
S

to magnitude in energy. The numbers above are the quantum number

ns, which can be approximately assigned to the quantum siBisis N(lf’) =PP+1 (28)

contribution from the corresponding basis statgns,nal1° This Figure 2 shows how the superpolyaBisare distributed over
is only the case for very few eigenstates of superpolyad 14 andj,q polyads® and the blocks with fixeds.

for almost no _eigenstates of supr_erpolyad 22 for which we omit  The approximate separability ok, of course, also further
the presentation of a separate figure. Second, Figure 1 showssimpjifies the analysis of the classical system. If we neglect all
that only those normal basis states that have the same quanturgy ihe resonances up to the 1:2 resonance between the symmetric

numberns mix for a given eigenstatiP,sl] To a great extent,  gyetch and the bend, then the actigand the classical analogue
this even holds for superpolydi= 22. Accordingly, to a very of the polyadP

high degree of approximatiomg is a further good quantum

number besides the superpolyad number, that is, the superpolyad P=72| L (29)
blocks of the matrix representation of the quantum Hamiltonian

in terms of the basis sefin,n;,nsl can be further block  are two constants of the classical motion besides the total energy

diagonalized so that each block corresponds to a fixed quantumso that the classical system is integrable. To describe the
numbems. For a system in which one quantum number can be integrable system, we change to the new actions

separated off, it is common to deal with a polyad number that

is a linear combination of the those quantum numbers that are J; 2, +1, I,

no longer good quantum numbers. We define the polyad number f]z =l =mTl, (30)
_ ) \ls E
P=P—-4n;=2n,+n, (27)

) that is,J; is the polyad? andJ; remains the conserved third
so that we are left with two good quantum numbessndP. action,ls. The angles transform with the inverse of the matrix,
Like the superpolyad numbé&, the polyad numbeP can only M, giving
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P, o, (o The quantizing trajectories fall into three groups. If we
P, |= MY b, |= [0, — 20, (31) consider the terny77" as an integrable perturbation 6f3"
Vs b3 \ps and refer to the tori of the system described %™ alone as

the primary tori, one can say that states63of polyadP = 14
The classical Hamiltonian in terms of the phase-space variablescorrespond to deformed primary tori. Note that the tori of

(,J) is given by J03" alone would appear as horizontal lines in the phase
3 } y y y o portrait @, J). Because of the integrable perturbatii",
T= 0,3, + 0,(P— 23,) + wady+ Xy 13,7 + X (P — there appear two new regions of which the centers are elliptic
~ =5 o 97 \2 o 97\7 points of the one degree of freedom system, which are denoted
~2‘]2) + leJz‘]?’ + Xiz(ji 2‘]2} + X23({) ~ 2‘]2){3 4: by e ande; in Figure 3. The tori aboug, which correspond to
Xads™ + Yi1195° + Va0 (P — 23,) + Yy P — 23,)3, + t7he s(;aéesi bl an?s =d2, ande,, Whigh corrgsg\o?d to states
5 23 % s 0¥ N2 RE > and 8, will be referred to as secondary tori. At first, it seems
1139293 T Viopbo (= 205)" + Vigadpds” + Yoo = y

. . L ~ - < 3 as if there were two separatrices: a first separatrix separating
2J,)" + Yoo P — 23,) I3 + Yo L — 23,)I5° + V335)5” (32) the secondary tori abow and the primary tori and a second
separatrix separating the primary tori and the secondary tori

plus the interaction term aboute,. They are indicated by dashed lines in Figure 3. In the
~ ~ _ ~ ~ following, we will see that the first separatrix is not a separatrix
A= 2(P— 23)(FA /3, + FPI¥ + FP(r— in the sense that it is connected to unstable motion. In fact, the

=\ /= 2) Ay ~ secondary tori abouwg; transform smoothly to the primary tori.
21) \/‘J—Z + Fg )‘/‘J—ZJS) cosy, (33) To see this, let us interpret the integrable system as a two degree
of freedom system with a parametdy, that is, let us forget
about the asymmetric stretch for a moment. At the top of the
(9, J) phase portrait); reaches its maximum valug?/2. This
implies that the original actiofy vanishes whild; reaches its
maximum, /2. Accordingly, the whole top line of the phase
portrait represents a single symmetric stretch periodic orbit of
the two degree of freedom system. Conversely, at the bottom
of the (i, J) phase portrait] vanishes and, accordingly, the
original actionl; vanishes while the original actida reaches
its maximum value, which is equal t@2 The whole bottom

