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Abstract — This paper presents an alternative framework for a pradlycrele-
vant class of nonlinear electro-mechanical systems. Thediism is based on
a generalization of Brayton and Moser’s mixed-potentialction. Instead of fo-
cusing on the usual energy-balance, the models are constiussing the power
flowing through the system. The main objective is to put tkehmixed-potential
function as a new building block for modeling, analysis aodtmller design
purposes for electro-mechanical systems.

1 Introduction

It is well-known that the Port-Hamiltonian (van der Sch&®00) equations form a
very suitable and natural framework to describe the dynaimi@ broad class of non-
linear electrical, mechanical and electro-mechanicaksys. In this paper we present
a dual formulation of the dynamics of nonlinear electro-hegdcal systems in terms of
the co-energy (power) variables. The method uses the cta&riayton-Moser (Bray-
ton and Moser, 1964) equations based on the notion of kimetignetic and electric
co-energy and the definition of a mixed-potential functi@miginally, this framework
stems from the early sixties and seems to be very little knowthe systems and
control community. In the new setting the mixed-potentiaidtion exists of power
preserving potentials, mechanical content, electro-raigeontent and electrical co-
content. The main advantage of a well-defined dual formatai that essential and
important properties can be translated from one framewmnbther. One of these
useful properties is that the mixed-potential function barused as a starting point to
derive a new family of storage functions. Instead of usirgyttital stored energy as a
storage function, as with Port-Hamiltonian systems, wethsemixed-potential func-
tion. The results of this paper form a starting point to oeene the dissipation obstacle
in electro-mechanical systems that cannot be stabilizetthdgnergy-balancing tech-
nigue as recently proposed in (Ortega, van der Schaft, Mdaaed Maschke, 2001). At
a more general level, our objective in this paper is to pubftre mixed-potential func-
tion as a new building block for analysis and controller dador electro-mechanical
systems and bring under the attention again the BraytoreMerguations as a fair al-
ternative to the Lagrangian and Port-Hamiltonian framdwsor
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For reasons of space and clarity, detailed proofs are airattel the developments are
restricted to a practically relevant class of linear andlinear mechanical, electrical
and electro-mechanical systems.

Notation: By T, (z, -) we denote the derivative with respectitpi.e,

T

Tw(l’, ) - %

(:Ca )

Consequenthy..(x,-) = ‘gg (z,-), etc.. Byg(x) we define the vector of the consti-
tutive relations for theé: (z—controlled) elements of a certain type (resistance, éapac
tance, etc.)j(z) = (91(x),...,9x(2)) .

2 Brayton-Moser’s Equations

In the early sixties, Brayton and Moser (Brayton and Mos864) have shown that
the dynamical behavior of a very general class of completalinear electrical cir-
cuits, withp capacitors and inductors is governed by the following set of differential
equations

L (u,i) = Pu(u,i)

— L {7 (u,i) = Piu,i), (1)

whereu = (u1,...,u,)" € RPandi = (i1,...,i,)' € R are the voltages across
the capacitors and the currents through the inductorseotisply. The scalar function
H* : R*t° — R denotes the sum of the electric and magnetic co-energydsiothe
circuit. If we assume that the inductors do not depend on #padtor voltages and
the capacitor do not depend on the inductor currents, thestotal stored co-energy is
given by H*(u, i) = [ q(u")du’ + [ ¢(i")di’, whereq = ¢(u) andy = ¢(i) are the
capacitor charges and the inductor fluxes, respectivelyPByR*™° — R we denote
the mixed-potential function, which consists of the diffiece of the content and the
co-content plus a term which coincides with the definitiom &irac structure, as used
for the Port-Hamiltonian formalism. The content is definsdtee difference between
the current potentials of the current-controlled voltagarses and resistances in the
circuit, which has been introduced by W. Millar and C. Chemryhe early-fifties (see
(Brayton and Moser, 1964) and the references therein). Alaimefinition holds for
the co-content, which is the difference between the volfzgentials of the voltage-
controlled current sources and resistances (conductan@$ (i), g(u), é(i) andb(u)
denote the constitutive relations of the resistanegsconductancesyj and, (possibly
controlled) voltage and current sources(idb), respectively, then the mixed-potential
function is defined as

