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Abstract – This paper presents an alternative framework for a practically rele-
vant class of nonlinear electro-mechanical systems. The formalism is based on
a generalization of Brayton and Moser’s mixed-potential function. Instead of fo-
cusing on the usual energy-balance, the models are constructed using the power
flowing through the system. The main objective is to put forththe mixed-potential
function as a new building block for modeling, analysis and controller design
purposes for electro-mechanical systems.

1 Introduction

It is well-known that the Port-Hamiltonian (van der Schaft,2000) equations form a
very suitable and natural framework to describe the dynamics of a broad class of non-
linear electrical, mechanical and electro-mechanical systems. In this paper we present
a dual formulation of the dynamics of nonlinear electro-mechanical systems in terms of
the co-energy (power) variables. The method uses the classical Brayton-Moser (Bray-
ton and Moser, 1964) equations based on the notion of kinetic, magnetic and electric
co-energy and the definition of a mixed-potential function.Originally, this framework
stems from the early sixties and seems to be very little knownin the systems and
control community. In the new setting the mixed-potential function exists of power
preserving potentials, mechanical content, electro-magnetic content and electrical co-
content. The main advantage of a well-defined dual formulation is that essential and
important properties can be translated from one framework to another. One of these
useful properties is that the mixed-potential function canbe used as a starting point to
derive a new family of storage functions. Instead of using the total stored energy as a
storage function, as with Port-Hamiltonian systems, we usethe mixed-potential func-
tion. The results of this paper form a starting point to overcome the dissipation obstacle
in electro-mechanical systems that cannot be stabilized bythe energy-balancing tech-
nique as recently proposed in (Ortega, van der Schaft, Mareels and Maschke, 2001). At
a more general level, our objective in this paper is to put forth the mixed-potential func-
tion as a new building block for analysis and controller design for electro-mechanical
systems and bring under the attention again the Brayton-Moser equations as a fair al-
ternative to the Lagrangian and Port-Hamiltonian frameworks.
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For reasons of space and clarity, detailed proofs are omitted and the developments are
restricted to a practically relevant class of linear and nonlinear mechanical, electrical
and electro-mechanical systems.

Notation: By Tx(x, ·) we denote the derivative with respect tox, i.e,

Tx(x, ·) =
∂T

∂x
(x, ·).

Consequently,Txx(x, ·) = ∂2T
∂x2 (x, ·), etc.. Byŷ(x) we define the vector of the consti-

tutive relations for thek (x–controlled) elements of a certain type (resistance, capaci-
tance, etc.),̂y(x) = (ŷ1(x), . . . , ŷk(x))⊤.

2 Brayton-Moser’s Equations

In the early sixties, Brayton and Moser (Brayton and Moser, 1964) have shown that
the dynamical behavior of a very general class of complete1 nonlinear electrical cir-
cuits, withρ capacitors andσ inductors is governed by the following set of differential
equations

d
dt
H∗

u(u, i) = Pu(u, i)

− d
dt
H∗

i (u, i) = Pi(u, i),
(1)

whereu = (u1, . . . , uρ)
⊤ ∈ R

ρ andi = (i1, . . . , iσ)⊤ ∈ R
σ are the voltages across

the capacitors and the currents through the inductors, respectively. The scalar function
H∗ : R

ρ+σ → R denotes the sum of the electric and magnetic co-energy stored in the
circuit. If we assume that the inductors do not depend on the capacitor voltages and
the capacitor do not depend on the inductor currents, then the total stored co-energy is
given byH∗(u, i) =

∫ u

0
q̂(u′)du′ +

∫ i

0
ϕ̂(i′)di′, whereq = q̂(u) andϕ = ϕ̂(i) are the

capacitor charges and the inductor fluxes, respectively. ByP : R
ρ+σ → R we denote

the mixed-potential function, which consists of the difference of the content and the
co-content plus a term which coincides with the definition ofa Dirac structure, as used
for the Port-Hamiltonian formalism. The content is defined as the difference between
the current potentials of the current-controlled voltage sources and resistances in the
circuit, which has been introduced by W. Millar and C. Cherryin the early-fifties (see
(Brayton and Moser, 1964) and the references therein). A similar definition holds for
the co-content, which is the difference between the voltagepotentials of the voltage-
controlled current sources and resistances (conductances). Let r̂(i), ĝ(u), ê(i) andb̂(u)
denote the constitutive relations of the resistances (r), conductances (g) and, (possibly
controlled) voltage and current sources (e andb), respectively, then the mixed-potential
function is defined as