As mentioned above, in the one-resonance approximation, jine represents a single bend periodic orbit of the two degree
the classical dynamics is integrable. We can discuss the of freedom system. In contrast to that, the circles of theJ)
integrable system from different perspectives: First, it is a three phase portrait correspond to 2-tori in phase space of the two
degree of freedom system with phase-space coordingtes (  degree of freedom system. From the perspective of the one
Y2, 3, d1, J2, Js) wherey; andyps are cyclic variables, thatis,  degree of freedom system, the top and the bottom line each
they do not appear in the Hamiltonia#i®"and therefore the  represent a single point. Taking into account the periodic
conjugate momentum variablds and J; are constants of the  poundary condition in the direction, the phase portraig( J)
motion. Second, we can treat the system as a family of two has the topology of a sphere. If we want to present the dynamics
degree of freedom systems parametrized by the conserved actiomn a “true” sphere by some change of coordinates, it is to be
Js with phase-space variablegy( 12, Ji, J). Third, we can  taken into account that the change of coordinates must be
consider the system as a two-parameter family of one degreecanonical to preserve the form of Hamilton’s equations of the
of freedom systems with family parametelsndJs, and phase-  motion and to preserve the ability to draw any conclusion on
space variablesj(;, J,). In the following, we will mainly adopt  the original system. For a one degree of freedom system, this

The system described by°" is effectively a one degree of
freedom system in the canonical variablés {/2). In Table 2,

we list the energy spectrum obtained from the quantum
Hamiltonian with all of the resonances together with the
assignment in terms of the quantum numbers of the one-
resonance system, which is the subject of the following two
sections.

3. N;O with Only the 142, Fermi Resonance

the latter point of view and we will, for short, writgp(J) instead ~ means that the transformation has to be area preserving. This
of (2, Jo). leads one to the map
The phase space of an integrable system with three degrees N N
of freedom is foliated by invariant 3-tori. The energy eigenstates =1, 0= arcco{;‘wim) (35)
tend to concentrate on those 3-tori the actions of which fulfill ’ 17

the EBK quantization conditions. In our cask,and J; are
quantizedqwith5 + 2 andnz + 1/,, respectively, giving two of whereg €[0,2r] and & €[0,7] are the usual angles on a sphere

the three EBK quantization conditions that define the quantized (S)((),Y(,:f’:)l”g d(ﬁ)g%?; zg]hz}i"silgv(gnst? dalg K/IOSEG ),Kv(;llrllrlﬁg_nlsa:]h deco-
3-torus. The third EBK quantization condition is workers!®22 |f the radius of the sphere is chosen to be equal
1 to R = V42 one immediately proves the area preserving
’UZ dy, = 27[ 0 ‘]2 dy, = § (34) property, dy dJ = R? sin ¥ dv dg. Following eq 34, the top of
the @, J) phase portrait maps to the south pole and the bottom
Interpreting our system as a one degree of freedom system, wemaps to the north pole.

can plug the quantized values for the parameleendJs into In Figure 4, the polyad sphere is shown for polyag 14

the classical Hamiltoniar7®"® and display the “quantizing  andnz = 0 with the quantizing trajectories of Figure 3. On the
trajectories” in the phase portraitpg, J)) = (i, J). The polyad sphere, the “separatrix” between states 2 and 3 maps to
quantizing trajectories are defined as the level setg®f set a smooth circle, which runs smoothly across the north pole.
equal to the quantum mechanical energy eigenvalues. Figure 3The reason for the smoothness is that in fhelj phase portrait
shows the quantizing trajectories of polydels= 14 with nz = the “separatrix” intersects the bottom lide= 0 perpendicularly

0 and the corresponding(14) = 8 energy eigenvalues of Table at ¢ = x + a/2. Accordingly, the secondary tori aboet
2. transform smoothly to the primary tori. The separatrix between
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TABLE 2: Energy Levels, EUI, of the Spectroscopic Hamiltonian Which Includes All of the Resonances for Superpolyad? =
14 and P = 22 and the Assignment in Terms of the Quantum Numbers of the One-Resonance Hamiltoni&n