) = UAu'—Au' u' — iéi’—f@" R TARTAN
P<u,z>—/0{b<> o)} /0{<> (it + T (2)

- - interconnection
electrical co-content electro-magnetic content

Here is reflecting the power-preserving interconnection streecof the circuit, which
is similar to the interconnection matrix used in Port-Haarilan systems, see e.g. (Jelt-
sema and Scherpen, 2002; van der Schaft, 2000). For thatrehs last term of the

1A circuit is complete if the set of inductor currents and aipa voltages can be chosen independently
such that the Kirchhoff’s laws are satisfied and such that &aanch in the circuit is determined by at least
one element from the set of currents or voltages.



right-hand side of (2) is denoted as the conserved powehig&pbint, we remark that
(1) together with the total stored co-energy as defined abstablish a ‘canonical’ set
of Brayton-Moser (BM) equations. For any general fornfof(u, ¢) other than the one
defined here, we may refer to (1) as the generalized BM equstilm the canonical
caseH;, = H}, = 0 and therefore (1) can be rewritten a&)(w)w = P, (w), with
W= (U,...,Up,i1,...,i,) andQ(w) = diag{—H},, H}}(w). We may interpret
Q(w) as a pseudo Riemannian metric on the state sface R? (van der Schatft,
1984). In generaH,(w) > 0 andH(w) > 0, so the metric is indefinite. We come
back to this later on. In the sequel we shall denote the elentignetic content by (i)
and the electrical co-content lfy(«). In the next section we will try to translate the
BM equations to the framework of mechanical systems.

3 Brayton-Moser Description of Mechanical Systems

In this section we want to rewrite Lagrange’s equations ofiamcfor mechanical sys-
tems in a similar form as the (BM) equations of the previousisa. In the construction
we do not want to elaborate on the existence of a mixed-patéanction of mechan-
ical type, but we will focus on a topological constructionsoich function in order to
obtain a BM type description for mechanical systems.

3.1 The Lagrangian description

It is well-known that a rather general class of nonlinear naaical systems defined
on a differentiable manifoldv, with local coordinates: = (x1,...,2,,)" andm
degrees of freedom, admit a Lagrangian description on thgetat bundleTM. In
local coordinates the Euler-Lagrange equations are giyen b

%LU(I,U) — Ly(x,v) =0, 3)
where the corresponding generalized velocities are ddrage = (vy,...,v,)"
and the scalar functiofi(x, v) denotes the Lagrangian which is defined as the dif-
ference between kinetic co-ener§jy(x, v) and potential energy (z), i.e., L(z,v) =
T*(z,v) — V(x). In this paper we restrict our developments to mechanicstesys
where the Lagrangian is of the forfi(z, v) = %ZM M (z)vjvp — V(x), where
M (z) refers to the(j, k)-th element ofM (x), with M (x) a positive definite sym-
metric m x m matrix called the interia or generalized mass matrix andcaete-
fines locally a Riemannian metric dal. In view of the BM setting, to be treated
in the next subsection, we may rewrite the first term of thehehd side of (3) as fol-
lows T*(z,v) = T, (x,v)0 + T*,(z,v)v. For Lagrangians of the form considered
herein, withT*, (z,v) = M (z), the expressions above can be summarized by defining
C(z,v)v =T; (x,v) — T} (x,v) and rewriting (3) as

M(z)0 + C(x,v)v + Vy(z) = 0. (4)

The kj-th element ofC(x, v) is univocally defined from the elements f () intro-
ducing Christoffel symbols of the first kind (van der Schafip0) such thab/ (z) =
C(z,v) + C " (z,v).

Next, we like to include the effect of a set of external andsighative forces on the
system. Let the externally supplied forces be givenrby= (74,...,7,)", where
dim{7} < m (i.e., we can consider underactuated as well as fully aetusystems).