P (u, i) =

∫ u

0

{b̂(u′) − ĝ(u′)}du′

︸ ︷︷ ︸

electrical co-content

−

∫ i

0

{ê(i′) − r̂(i′)}di′

︸ ︷︷ ︸

electro-magnetic content

+ u⊤ψ⊤i
︸ ︷︷ ︸

interconnection

. (2)

Hereψ is reflecting the power-preserving interconnection structure of the circuit, which
is similar to the interconnection matrix used in Port-Hamiltonian systems, see e.g. (Jelt-
sema and Scherpen, 2002; van der Schaft, 2000). For that reason, the last term of the

1A circuit is complete if the set of inductor currents and capacitor voltages can be chosen independently
such that the Kirchhoff’s laws are satisfied and such that each branch in the circuit is determined by at least
one element from the set of currents or voltages.



right-hand side of (2) is denoted as the conserved power. At this point, we remark that
(1) together with the total stored co-energy as defined aboveestablish a ‘canonical’ set
of Brayton-Moser (BM) equations. For any general form ofH∗(u, i) other than the one
defined here, we may refer to (1) as the generalized BM equations. In the canonical
caseH∗

ui = H∗
iu = 0 and therefore (1) can be rewritten as−Q(w)ẇ = Pw(w), with

w = (u1, . . . , uρ, i1, . . . , iσ)⊤ andQ(w) = diag{−H∗
uu, H

∗

ii}(w). We may interpret
Q(w) as a pseudo Riemannian metric on the state spaceR

ρ × R
σ (van der Schaft,

1984). In generalH∗
uu(w) > 0 andH∗

ii(w) > 0, so the metric is indefinite. We come
back to this later on. In the sequel we shall denote the electro-magnetic content byJ(i)
and the electrical co-content byG(u). In the next section we will try to translate the
BM equations to the framework of mechanical systems.

3 Brayton-Moser Description of Mechanical Systems

In this section we want to rewrite Lagrange’s equations of motion for mechanical sys-
tems in a similar form as the (BM) equations of the previous section. In the construction
we do not want to elaborate on the existence of a mixed-potential function of mechan-
ical type, but we will focus on a topological construction ofsuch function in order to
obtain a BM type description for mechanical systems.

3.1 The Lagrangian description

It is well-known that a rather general class of nonlinear mechanical systems defined
on a differentiable manifoldM, with local coordinatesx = (x1, . . . , xm)⊤ andm
degrees of freedom, admit a Lagrangian description on the tangent bundleTM. In
local coordinates the Euler-Lagrange equations are given by

d
dt
Lv(x, v) − Lx(x, v) = 0, (3)

where the corresponding generalized velocities are denoted asv = (v1, . . . , vm)⊤

and the scalar functionL(x, v) denotes the Lagrangian which is defined as the dif-
ference between kinetic co-energyT ∗(x, v) and potential energyV (x), i.e.,L(x, v) =
T ∗(x, v) − V (x). In this paper we restrict our developments to mechanical systems
where the Lagrangian is of the formL(x, v) = 1

2

∑

j,k Mjk(x)vjvk − V (x), where
Mjk(x) refers to the(j, k)-th element ofM(x), with M(x) a positive definite sym-
metricm × m matrix called the interia or generalized mass matrix and hence de-
fines locally a Riemannian metric onM. In view of the BM setting, to be treated
in the next subsection, we may rewrite the first term of the left-hand side of (3) as fol-
lows Ṫ ∗

v (x, v) = T ∗
vv(x, v)v̇ + T ∗

vx(x, v)v. For Lagrangians of the form considered
herein, withT ∗

vv(x, v) = M(x), the expressions above can be summarized by defining
C(x, v)v = T ∗

vx(x, v) − T ∗
x (x, v) and rewriting (3) as

M(x)v̇ + C(x, v)v + Vx(x) = 0. (4)

Thekj-th element ofC(x, v) is univocally defined from the elements ofM(x) intro-
ducing Christoffel symbols of the first kind (van der Schaft,2000) such thatṀ(x) =
C(x, v) + C⊤(x, v).

Next, we like to include the effect of a set of external and dissipative forces on the
system. Let the externally supplied forces be given byτ = (τ1, . . . , τm)⊤, where
dim{τ} ≤ m (i.e., we can consider underactuated as well as fully actuated systems).