ENl (e ) (P, 9) E°neb (cmY) (P, ns, % torug Eful (cm1) P, 9) E°neb (cm2) (P,ns, % torus
10032.0 (14, 1) 10033.2 2,31 p 14 600.2 (22, 12) 14601.0 (10,3,3) p
10089.3 (14, 2) 10091.3 6.21) e 14721.2 (22, 13) 147118 (22,0.1) e
10 149.5 (14, 3) 10 149.9 2,3,2) p 14 724.6 (22, 14) 14 725.2 (10,3,4) p
10189.6 (14, 4) 10190.7 (10,1,1) e 14729.5 (22, 15) 14727.0 (18,1.2) e
10 240.8 (14, 5) 10241.6 6,22 p 14.736.4 (22, 16) 147355 (14,2,3) p
10330.3 (14, 6) 10327.1 (14,0,1) e 14818.9 (22, 17) 14819.4 (10,3.5) p
10 360.4 (14, 7) 10 360.9 (10,1,2) p 14.881.4 (22, 18) 14 882.6 (14,2,4) p
10 365.2 (14, 8) 10 365.6 6,23 p 14.894.5 (22, 19) 14 896.8 (10,3.6) e
10 450.8 (14, 9) 10451.3 (6,2,4) p 14 901.6 (22, 20) 14 902.8 (18,1, 3) e
105125 (14, 10) 105135 (10,1,3) p 14918.9 (22, 21) 14909.8 (22,0.2) e
10 515.5 (14,11) 10513.3 (14,0,2) & 15009.2 (22, 22) 15010.7 (14,2,5) p
10 643.4 (14, 12) 10 644.0 (10,1.4) p 15 065.9 (22, 23) 15 066.9 (18,1.4) p
10 686.6 (14, 13) 10 685.9 (14,0,3) p 15103.0 (22, 24) 15098.9 (22,0.3) @
10 743.3 (14, 14) 10 744.1 (10,1,5) p 15110.8 (22, 25) 15112.9 (14,2,6) p
10820.1 (14, 15) 108215 (10,1,6) e 15192.2 (22, 26) 15196.0 (14,2.7) e
10 842.9 (14, 16) 10 842.6 (14,0,4) p 15215.8 (22, 27) 15217.0 (18,1,5) p
10 980.4 (14, 17) 10 980.1 (14,0,5) p 15279.6 (22, 28) 15278.0 (22,0.4) e
11092.6 (14, 18) 11092.0 (14.0.6) p 15290.5 (22, 29) 15297.4 (14.2.8) e
11178.2 (14, 19) 11177.1 (14,0,7) & 15348.5 (22, 30) 15350.3 (18,1.6) p
11 274.9 (14, 20) 11272.4 (14,0,8) e 15 446.5 (22, 31) 15 446.0 (22,0,5) p
14210.4 (22, 1) 142157 2,51 p 15 458.7 (22, 32) 15 460.8 (18,1.7) p
14226.7 (22, 2) 142295 6,41 e 15546.1 (22, 33) 15548.9 (18,1,8) e
14 287.0 (22, 3) 14292.2 (10,3,1) e 15601.8 (22, 34) 15601.2 (22,0.6) p
14 330.6 (22, 4) 14332.9 2,52 p 15 644.7 (22, 35) 15648.5 (18,1,9) e
143743 (22, 5) 14 376.4 6.42) p 157426 (22, 36) 157412 (22,0.7) p
14 393.6 (22, 6) 14 398.5 (14,2,1) e 15765.9 (22, 37) 15771.2 (18, 1, 10) e
144528 (22.7) 14 455.1 (10.3,2) p 15 864.2 (22, 38) 15861.7 (22,0.8) p
14 496.6 (22, 8) 14 497.3 6,43 p 15961.3 (22, 39) 15957.4 (22,0,9) p
145405 (22, 9) 14541.0 (18,1,1) e 16 057.8 (22, 40) 16 051.1 (22,0.10) e
145715 (22, 10) 14573.3 (14,2,2) e 16 178.1 (22, 41) 16 167.9 (22,0,11) e
14580.5 (22, 11) 14580.7 (6,44 p 16 317.0 (22, 42) 16 303.5 (22,0.12) e

aThe energies are internal energies, that is, they include the ground-state éridrgycorresponding levels calculated from the one-resonance
Hamiltonian.® The type of torus on which the wave functions condense (see section 4).