For the dissipation we consider the usual description imsesf the Rayleigh dissipa-
tion defined in local coordinates as

where §(v) represents the vector of functions describing the chariatits of the
mechanical dissipation depending on the velocities. Ireotd be consistent with
the notation of Section 2 we may refer to the difference ofghpplied and dissi-
pated velocity potentials as the total ‘mechanical contéeboted byD(x,v), i.e.,
D(x,v) = v'r — v V,(x) — R(v). Notice that we consider the conserved forces
V. (x) as external forces. Hence, the complete expression for amézdl system with
dissipation and external controls becomes

M(z)v 4+ C(x,v)v = D,(v). (5)

We are now ready to define a BM description by introducing aeahigotential func-
tion of mechanical type. In the remaining of the documentwilbassume that the
mechanical system is defined &1 and hence the approach can be considered to be
global.

3.2 Mechanical Content and Mixed-Potential

Next, our purpose is to write the equations obtained in tlewipus subsection in a
form which formulates the equations of motion of mechansyatems into the BM
framework. We have to search for the suitable functiore C>°(R™) C C*°(TM)
which allows us to write (5) in a BM type fashion, i.e,

M(z)v = Py(z,v), (6)

which corresponds to the canonical BM equations as they arggmally defined. The
latter suggests that we should just proceed by integratingight-hand side of (5)
with respect to the velocities in order to obtain the power conserved, supplied and
dissipated in the system. However, the problem that arises i that in general the
metric M does depend aninstead ofy, where in the electrical domain often the metric
depends on andu only. Consider the power-balance with respecttqz, v):

T*(x,v) = v M(x)0 + %UTM(.T)U
= 0" D,(v) + %UT [M(:z:) —2C(z,v)]v.

Hence, by using the fact that due to the form of the kinetienergy the matrid/ (z)—
20 (x, v) is skew-symmetric, the power-balance becoffiegr, v) = v D, (v), which
implies that the force€’(z, v)v are workless and can therefore not be contained in
P(z,v). Instead of (6) we may look for B € C°°(R™) satisfying

iT*(x,v) :PU(IE,U), (7)

dt~v
which corresponds to the generalized form (1). Hence, imdasi fashion as in Section
2, the mixed-potential function of mechanical type is cansged as

v

P(z,v) = D(v) +/ T (z,v")dv' . (8)

N~ 0
content ~———~—""
‘geometrical’



Notice that if the metric is constant, i.e, does not depend:othen the system is
described by

Mo = Py(x,v). 9

The mixed-potentiaP(x, v) is now reduced td®(z,v) = D(z,v), which is just the
mechanical content of the system.

Remark 1. For general manifolds, the above derivations are just loeaktructions.
However, it is a very well-known property of classical megita that the equations of
the motion are given by the following coordinate-free esgien (see (Abraham and
Marsden, 1978)):

Vv + gradV =0 (20)

Here the first term captures the force of ‘geometrical ofigiihis force will in general
be different from zero as soon as the metric tensor is nottanhsAssuming that the
curvature corresponding to the connection is non zero, wectam that this terms
reflects the non-trivial structure of the manifold: all theimts are not the same for
the system, even from the geometrical point of view. We wametnark here that the
Brayton-Moser description can also be established in adioate-free setting. The
interested reader is referred to (Clemente-Gallardo gtfat. a detailed geometrical
treatment.

4 Towards an Unified Co-Energy Description

In this section the results of previous sections will be gelimed to a practically rel-
evant class of nonlinear electro-mechanical systems. Weaeour developments to
mechanical and electrical system interconnected by eithezlectric field or a mag-
netic field coupling. A sufficient condition to obtain a caieai set BM equations for
the class of electro-mechanical systems considered herttiat the mechanical mass-
matrix is constant and that the the coupling between therelatand the mechanical
part is represented in the co-energy. This assumption wiltdbaxed in (Clemente-
Gallardo et al.). The theoretical developments are fatdd by an illustrative example
using a levitated ball system will be treated at the end oftwion.