For the dissipation we consider the usual description in terms of the Rayleigh dissipa-
tion defined in local coordinates as

R(v) =

∫ v

0

δ̂(v′)dv′,

where δ̂(v) represents the vector of functions describing the characteristics of the
mechanical dissipation depending on the velocities. In order to be consistent with
the notation of Section 2 we may refer to the difference of thesupplied and dissi-
pated velocity potentials as the total ‘mechanical content’ denoted byD(x, v), i.e.,
D(x, v) = v⊤τ − v⊤Vx(x) − R(v). Notice that we consider the conserved forces
Vx(x) as external forces. Hence, the complete expression for mechanical system with
dissipation and external controls becomes

M(x)v̇ + C(x, v)v = Dv(v). (5)

We are now ready to define a BM description by introducing a mixed-potential func-
tion of mechanical type. In the remaining of the document, wewill assume that the
mechanical system is defined onR

m and hence the approach can be considered to be
global.

3.2 Mechanical Content and Mixed-Potential

Next, our purpose is to write the equations obtained in the previous subsection in a
form which formulates the equations of motion of mechanicalsystems into the BM
framework. We have to search for the suitable functionP ∈ C∞(Rm) ⊆ C∞(TM)
which allows us to write (5) in a BM type fashion, i.e,

M(x)v̇ = Pv(x, v), (6)

which corresponds to the canonical BM equations as they wereoriginally defined. The
latter suggests that we should just proceed by integrating the right-hand side of (5)
with respect to the velocitiesv in order to obtain the power conserved, supplied and
dissipated in the system. However, the problem that arises here is that in general the
metricM does depend onx instead ofv, where in the electrical domain often the metric
depends oni andu only. Consider the power-balance with respect toT ∗(x, v):

Ṫ ∗(x, v) = v⊤M(x)v̇ + 1
2v

⊤Ṁ(x)v

= v⊤Dv(v) + 1
2v

⊤
[
Ṁ(x) − 2C(x, v)

]
v.

Hence, by using the fact that due to the form of the kinetic co-energy the matrixṀ(x)−
2C(x, v) is skew-symmetric, the power-balance becomesṪ ∗(x, v) = v⊤Dv(v), which
implies that the forcesC(x, v)v are workless and can therefore not be contained in
P (x, v). Instead of (6) we may look for aP ∈ C∞(Rm) satisfying

d
dt
T ∗

v (x, v) = Pv(x, v), (7)

which corresponds to the generalized form (1). Hence, in a similar fashion as in Section
2, the mixed-potential function of mechanical type is constructed as

P (x, v) = D(v)
︸ ︷︷ ︸

content

+

∫ v

0

T ∗

x (x, v′)dv′

︸ ︷︷ ︸

‘geometrical’

. (8)



Notice that if the metric is constant, i.e, does not depend onx, then the system is
described by

Mv̇ = Pv(x, v). (9)

The mixed-potentialP (x, v) is now reduced toP (x, v) = D(x, v), which is just the
mechanical content of the system.

Remark 1. For general manifolds, the above derivations are just localconstructions.
However, it is a very well-known property of classical mechanics that the equations of
the motion are given by the following coordinate-free expression (see (Abraham and
Marsden, 1978)):

∇vv + gradV = 0 (10)

Here the first term captures the force of ‘geometrical origin’. This force will in general
be different from zero as soon as the metric tensor is not constant. Assuming that the
curvature corresponding to the connection is non zero, we can claim that this terms
reflects the non-trivial structure of the manifold: all the points are not the same for
the system, even from the geometrical point of view. We want to remark here that the
Brayton-Moser description can also be established in a coordinate-free setting. The
interested reader is referred to (Clemente-Gallardo et al.) for a detailed geometrical
treatment.

4 Towards an Unified Co-Energy Description

In this section the results of previous sections will be generalized to a practically rel-
evant class of nonlinear electro-mechanical systems. We restrict our developments to
mechanical and electrical system interconnected by eitheran electric field or a mag-
netic field coupling. A sufficient condition to obtain a canonical set BM equations for
the class of electro-mechanical systems considered hereinis that the mechanical mass-
matrix is constant and that the the coupling between the electrical and the mechanical
part is represented in the co-energy. This assumption will be relaxed in (Clemente-
Gallardo et al.). The theoretical developments are facilitated by an illustrative example
using a levitated ball system will be treated at the end of thesection.