Figure 4. Polyad sphere foP = 14 andn; = 0 with the quantizing
trajectories of Figure 3.

Figure 3. Phase portraitsy(, J) for = 16 (P = 14) andlz = Y, (n Z(ipo =2 37)
=0). Po

The role of the unstable cusp orbit is special because it
corresponds to a singularity of the polar coordinates in which
the isotropic oscillator of the degenerate bend degrees of
'freedom is separated. We will shortly come back to this point.
rEquation 37 is consistent with our result of two elliptic points,
e andey, and one cusp.

In Figure 5, we show how far the quantizing trajectories fulfill
the EBK quantization condition in eq 33. The figure shows the
effective quantum number

the primary tori and the secondary tori abeginaps to a circle
with a cusp at the south pole.

The polyad sphere is not only introduced for esthetic reasons
but the fact that phase space of the one degree freedom syste
(y, J) has the topology of a sphere has important implications.
The most striking one is the limitation on the number of periodic
orbits of different stability due to the Poincaredex theorem.

If each (isolated) periodic orbit, po, is mapped to a stability
index, o, according to

st _ Lgzoo 1
1 ifpois stable gl =-fddy -3 (38)
0po={ —1 if pois unstable (36)
0 if pois unstable cusp orbit where the integrals are taken along the quantizing trajectories.

The EBK quantization condition in eq 33 is discontinuous at
then the Poincarendex theorem tells that the separatrix because of the discontinuity of the action defined
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accordance with our statement above, the projections of the tori

~ change smoothly across the pseudoseparatrix between eigen-
5 P=14 = statess = 2 andS = 3. In contrast to that, the projections of the
tori change discontinuously across the true separatrix between
4 - eigenstates = 6 and3$ = 7. Between the two states, one
classically finds an unstable periodic orbit running alongghe
34 - axis. This is the periodic orbit that corresponds to the cusp on

the polyad sphere in Figure 4. The state 8 corresponding to

c the largest energy in polya®l= 14 withnz = 0 is localized on

a thin torus surrounding the periodic orbit that corresponds to
the elliptic pointe,. Here,ﬂ;z is locked atr or ¢, = ¢1/2 +

1 - == /2, which gives a right open “u” shaped periodic orbit.
The complete wave function in the three-dimensional space
0+ - = of the normal coordinatesg is obtained from the multiplication

of the wave functions represented in Figure 6 by a harmonic
oscillator wave function with quantum numberand argument

gs. Accordingly,ns counts the number of nodal surfaces parallel
to the planesd, @) in Figure 6.

Figure 5. Effective quantum numbers of eq 37 for the quantizing The bifurcation diagram, which is shown in Figure 7, divides

trajectories of Figure 3. The bars indicate the differences to integer € Plane s, #) into two regions, which we denote by | and
values. II, where we follow the general classification scheme of

bifurcation diagrams for 1:2 Fermi resonance systems given by
in eq 33. This causes the jumps @t in Figure 5 between  Svitak, Rose, and Kellma#. In region I, there is no true
states 6 and 7 for polyad 14. The agreement with integer valuesseparatrix and there are two elliptic points on the polyad sphere,
is very good. It becomes only a little bit worse for states close of which both are located on the longitude= 0. One of them
to the separatrix, which is a feature generally faced in the EBK corresponds to the elliptic poirggs shown in Figure 4 and is
guantization of integrable systems with separatrices. In such alocated away from the poles. The other one corresponds to the
case, the semiclassical quantization has to be improved by atop line of phase portraitj(, J) in this parameter range and is
so-called uniformizatiod?2* which we will not perform here.  located at the south pole. In region II, one faces the situation

To see the meaning of the quantum numiigilet us have a already shown in Figure 4, that is, there are two elliptic points

look at the wave functions in the space of the normal both located away from the poles on the longityde= 0 and

~-
ol

i 2 3 4 _6 6
S

coordinatesg;. They are given by a separatrix connected to a cusp at the south pole. Because
guantum mechanically?can only assume even integer values
P00 = and the line separating regions | and Il is rather flat, one can

i say that in the energy range where the one-resonance ap-
z a(?’,n@é),(nl,nzna)lpnl(ql)lpgz)lz(qz)lpng(qQ (39) proximation is valid the polyad spheres for polyad numbers
2 = 0 or P = 2, independently ofn;, have no separatrix.
According to Figure 7, the situation changestigiof the order

of 30, which lie beyond the applicability of one resonance
approximation.