4.1 Electric Field Coupling

In order to obtain a combined dynamical description of antedemechanical system,
with possibly several electrical or magnetical intercartions, we only need to com-
bine the previous developments in an appropriate way. Foethdl, consider a system
consisting of a mechanical subsyst&y and an electrical subsystem consisting of the
interconnection o, andX,. Suppose that there exists an interconnection between
¥ andX, due to an electric field coupling parameterized by the géizechcoordi-
natesr = (z1,...,o,) € R", withn = m+ p+o. Then, the interconnected system
>’ is completely determined by the following set of canonicl Bquations

Y ®HY, (2, w)h = Py(x,w), (11)

where the vectow € R™ represents the generalized mechanical velocities, the vol
ages across the capacitances and the currents througldtioéances, respectively, i.e.,
W= (V1,..., U,y Uy, Up, b1, .. vig) |, and® = diag{Inxm, —I,xp, Ioxs}. The
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Figure 1: Electrically or magnetically coupled electroahanical system: the coupling
terms are defined as = [ H(z,w’)dv’.

scalar function* : R™ — R denotes the sum of the kinetic, electric and magnetic
co-energy. The mixed-potential functiéh: R™ — R is defined as

P(z,w) = D(z,v) +J(i) — G(u) + Z'T1/)u+/ H(z,w")dv". (12)
N—— 0
mech. part electrical part \
coupling part

Recall thatD(z,v), J(i) and G(u) represent the mechanical content, the electrical
content and and the electrical co-content, respectivelyrthErmore, the coupling
forces stemming from electrical and electro-mechanidglimare captured by the term
fo” H:(z,w')dv’. Notice that under the assumption that there only existsuplowm
due to an electric field, (x, w) should be equal to zero for allz.

4.2 Magnetic Field Coupling

Suppose now that there exists an interconnection betdlgeand?:, due to a mag-
netic field coupling parameterized by the generalized cardigon variables:. Then,
in a similar fashion as in the previous case, the intercaiegesystent is completely
determined by the following differential equations

Y OHY (2, w) = Py(z,w). (13)
Herew is a before an® = diag{l,, xm, Ipxp, —I-xo }. The mixed-potential function
P :R™ — R is now given by

P(z,w) = D(v) — J(i) + G(u) — i " tpu + /OU H (z,w")dv'. (14)

Compare the latter with (12) (notice the signs). Again, wéaeothat under the as-
sumption that there only exists a coupling due to a magneiid, . (x, w) should

be equal to zero for alk, z. It is interesting to observe that if we write (11) or (13)
in the form—Q(z, w)w = Py, (z, w), with Q(z,w) = —®H}  (z,w), we may, as for
electrical circuits, interpre®(x, w) as a pseudo Riemannian metric parameterized by
xZ.



A schematic interpretation of an electrically (resp. madipadly) coupled electro-me-
chanical system is depicted in Figure 1. The notafignrefers to the magnetic field
coupling case. Notice that throughout the developmentsave treated the conserva-
tive forces as external signals acting on the system. Thwesed are parameterized by
x, wherez is in general the solution af = v. This means that in every point @ we
have a BM type description of the dynamics. We conclude thd@ewith a simple
example.

Example 1. Consider a levitated ball system (Ortega et al., 2001). hettbtal co-
energy and the potential energy stemming from the grawitatiforce be defined by

, m l(x) 5 ¢

o* _ Mo e €2

(x,v,4,u) 5V + 5 +2

andV (xz) = mgz, respectively, withn the mass of the ball the gravitational con-

stant,c the parasitic capacitance of the coil aitd) = I, + ﬁ the inductance of the
coil. Furthermore, let be the coil resistancé,the source current, angthe internal

source conductance. Using the developments of Sectiomwé.find with0 < =z <

P(z,v,i,u) = —mgv + giz —bu + qu +iu —l—/o Q(%ide’.

Then, after substitution of the latter into (13) yields

m@ = L’L’2—m~
dt 20— )2 g
d

cd—? =b—gu—1
di a . .

(I’)E = U-m’l)l-?‘l.

