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ABSTRACT

We present a novel similarity measure (likelihood) for estimating three-dimensional human pose from im-
age silhouettes in model-based vision applications. One of the challenges in such approaches is the con-
struction of a model-to-image likelihood that truly reflects the good configurations of the problem. This
is hard, commonly due to the violation of consistency principle resulting in the introduction of spurious,
unrelated peaks/minima that make the search for model localization difficult. We introduce an entirely con-
tinuous formulation which enforces model estimation consistency by means of an attraction/explanation
silhouette-based term pair. We subsequently show how the proposed method provides significant consoli-
dation and improved attraction zone around the desired likelihood configurations and elimination of some
of the spurious ones. Finally, we present a skeleton-based smoothing method for the image silhouettes that
stabilizes and accelerates the search process.

Keywords: human tracking, model-based estimation, constrained optimization, level set methods, fast
marching methods

1 INTRODUCTION AND PREVIOUS WORK

Human pose estimation from images is an active area
of computer vision research with many potential ap-
plications ranging from computer interfaces to motion
capture for character animation, biometrics or intel-
ligent surveillance. One promising approach, called
model based [Smin01b, Deut00, Heap98, Smin01a,
Gavr96, Breg98, Kakad96, Rehg95], relies on a 3D ar-
ticulated volumetric model of the human body to con-
strain the localization process in one or several im-
ages. The goal in human pose estimation applica-
tions is to estimate the model’s articulation and pos-
sibly structural parameters such that the projection of
the 3D geometrical model closely fits a human in one
or several images. Typically, model localization is
a multi-dimensional expensive search process in the
model parameter space for good cost configurations
defined in terms of maxima of alikelihood, or min-
ima of an energy function. Such costs are defined in

terms of the association of model predictions with ex-
tracted image features. The search process produces
a parameter configuration which brings the 3D model
close to the tracked 2D image in the metric of the
predefined likelihood model. The above problem is
hard since likelihood cost surfaces are typically multi-
peaked, due to factors like multiple scence objects,
ambiguous feature assignments, occlusions, and depth
uncertainties.

Search strategies for locating good peaks in the
model parameter space based on local and global
search methods, possibly in temporal sequences,
have received significant attention [Smin01b, Deut00,
Heap98, Smin01a, Gavr96, Breg98] and are not ad-
dressed here. However, the dificulty and intinsically
ill-posed nature of such search problems raise two
complementary questions about the design of the cost
surface whoose minima are to be found:



� what aregood image features which will read-
ily qualify for likelihood terms for sampling and
continuous evaluation ?

� how todefine such terms to limit the number of
spurious minima in parameter space and render
the search more efficient and effective.

Likelihood models defined in terms of edges [Deut00,
Smin01a, Kakad96], silhouettes [Deut00, Smin01a,
Heap98] or intensities [Smin01a, Side00, Rehg95] are
the most common. While image intensities seem to be
good cues for various types of optical-flow based lo-
cal search, they are not invariant to lighting changes,
and typically rely on low inter-frame intensity varia-
tions and motion. It is consequently difficult to sam-
ple configurations out of the region where such photo-
metric model is valid. Edges and/or silhouettes have
therefore been more used in approaches that employ,
at least partially, some form of parameter-space sam-
pling [Deut00, Smin01a, Heap98].

Deutscher [Deut00] uses a silhouette based term for
his cost function design in a multi-camera setting.
However, this term peaks if the model is inside the
silhouette without demanding that the silhouette area
is fully explained (see Sec. 4.1). Consequently, an
entire family of undesired configurations situated in-
side the silhouette will generate good costs under this
likelihood model. Moreover, the term is purely dis-
crete, not suitable for continuous estimation. The sit-
uation is alleviated by the use of the additional cues
and sensor-fusion from multiple cameras with good
results. Delamarre [Dela99] uses silhouette contours
in a multi-camera setting and computes assignments
using a form of ICP (Iterative Closest Point) algo-
rithm and knowledge of normal contour directions.
The method is local and not necessarily enforces glob-
ally consistent assignments, but again relies on fusing
information from many camera to ensure consistency.
Brand [Bran99] and Rosales [Rosa00] use silhouettes
to infer temporal and static human poses. However,
their motivation is slightly different in using silhou-
ettes as inputs to a system which directly learns 3D to
2D mappings.