For quantum mechanics, the size of structures in phase space
compared to Planck’'s constant is essential. The bifurcation
diagram in Figure 7 does not give information on how in region
Il the quantizing trajectories of the quantum states are distributed
relative to the separatrix. We therefore show in Figure 8 the
location of the eigenstates in diagrams in which energy is plotted
against the classical polyad for fixed quantum numbens.
Figure 8 shows both the energy of the cusp and the energy of
the pseudoseparatrix running through the north pole. Although
there already is a separatrix fér= 4, the first eigenstate located
on a secondary torus aboeyt appears for polya® = 8. This

holds at least for < n3 < 3. Similarly, the first eigenstates
q(t) = 4/21;(t) cosg;(1)) (40) located on secondary tori abceitappear fo® = 6 for all 0 <

. . . . . ) nz < 3. The number of eigenstates associated with primary tori
As mentioned in the Introduction, the trajectories obtained by jacreases with increasing quantum numb@rand ns.

eq 39 are, in practice, generally very close to the true trajectories

in the original coqrdinates. As expected, the.quantu.m classical4. The Full System

correspondence is very transparent. S&atel is localized on

a thin torus, which surrounds the periodic orbits corresponding  Let us now incorporate all of the resonances and turn to the
to the elliptic pointe;. At ey, the angley; is locked at 0. With Hamiltonian 7! of eqs 24 and 25. We want to read this
the use of eq 31, this givep, = ¢1/2, which leads to a left Hamiltonian as the integrable Hamiltonia#®"® which in-
open “u” shaped periodic orbit in the space of the normal cludes only the dominant resonance term discussed in the
coordinatesdj, gz). The quantum numbér, can be considered  preceding section plus a perturbation, which incorporates all of
as the excitation perpendicular to this periodic orbit. The the other resonance terms. This perturbation destroys the in-
excitation along the periodic orbit is related B — f. In tegrability.

where W,, is the nth wave function of a one-dimensional
harmonic oscillator®" is the nth radial wave function of a
two-dimensional isotropic harmonic oscillator (see the work of
Joyeux® for the details), and the amplitudes are the matrix
elementsée,, ¢ ;.n,ny = [PNaSINunz,nel] The prime at the
summation symboi means that the summation runs over all
andn, with 2n; + n, = P.

In Figure 6, we represent the projections of the wave functions
of eq 38 for the eigenstates of polyRd= 14 with nz = 0. For
comparison, we also show the projections of classical trajectories
started on the corresponding quantized tori where the solutions
of Hamilton’s equations of the motions in action angle variables
are lifted back to the original normal coordinates via
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Figure 6. Projection of probability densities of the wave functio °’n’;‘5) of eq 38 and of trajectories of the corresponding classical tori to the

plane of the normal coordinates and g, for polyad P = 14 with n; = 0. Each trajectory is integrated for a period of time equal to 0.1.

As expected for low and intermediate superpolyad numbers, band. To check this, we again have to look at the quantum
classical phase space is still very regular as can be seen fronmechanical wave functions. The question arises as to which
Poincafe surfaces of section. Instead of showing Poihcare variables to use to represent the wave functions. Because for
surfaces of section of superpolyBd= 14 for different energies,  the full system the asymmetric stretch cannot be separated off,
we show in Figue 9 a superposition of those sets of points that we would have to look at three-dimensional wave functions if
are obtained from starting on the quantized tori of Figure 3, we, for example, would represent them with respect to the
that is, with initial conditionJ; = 1/,. This figure is meaningful normal coordinateg;. This is very inconvenient because on one
because the tori are only slightly distorted by the other hand the corresponding plots are difficult to produce and on
resonances so that there are no intersections. The similarity ofthe other hand the need of two-dimensional pictures requires
Figures 9 and 3 demonstrates that the quantum states of thesome kind of projection or cut by which essential information
full system with moderate superpolyad numbers can still be often gets lost. In practice, it is very hard or even impossible to
assigned in terms of the EBK quantum numbers of the quantizedclassify the states from such plots. Instead, we find it useful to
tori of section 3. stay with the configuration space parametrized by the angle