It should be remarked that we have gained more informationthe structure here. In
particular, the coupling forcgﬁf‘T)Qm' is explicitly appearing in the co-energy model,
while if we would use the Hamiltonian framework (van der S¢H2000) this property
is hidden in the Hamiltonian. Notice that

Y « -2 ’
/0 2G-w2

plays a role similar to the terru stemming fromu " i, with ¢» = 1, i.e, both define
the interconnections between the different subsystems. O

5 Stability and Passivity in the Co-Energy Framework

The motivation behind the previous developments can be suined as follows. First,
In the context of electrical circuits it is shown in (Jeltseand Scherpen, 2002) that
the BM equations (1) bear a marked similarity in structureht® Port-Hamiltonian
equations, see e.g., (van der Schaft, 2000). The mostltduility between the two
frameworks is that Port-Hamiltonian systems assume toait&lements to be flux and
charge controlled, while the BM equations impose the r&tgtn that the elements are
current and voltage controlled. One reason to work with-Ptanniltonian systems is
that the equations are formulated in natural physical & In case of conservative



circuits this can be considered as a reasonable argumemteudq, the inclusion of
static elements, like sources and resistors seems not gsmhiat this framework. In
principal, the constitutive relations of voltage sourcagirent sources and resistive
elements are rather considered in terms of currents orgedtéOhm'’s law), instead of
fluxes or charges. It seems then more natural to use the BMiegsaln the context
of feedback controller design for electro-mechanicalayst, an additional advantage
of using the BM equations for the electrical part of the syste that the dynamics are
directly expressed in measurable quantities. Similarraents hold for the mechanical
part of the system, where it is more common to measure vglostead of momenta.
The second motivation concerns some interesting progetighe mixed-potential and
is best illustrated by a simple example.

Example 2. Consider a mechanical system with degrees of freedom and general-
ized configuration variables € R™, with as total stored kinetic co-ener@y (v) =
v Mv,v =14, M =MT" > 0, Rayleigh dissipatio®(v) > 0 and external forces.

In the new setting the equations of motion are described by

—Qi = Py(v) (15)

whereQ = T7,(v) = M andP(v) = R(v) — v 7 denotes the mixed-potential for the
system. Consider then the time-derivativeRi), i.e.,

P(v) = =0 Py(v) = =0 Qo. (16)

Clearly, P(v) decreases along the solutions of (15) except at the edailitihere
P,(v) = 0. This example suggests that, following ideas stemming ftgapunov’s
stability theory, one could derive, under the assumptiat fv) > 0, that every
solution of (15) tends to the equilibriumm= 0 ast — oo. Trivially, this is ensured
whent = 0. Hence,P can be used as an alternative candidate Lyapunov funcfion.

Unfortunately, as is shown before, for general electrical alectro-mechanical sys-
temsQ is in general indefinite and therefofein its present from is not suitable to
determine stability or passivity. One way to overcome thigbem is by looking for
another pai{@*, P*} in place of{Q, P} such that the form of (11) or (13) is pre-
served, i.e,

—Q*(w)yb = Pj(w), (17)

and such tha®*(w) > 0 and P*(w) > 0 for all w. As proposed in (Brayton and
Moser, 1964), general paif$)*, P*} can be obtained under the condition that

Q*Q7'P, =P}, (18)

The procedure is basically as follows {i)!, P'} and{Q?, P?} are two pairs describ-
ing (11) or (13), then so afQ' + BQ?, a Pt + 3P2}, with o, 8 € R. This obviously
gives us considerable freedom in constructing other phirsrder to find one nontriv-
ial pair other thar{ @, P} we know from (Brayton and Moser, 1964) that/f is any
constant symmetric matrix, then the pé@it = P,,KQ andP* = %PUT,KPUJ is one

possible choice Hence, more general pairs are obtained by superpositéon, i

J* = AQ + PuuKQ
P* = \P+iPIKP,,

27w

(19)