Summarizing, many likelihood terms used in model-
based vision applications have the undesirable prop-
erty that they not only peak around the desired model
configurations, which correspond to subject local-
ization in the image, but also in totally unrelated,
false configurations. This poses huge burdens on
any search algorithm, as the number of spurious min-
ima could grow unbounded and therefore discriminat-
ing them from “good peaks” can only be done via
temporal processing. Consequently, any finite sam-
ples/hypothesis estimator has a great chance to miss
significant, true minima.

In practice, extracting pose from silhouette using sin-
gle images remains an under-constrained problem
with potential multiple solutions. A more global
search method, multiple cameras, temporal disam-
biguation and/or additional features have thus to be
used in conjunction with the local method we pro-
pose in this work, to robustify the search for good cost
configurations [Smin01b, Deut00, Heap98, Smin01a,
Gavr96]. In this paper, we assume a reasonable initial-
isation and restrict our attention to the design of like-
lihoods with larger basin of attraction zones and glob-
ally consistent responses around the desirable cost
minima. We achieve this by means of an entirely con-
tinuous formulation and a new likelihood term for sil-
houettes in model-based applications. The proposed
term allows a globally consistent response for the sub-
ject localization in the image by means of a pair of at-
traction/explanation components that a) push the geo-
metric model inside the subject’s silhouette and b) de-
mand that the area associated with the silhouette is en-
tirely explained by the model. We subsequently show
how this proposal significantly improves the pose esti-
mation results compared to previously used similarity
measures.

In Section 2, we describe the human body model we
employ. Section 3 outlines the search process for opti-
mal configurations. Section 4 introduces our new like-
lihood terms and details its two components. Section 5
presents a new technique for smoothing the image-
acquired silhouettes that stabilizes and accelerates the
search process. Finally, Section 6 concludes the paper
and proposes directions for future work.

2 HUMAN MODEL

2.1 MODEL DESCRIPTION

Our human body model (Fig.1) consists of kinematic
‘skeletons’ of articulated joints controlled by angular
joint parameters xa, covered by ‘flesh’ built from
superquadric ellipsoids with additional tapering and
bending parameters [Barr84]. A typical model has
around 30 joint parameters, plus 8internal propor-
tion parametersxi encoding the positions of the hip,
clavicle and skull tip joints, plus 9deformable shape
parameters for each body part, gathered into a vec-
tor xd. The state of a complete model is thus given
as a single parameter vectorx � �xa� xd� xi�. We
note, however, that only joint parameters are typically
estimated during object localization and tracking, the
other parameters remaining fixed.

Although this model is far from photo-realistic, it suf-
fices for a high-level interpretation and realistic oc-
clusion prediction. Moreover, it offers a good trade-
off between computational complexity and coverage
in typical motion tracking applications.
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Figure 1: Human model: flat shaded (a,b) and
discretization (c,d)

2.2 MODEL TO IMAGE FITTING

The model is used in the human pose estimation ap-
plication as follows (see also Fig. 2 for an overview of
the application pipeline).

sillhouette
extraction

parameters

image
acquisition

cost
computation

parameter
estimation

human model

smoothing likelihood

Figure 2: Human pose estimation application
pipeline

The pipeline starts by extracting a human silhou-
ette (see the example in Fig. 3 b) from the camera-
acquired images (Fig. 3 a) by subtracting the scene
backgroundand thresholding the result to a bilevel im-
age. To stabilize the further parameter estimation step,
a special smoothing is applied on the extracted im-
age. This smoothing is described separately in Sec. 5.
The model’s superquadric surfaces are discretized as
meshes parameterized by angular coordinates in a 2D
topological domain. Mesh nodesui are transformed
into 3D pointspi � pi�x� and then into predicted
image pointsri � ri�x� using composite nonlin-
ear transformationsri�x� � Ti�x� � P �pi�x�� �
P �A�xa� xi� Dp�xd� ui���, whereDp is a sequence
of parametric deformations that construct the corre-
sponding part in its own reference frame,A is a chain
of rigid transformations that map it through the kine-
matic chain to its 3D position, andP is the perspective
projection.