Classically, the situation is different foP = 22 where variables of our classical analysis. Although this space has the
noticeable features of chaos arise in phase space and a figurelisadvantage of being rather abstract, it has one great advantage
analogous to Figure 9 is no longer meaningful. Instead, we showthat makes it superior to any other configuration space: in angle
in Figure 10 usual Poincarsurfaces of section for different  variables only, the trivial degree of freedom corresponding to
energies. We see that the energetic bottom and top of thethe superpolyad number can be separated off, that is, only for
superpolyad still correspond to the elliptic poirds and e, the angle coordinates, it is possible to reduce the dimensions.
discussed in section 3. Chaos spreads out from the separatrixThis advantage cannot be overemphasized. Quantum mechanical
between these two regular phase-space regions. The chaos bandave functions in angle space are easily obtained. The
is mainly concentrated about the direct neighborhood of the representation of the normal basis stapesny,nsJin angle
former separatrix, and it becomes largest in the middle of the coordinates is given bybi,¢2,¢3N1,N2,Ns= exp (e + N2
superpolyad. But even for intermediate energies, there are+ n¢z))/(27)%2 which are eigenfunctions of the action operators
always large regular regions away from the chaos band. Theseif we interpret them to be given byid/dg;. This is meaningful
regions are so large that there is reason to believe that they willonly in a semiclassical sense but totally sufficient for our
host most of the quantum states and that only a small numberconsiderations. With the matrix elementgp.g nynny) =
of the quantum states will be noticeably influenced by the chaos [P,s|n;,n,,nzl0 already shown in Figure 1 foP = 14, the
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Figure 7. Bifurcation diagram of the one-resonance system. The
abscissa is the classical actigyw n; + /.. The ordinate is the classical
polyad #= P + 2.

representation of the eigenstat€ssllbecomes

lIJE(ljf'r,s)(l/)1,1/12:’/}3) = [, 95, 95|P,SU (41)

z 'Ap g (nnung W1, P2 W3l N1, N50

N1,N2,N3
(42)
: 1 i
— APy1 ' i(N1y21ngy3)
€ 3 Z a(P,s),(nl,nz,n3) €
(2.71’) 2"1ﬂ2,n3

(43)

where the factor exfvy,) is just a negligible phase factor
wherefore the wave function is effectively a wave function on
the two-dimensional toroidal configuration space of the angles
2 andys. In contrast to eq 38, the summation now also runs
over the quantum numbers. The prime at the summation
symbol means that the summation is restricted to tmpgeth
2n1 +n, + 4n3 = P.

In Figures 11 and 12, the probability densiti@&e  (12,13)|2
are shown together with the phase &’Q(S)(zpz,wg)) for a
collection of eigenstates of superpolyRd= 22. The shaded
regions mark phases between 0 an¢mod 27). The density
plots envision that the wave functions are mainly concentrated
on strips in directionys. This is the quantum mechanical
manifestation of the classical fact that the actidp= I3

approximately remains a constant of the motion and, accord-

ingly, the angleys (the asymmetric stretch mode) is ap-

Waalkens et al.
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Figure 8. Location of the eigenstates (dots) relative to classical phase-
space structures for different~poly~a93Nith n; = 0 andnz = 3. The
abscissa is the classical polyati= P + 2. The ordinate is the energy,
which for reasons of graphical representation is shifted by the energy
of the elliptic pointe;.

8

Figure 9. Superposition of Poincamirfaces of section for superpolyad
P = 14. The initial conditions are chosen on the quantized tori of Figure

proximately decoupled. The mean phase advance in directions. In each case, the section conditionjis= 0 with 15 > 0.

w3 divided by 2, that is, the number of shaded strips (or,
equivalently, the number of light strips) that are crossed upon
varyingys from O to 2z for constanty, is the quantum number
ns. Accordingly, we can assign each staksl] besides the
superpolyad numbé?, a quantum numbaers. Equivalently, the
states may be labeled Ing and the polyad numbeé? = P —

4ns. In this way, we obtain the ladders of states with fixed
andnz in Figures 11 and 12. Within each ladder, the states are

ordered according to magnitude in energy. Energy increases
from the top to the bottom of the plot. A laddé?,(3) contains
P/2 + 1 states (see eq 28). Note that in the full superpolyad
these ladders overlap in a complicated way.