4.1 Electric Field Coupling

In order to obtain a combined dynamical description of an electro-mechanical system,
with possibly several electrical or magnetical interconnections, we only need to com-
bine the previous developments in an appropriate way. To this end, consider a system
consisting of a mechanical subsystemΣm and an electrical subsystem consisting of the
interconnection ofΣρ andΣσ. Suppose that there exists an interconnection between
Σm andΣρ due to an electric field coupling parameterized by the generalized coordi-
natesx = (x1, . . . , xm)⊤ ∈ R

n, with n = m+ρ+σ. Then, the interconnected system
Σ is completely determined by the following set of canonical BM equations

Σ : ΦH∗

ww(x,w)ẇ = Pw(x,w), (11)

where the vectorw ∈ R
n represents the generalized mechanical velocities, the volt-

ages across the capacitances and the currents through the inductances, respectively, i.e.,
w = (v1, . . . , vm, u1, . . . , uρ, i1, . . . , iσ)⊤, andΦ = diag{Im×m,−Iρ×ρ, Iσ×σ}. The
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Figure 1: Electrically or magnetically coupled electro-mechanical system: the coupling
terms are defined asΛ =

∫ v

0 H
∗
x(x,w′)dv′.

scalar functionH∗ : R
n → R denotes the sum of the kinetic, electric and magnetic

co-energy. The mixed-potential functionP : R
n → R is defined as

P (x,w) = D(x, v)
︸ ︷︷ ︸

mech. part

+ J(i) −G(u) + i⊤ψu
︸ ︷︷ ︸

electrical part

+

∫ v

0

H∗

x(x,w′)dv′

︸ ︷︷ ︸

coupling part

. (12)

Recall thatD(x, v), J(i) andG(u) represent the mechanical content, the electrical
content and and the electrical co-content, respectively. Furthermore, the coupling
forces stemming from electrical and electro-mechanical origin are captured by the term
∫ v

0 H
∗
x(x,w′)dv′. Notice that under the assumption that there only exists a coupling

due to an electric field,H∗

ix(x,w) should be equal to zero for alli, x.

4.2 Magnetic Field Coupling

Suppose now that there exists an interconnection betweenΣm andΣσ due to a mag-
netic field coupling parameterized by the generalized configuration variablesx. Then,
in a similar fashion as in the previous case, the interconnected systemΣ is completely
determined by the following differential equations

Σ : ΦH∗

ww(x,w)ẇ = Pw(x,w). (13)

Herew is a before andΦ = diag{Im×m, Iρ×ρ,−Iσ×σ}. The mixed-potential function
P : R

n → R is now given by

P (x,w) = D(v) − J(i) +G(u) − i⊤ψu+

∫ v

0

H∗

x(x,w′)dv′. (14)

Compare the latter with (12) (notice the signs). Again, we notice that under the as-
sumption that there only exists a coupling due to a magnetic field,H∗

ux(x,w) should
be equal to zero for allu, x. It is interesting to observe that if we write (11) or (13)
in the form−Q(x,w)ẇ = Pw(x,w), withQ(x,w) = −ΦH∗

ww(x,w), we may, as for
electrical circuits, interpretQ(x,w) as a pseudo Riemannian metric parameterized by
x.



A schematic interpretation of an electrically (resp. magnetically) coupled electro-me-
chanical system is depicted in Figure 1. The notation{·} refers to the magnetic field
coupling case. Notice that throughout the developments we have treated the conserva-
tive forces as external signals acting on the system. These forces are parameterized by
x, wherex is in general the solution oḟx = v. This means that in every point onRn we
have a BM type description of the dynamics. We conclude the section with a simple
example.

Example 1. Consider a levitated ball system (Ortega et al., 2001). Let the total co-
energy and the potential energy stemming from the gravitational force be defined by

H∗(x, v, i, u) =
m

2
v2 +

l(x)

2
i2 +

c

2
u2

andV (x) = mg̃x, respectively, withm the mass of the ball,̃g the gravitational con-
stant,c the parasitic capacitance of the coil andl(x) = lo + α

β−x
the inductance of the

coil. Furthermore, letr be the coil resistance,b the source current, andg the internal
source conductance. Using the developments of Section 4.2,we find with0 ≤ x < β

P (x, v, i, u) = −mg̃v +
r

2
i2 − bu+

g

2
u2 + iu+

∫ v

0

α

2(β − x)2
i2dv′.

Then, after substitution of the latter into (13) yields

m
dv

dt
=

α

2(β − x)2
i2 −mg̃

c
du

dt
= b− gu− i

l(x)
di

dt
= u−

α

(β − x)2
vi− ri.