2This is easily seen by noting th&} = Py K Py and thusRQ*Q~'Py, = PuwKQQ™'Py, = P



with A € R. Having made these observations, we shall now provide annaltive
framework to obtain some new passivity properties whiefeserves as a candidate
storage function. The key motivation for our developments the new passivity
properties as proposed in (Ortega and Shi, 2002). In thismtye authors propose
to use the dissipative content or co-content to establislsiyisy of nonlinear RL or
RC circuits, respectively. These properties are usefubfabilization purposes, like
energy-balancing. Here we want to extend these propositma more general class
of systems. To do this we proceed as follows. In order to accodate the new
mixed-potential functionP* in the desired form, we need to extract the power sup-
ply sources. Assume that the sources are independentnaecontrolled, and let
f=m—=Va (@), T — Vi, (2),b1 ..., by, e1,...,6,) ", then (11) or (13) can be
written as 5

—Q(:z:,w)u') :Pw(w) +@f, (20)
whereP(w) denote the mixed-potentials given in (12) or (14) with theied powers
w' ®f extracted from the equations. A new set of equations deagrit20) is then
obtained by performing the transformations (19), i.e.,

—J*t = APy + Py KPy + A f + P, KDJ. (21)

Hence, by observing thal,.,(w) = P,.,(w), P*(w) is obtained by integrating
the first equation of the right-hand side of (21) with resgect yielding P*(w) =
AP (w) 4 3 Py (w) K Py (w) and f*(z, w) = A® f + Py (w)K @ f. We are now ready
to postulate the following

Proposition 1. Assume that there exists a constant symmetric mafrand a\ € R
such thatQ*(x, w) > 0 and P*(w) > 0, then (11) or (13) satisfy the inequality

/O —(t) ()t > P[w(t)] - P [w(0)]. (22)

Consequenlty, the systems define a passive port with pdaties(w, f*) and storage
functionP* (w).

Proof. We start by differentiating®* (w) along the solutions of (21), i.e.,
4 P (w) = —i " Q*(z, w)b — ' f*. (23)

SinceQ* (z, w) > 0 by assumption, theth " Q*(z, w)w is positive definite and equal
to zero if and only ifo = 0. Following Lyapunov ideas, we may conclude thét(w)
is a decreasing function except at the equilibtia= 0. The proof is completed by
integrating (23) fron to ¢. |

As pointed out before, a possible application for the newsipéyg properties is the
problem of stabilization of the equilibria of electro-meciical systems which can not
be stabilized by the energy-balancing due to the dissipatirstacle identified in (Or-
tega et al., 2001). The rationale of the approach is to ezghesleft-hand side of (22)
as a function ofv, say— F*(w), and to search for a solution of the PDE given by

Fr(w) = —F}(w), (24)

yielding a desired closed-loop storage functih = P*(w) + F*(w). Notice that
we are actually trying to shape the power instead of the gnefgr that reason it
seems natural to refer to the latter as ‘power-balancingt. rEasons of space we do
not elaborate further on this topic herein. Applicationshef theory will be reported
elsewhere.



6 Final Remarks

In the first part of the paper we have presented a novel poaszebframework for
the modeling of a class of electro-mechanical systems.Heoclass of systems which
can be modeled in this this framework it is sufficient that teepling terms appear
in the co-energy function. However, it is unclear how to derif possible, a more
general statement about the class of admissible systerhe iBM framework. The
second part is concerned with the definition of some new piisproperties based on
the mixed-potential function of the systems. These prageenight become useful to,
e.g., overcome the dissipation obstacle in the energyrbaig methodology. It should
be pointed out that the developments regarding the modgértdherein differ from the
setting proposed in (Kugi, 2001) for two reasons: (i) in (K®P01) the mechanical
part is described by the Euler-Lagrange equations, whdestactrical part is covered
by some kind of generalized Brayton-Moser descriptiohhi@re the powers stemming
from both the mechanical and electrical domain are includeshe mixed-potential
function explicitly revealing the couplings between th#atent subsystems, while in
the afore mentioned reference each electrical system fiasvit potential functions
containing only powers stemming from the electrical paftthe system. The main
advantage of defining one potential function for the congpitstem is that we can
exploit the stability properties proposed in (Brayton andgér, 1964) and extend the
ideas of (Ortega and Shi, 2002) to the electro-mechanisal.ca
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