Those states for which the quantum numbgcan easily be
read off, which are the great majority of the states, are expected
to be located on the tori that remain of the integrable one-
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Figure 10. Poincafesurfaces of section for superpoly®= 22. As in Figure 9, the section condition is agagin= 0 with 15 > 0.

resonance system after the perturbation. For these states, thé&, defined in eq 33, now for motions on secondary tori about

location of the strip on thep, axis gives information on the e, The quantum numbei? is equal toP/2 + 1 — &

type of the corresponding quantized torus. Taking into account  The localization of the wave functions abapt =  at the

eq 2, one concludes from the densities of states located aboubottom of Figures 11 and 12 increases wieuecreases. The

Y2 = 0 (mod 2r) (see the top and middle states in Figures 11 |ocalization is, for example, strongest fay= 0 where the lines

and 12) that they correspond to classical motions \ijtji] = of constant phase are vertical. For the bottom states in Figure

(1] — 2[,[1= 0 whereLl [Jdenotes a time average. Taking 11 with a relatively broad density abautfor which the deter-

the time derivative givespol= [¢:10]— 2[¢p,[1= 0, thatis, an  mination of the phase advances in directipnon the range of

effective resonancaaq‘fff = ngﬁ, Wherewieff = [BJdliJare the the nonvanishing density is not so obvious, it is more convenient

time-averaged effective frequencies of eq 2. By the general to count equivalently the number of valleys of the density.

relation between action angle variablés ¢;) and the normal The change from counting the phase advances for states

coordinatesy; in eq 39, the effective resonance maps to a “u” localized abouty, = 0 to counting the phase advances for states

shape in thedi, gp) plane. For states with densities abgut= localized aboutp, = 7 is also reflected by the discontinuity of

7 (see, for example, the bottom states in Figure 12), one finds the quantum numbé, in Figure 5. For transient states localized

the same effective resonance, which again leads to a “u” shapeclose to the region of the narrow chaos band, that is, in the

which is now reflected about thep axes because of the phase region of the separatrix of the one-resonance approximation, a

shift [¢:1[] — 2[p,0) = 7. Note that these conclusions on the third quantum number can be assigned by HfH and A

classical motions may be drawn without performing any classical (see, for examples = 40 in Figure 12). In particular, for large

analysis. ns, the bottom states in Figure 11 are still localized rather close
For the assignment of a third quantum number to the statestq the former separatrix and they can still be assignedby

of a ladder with fixed™ andns, we look at the phase advances (see, for example, states= 11 ands = 19). For a ladder with

in the directiony,. For a state with a good quantum number 5 |argen; (see, for example, the ladde®,(ns) = (6, 4)), it is

ns, the expansion in eq 42 is effectively restricted to normal gpparent that the total phase advances in unitszaf 2lirection

basis states with quantum numberg 2 n, = P whereP = P 1, range from 0 taP/2. In contrast to that, the assignment of

— 4ns. Within such a sumg, runs from 0 toP/2. Accordingly, the quantum numbe® cannot be continued very far across

the maximum number of phase advances in units wfir2 the separatrix for ladder®( ns) with a small quantum number

direction y; is '.5/ 2. Obviously, the amplitudeseg,mmn) N hecause the density almost totally vanishes away fyons
eq 42 are distributed in such a way that the resulting den5|t|esn and the phase advances in these regions are no longer

of the_ wave f_unctlon_s are in accordance with th_e ranges of the identifiable in directiony, (see, for example, states= 41 and
classical motions. It is therefore natural to restrict the count of o _ 45, Figure 12)

nodal lines in the directiony, to intervals with a noticeable By the above considerations, we were able to assign most of
density W% For states uniformly distributed aboy or the states and to produce Table 2, which can be considered as
localized about, = 0 (see, for example, states= 4 ands = the main result of this paper. For each st@gsl) Table 2 gives
5 in Figure 11), this is exactly the quantum numifigrde- — he nolyad quantum numbBr= P — 4ns, the approximate good
fined in eq 33 for states that are associated with classical mOt'O”Squantum numbens, and the labeE, which is related to the
on primary tori or se_condNary tori about the elliptic po@t If _ EBK quantum numbefi, depending on whether the quantum
we recall that the indexs labels the quantum states with  giate s localized on a primary torus, a secondary torus agout
increasing energy within a polydelwith fixed ng and thatthe o 5 secondary torus aboes. The fact that, classically, the
elliptic pointe; corresponds to the energetic bottom of a polyad, primary tori transform smoothly to the secondary tori abaut
the quantum numbeis™ can be identified withs — 1. Within (see the previous section) is also reflected by the localization
each ladder K, ng) in Figures 11 and 12, the top states of the wave functions; wherefore, we do not want to overem-
correspond tdi, = 0. phasize this distinction.