It should be remarked that we have gained more information about the structure here. In
particular, the coupling force α

(β−x)2 vi is explicitly appearing in the co-energy model,
while if we would use the Hamiltonian framework (van der Schaft, 2000) this property
is hidden in the Hamiltonian. Notice that

∫ v

0

α

2(β − x)2
i2dv′

plays a role similar to the termiu stemming fromu⊤ψi, with ψ = 1, i.e, both define
the interconnections between the different subsystems. �

5 Stability and Passivity in the Co-Energy Framework

The motivation behind the previous developments can be summarized as follows. First,
In the context of electrical circuits it is shown in (Jeltsema and Scherpen, 2002) that
the BM equations (1) bear a marked similarity in structure tothe Port-Hamiltonian
equations, see e.g., (van der Schaft, 2000). The most trivial duality between the two
frameworks is that Port-Hamiltonian systems assume the circuit elements to be flux and
charge controlled, while the BM equations impose the restriction that the elements are
current and voltage controlled. One reason to work with Port-Hamiltonian systems is
that the equations are formulated in natural physical variables. In case of conservative



circuits this can be considered as a reasonable argument. However, the inclusion of
static elements, like sources and resistors seems not so natural in this framework. In
principal, the constitutive relations of voltage sources,current sources and resistive
elements are rather considered in terms of currents or voltages (Ohm’s law), instead of
fluxes or charges. It seems then more natural to use the BM equations. In the context
of feedback controller design for electro-mechanical systems, an additional advantage
of using the BM equations for the electrical part of the system is that the dynamics are
directly expressed in measurable quantities. Similar arguments hold for the mechanical
part of the system, where it is more common to measure velocity instead of momenta.
The second motivation concerns some interesting properties of the mixed-potential and
is best illustrated by a simple example.

Example 2. Consider a mechanical system withm degrees of freedom and general-
ized configuration variablesx ∈ R

m, with as total stored kinetic co-energyT ∗(v) =
1
2v

⊤Mv, v = ẋ,M = M⊤ > 0, Rayleigh dissipationR(v) > 0 and external forcesτ .
In the new setting the equations of motion are described by

−Qv̇ = Pv(v) (15)

whereQ = T ∗
vv(v) = M andP (v) = R(v)− v⊤τ denotes the mixed-potential for the

system. Consider then the time-derivative ofP (v), i.e.,

Ṗ (v) = −v̇⊤Pv(v) = −v̇⊤Qv̇. (16)

Clearly, P (v) decreases along the solutions of (15) except at the equilibria, where
Pv(v) = 0. This example suggests that, following ideas stemming fromLyapunov’s
stability theory, one could derive, under the assumption that P (v) ≥ 0, that every
solution of (15) tends to the equilibriumv = 0 ast → ∞. Trivially, this is ensured
whenτ = 0. Hence,P can be used as an alternative candidate Lyapunov function.�

Unfortunately, as is shown before, for general electrical and electro-mechanical sys-
temsQ is in general indefinite and thereforeP in its present from is not suitable to
determine stability or passivity. One way to overcome this problem is by looking for
another pair{Q⋆, P ⋆} in place of{Q,P} such that the form of (11) or (13) is pre-
served, i.e,

−Q⋆(w)ẇ = P ⋆
w(w), (17)

and such thatQ⋆(w) > 0 andP ⋆(w) ≥ 0 for all w. As proposed in (Brayton and
Moser, 1964), general pairs{Q⋆, P ⋆} can be obtained under the condition that

Q⋆Q−1Pw = P ⋆
w. (18)

The procedure is basically as follows. If{Q1, P 1} and{Q2, P 2} are two pairs describ-
ing (11) or (13), then so are{αQ1+βQ2, αP 1 +βP 2}, with α, β ∈ R. This obviously
gives us considerable freedom in constructing other pairs.In order to find one nontriv-
ial pair other than{Q,P} we know from (Brayton and Moser, 1964) that ifK is any
constant symmetric matrix, then the pairQ⋆ = PwwKQ andP ⋆ = 1

2P
⊤
w KPw is one

possible choice2. Hence, more general pairs are obtained by superposition, i.e.,

J⋆ = λQ+ PwwKQ

P ⋆ = λP + 1
2P

⊤
w KPw,

(19)

2This is easily seen by noting thatP ⋆

w
= PwwKPw and thusQ⋆Q−1Pw = PwwKQQ−1Pw = P ⋆

w
.