Equivalently, for states located abayt = 7, the resulting There are a few states that do not fit easily into this scheme.
quantum number is to be identified with the quantum number Eqr these states, the matrix elemestB|ny,n,,nsCwith different
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(B,ny)=(2,5) (P,n3)=(6,4) (P,n3)=(10,3)
s=3

|/}

L —

Figure 11. Densities and phases of the wave functidhgs) defined in eq 40 for superpolyal = 22 on the toroidal configuration space
parametrized by the angles andys. Each column represents a ladder of constant quantum nurRteerdns. Within a ladder, energy increases
from the top to the bottom.

nz noticeably mix. But having assigned most of the states that to zero (see the upper left picture in Figure 6). In contrast,
are easy to assign, there is no difficulty to include the remaining centering abouty, = & means that the absolute value of the
more problematic states into the assignment scheme. bend coordinate and the symmetric stretch reach their minimum
With the assignment and motions in normal-mode coordinates ahd maximum values simultaneously (see the lower right picture
now in hand, it is worth translating the results into internal in Figure 6). Increasing represents a transition between these
atomic and bond motions and excitations. Cleanlytells us  two extremes and is, in a sense, a measure of the dephasing
the degree of excitation of the decoupled asymmetric stretch. from them.
P measures the amount of excitation energy preserved for the Note that the simple procedure illustrated in this section
other degrees of freedom. The effective resonamﬁg,: 2 almost gives all of the information obtained by different methods
wg“, following from the vertical nature of the wave densities in for the one-resonance system in the preceding section. The
Figures 11 and 12 means that the symmetric stretch variablemethods of the preceding section and their far-reaching analyti-
goes through its range of values twice for one sweep of the cal results were made possible by the neglect of all resonances
bend variable. This can occur in two extreme ways, as at the up to one resonance between the symmetric stretch and the bend.
top and bottom rows of Figures 11 and 12. Centering alggut ~ For higher superpolayd numbers where the other resonances
= 0 corresponds to the symmetric stretch being minimally have to be included, the methods of the preceding section break
extended when the absolute value of the bend is maximal while down and there is almost no alternative to the procedure
the symmetric stretch is maximal when the bend coordinate goesexplained in this section.
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(P.ng)=(14,2) (P,n3)=(18,1) (P,n3)=(22,0)

s=21,24,28,31
§=34,36,38,39

Figure 12. Continuation of Figure 11.

5. Conclusions secondary tori are two periodic orbits, which have a “u” shape
In thi K d . ¢ the vibrational of different orientation when projected to the space of the normal
nzr ';W?rubwen:jepae?e;tﬁ tﬁn ans(jlgaln?:]entlo tiennra:itlonna coordinates of the symmetric stretch and the bend. These

spectrum o and analyzed the uncerlying classical motions. periodic orbits correspond to the energetic ends of the polyads,

We showed that for low and intermediate superpolyad numbers - . :

and they appear as elliptic points on the corresponding polyad

N2O can be well approximated by a Hamiltonian with only a spheres. The secondary tori about the elliptic point at the

single resonance between the symmetric stretch and the bend: .
In this approximation, the corresponding classical system is energetically lower end of each polyad transform smoothly to

integrable and, accordingly, its phase space is foliated by the primary tori. In_contrastto thf_;\t,_there is a separatrix between
invariant tori. After a change of coordinates, the two trivial the secondary tori about the elliptic point at the upper ends of
degrees of freedoms, which correspond to the classical analoguef1® polyads and the primary tori. On the polyad sphere, the
of the polyad number and the quantum number of the asym- Separatrix maps to a cusp. The quantum states are localized on
metric stretch, can be separated off and it remains a systemthe invariant tori the actions of which fulfill EBK quantization
with one effective degree of freedom of which the dynamics conditions. Besides the EBK quantum numbers consisting of
takes place on a so-called polyad sphere. We distinguishedthe polyad numbeP and the separated quantum numbgr
between the primary tori of the system without resonances andthere is one nontrivial EBK quantization to be solved. The
the secondary tori due to the one resonance. The centers of theontrivial quantization condition can be illustrated through the
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