with λ ∈ R. Having made these observations, we shall now provide an alternative
framework to obtain some new passivity properties whereP ⋆ serves as a candidate
storage function. The key motivation for our developments are the new passivity
properties as proposed in (Ortega and Shi, 2002). In this paper the authors propose
to use the dissipative content or co-content to establish passivity of nonlinear RL or
RC circuits, respectively. These properties are useful forstabilization purposes, like
energy-balancing. Here we want to extend these propositions to a more general class
of systems. To do this we proceed as follows. In order to accommodate the new
mixed-potential functionP ⋆ in the desired form, we need to extract the power sup-
ply sources. Assume that the sources are independent, i.e.,not controlled, and let
f = (τ1 −Vx1

(x), . . . , τm −Vxm
(x), b1 . . . , bρ, e1, . . . , eσ)⊤, then (11) or (13) can be

written as
−Q(x,w)ẇ = P̃w(w) + Φf, (20)

whereP̃ (w) denote the mixed-potentials given in (12) or (14) with the supplied powers
w⊤Φf extracted from the equations. A new set of equations describing (20) is then
obtained by performing the transformations (19), i.e.,

−J⋆ẇ = λP̃w + PwwKP̃w + λΦf + PwwKΦf. (21)

Hence, by observing thatPww(w) = P̃ww(w), P̃ ⋆(w) is obtained by integrating
the first equation of the right-hand side of (21) with respectto w yielding P̃ ⋆(w) =
λP̃ (w) + 1

2 P̃w(w)KP̃w(w) andf⋆(x,w) = λΦf + P̃ww(w)KΦf . We are now ready
to postulate the following

Proposition 1. Assume that there exists a constant symmetric matrixK and aλ ∈ R

such thatQ⋆(x,w) > 0 andP̃ ⋆(w) ≥ 0, then (11) or (13) satisfy the inequality
∫ t

0

−ẇ(t′)f⋆(t′)dt′ ≥ P̃ ⋆[w(t)] − P̃ ⋆[w(0)]. (22)

Consequenlty, the systems define a passive port with port variables(ẇ, f⋆) and storage
functionP̃ ⋆(w).

Proof. We start by differentiating̃P ⋆(w) along the solutions of (21), i.e.,

d
dt
P̃ ⋆(w) = −ẇ⊤Q⋆(x,w)ẇ − ẇ⊤f⋆. (23)

SinceQ⋆(x,w) > 0 by assumption, theṅw⊤Q⋆(x,w)ẇ is positive definite and equal
to zero if and only ifẇ = 0. Following Lyapunov ideas, we may conclude thatP̃ ⋆(w)
is a decreasing function except at the equilibriaẇ = 0. The proof is completed by
integrating (23) from0 to t. �

As pointed out before, a possible application for the new passivity properties is the
problem of stabilization of the equilibria of electro-mechanical systems which can not
be stabilized by the energy-balancing due to the dissipation obstacle identified in (Or-
tega et al., 2001). The rationale of the approach is to express the left-hand side of (22)
as a function ofw, say−F ⋆(w), and to search for a solution of the PDE given by

f̂⋆(w) = −F ⋆
w(w), (24)

yielding a desired closed-loop storage functionP ⋆
cl = P̃ ⋆(w) + F ⋆(w). Notice that

we are actually trying to shape the power instead of the energy. For that reason it
seems natural to refer to the latter as ‘power-balancing’. For reasons of space we do
not elaborate further on this topic herein. Applications ofthe theory will be reported
elsewhere.



6 Final Remarks

In the first part of the paper we have presented a novel power-based framework for
the modeling of a class of electro-mechanical systems. For the class of systems which
can be modeled in this this framework it is sufficient that thecoupling terms appear
in the co-energy function. However, it is unclear how to derive, if possible, a more
general statement about the class of admissible systems in the BM framework. The
second part is concerned with the definition of some new passivity properties based on
the mixed-potential function of the systems. These properties might become useful to,
e.g., overcome the dissipation obstacle in the energy-balancing methodology. It should
be pointed out that the developments regarding the modelingpart herein differ from the
setting proposed in (Kugi, 2001) for two reasons: (i) in (Kugi, 2001) the mechanical
part is described by the Euler-Lagrange equations, while the electrical part is covered
by some kind of generalized Brayton-Moser description, (ii) here the powers stemming
from both the mechanical and electrical domain are includedin one mixed-potential
function explicitly revealing the couplings between the different subsystems, while in
the afore mentioned reference each electrical system has its own potential functions
containing only powers stemming from the electrical parts of the system. The main
advantage of defining one potential function for the complete system is that we can
exploit the stability properties proposed in (Brayton and Moser, 1964) and extend the
ideas of (Ortega and Shi, 2002) to the electro-mechanical case.
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