During parameter estimation (see Sec. 3), prediction-
to-image matching cost metrics are evaluated for pre-
dicted image featureri, and the results are summed
to produce the image contribution to the overall pa-
rameter space cost function. For certain likelihood
terms like edge based ones, predictionsri are associ-
ated with nearby image features�ri. The cost is then a

function of the prediction errors�ri�x� � �ri�ri�x�.
For other likelihood terms (like the silhouette attrac-
tion term we employ here), a potential surface is built
for the current image, and the prediction is only eval-
uated at a certain location on this surface.

3 PARAMETER ESTIMATION

We aim towards a probabilistic interpretation and opti-
mal estimates of the model parameters by maximizing
the total probability according to Bayes rule:

p�xj�r� � p��rjx�p�x� � expf��ea � es�gp�x� (1)

where ea and es are the new silhouette likelihood
terms we propose, defining similiarity criteria be-
tween the model projection and the image silhouette
to be defined in the next section, andp�x� is a prior
on model parameters. The prior encodes static knowl-
edge on humans, such as anatomical joint angle limits
for parameters or non-penetration constraints on the
body parts (see [Smin01b, Smin01a] for details).

In a maximum a-posteriori estimate (MAP) approach,
we spatially discretize the continuous formulation in
Eqn. 1, and attempt to minimize the negative log-
likelihood, or ’energy’, for the total posterior proba-
bility. The energy is expressed as the following cost
function:

f�x� � � log�p��rjx�p�x�� � � log p��rjx� � log p�x�

� ea � es � fp�x�

wherefp�x� is the negative log of the model prior. In
the following, we shall concentrate on the behavior
and properties of the negative log-likelihoodea � es.

Various search methods attempt to identify the min-
ima of the functionf , by either local continous de-
scent, stochastic search, parameter space subdivision
or combinations of them [Smin01b, Deut00, Heap98,
Smin01a, Gavr96, Breg98]. All these methods require
the evaluation off . Continuous methods require sup-
plementary evaluations of the first order gradientg and
sometimes the second order HessianH of f . In this
paper, we use a second order local continuous method,
where a descent direction is chosen by solving the reg-
ularized subproblem [Flet87]:

�H � �W ��x � �g� subject toCjl � x � �

where:

� W is a symmetric positive-definite stabilization
matrix (ofter set to identity)

� � is a dynamically chosen weighting factor



� Cjl is a matrix containing joint angle limits con-
straints acting as effective priors, defining an
addmissible subspace to search for model pa-
rameters (see [Smin01b, Smin01a] for details).

The parameter� controls the descent type:� � �
leads to a gradient descent, while� � � leads to a
Newton-Raphsonstep. The optimization routine auto-
matically decides over the type and size of the optimal
step within the admissible trust radius (see [Flet87,
Trig00] for details).

4 OBSERVATION LIKELIHOOD

Whether continuous or discrete, the search process de-
pends critically on the observation likelihood compo-
nent of the parameter-space cost function. Besides
smoothness properties, necessary for the stability of
the local continuous descent search, the likelihood
should be designed to limit the number of spurious
local minima in parameter space. We propose a new
likelihood term, based on two components:

� the first component maximizes the model-
image silhouette area overlap.

� the second component pushes the model inside
the image silhouette.

The above pair of cost terms produces a global and
consistent response. In other words, this term enforces
the model to remain within the image silhouette, but
also demands that the image silhouette is entirely ex-
plained, i.e. thatall silhouette parts contribute to the
cost function that drives the fitting process. In the fol-
lowing, we detail the two cost components.

4.1 SILHOUETTE-MODEL AREA OVERLAP
TERM

This term maximizes the model-image area overlap.
The area of the predicted model can be computed from
the model’s projected triangulation by summing over
all visible trianglest � Vt (triangles having all the ver-
tices�xi� yi�i����� visible).

Sa �
X

t�Vt

�X

i��

�xi���yi���� � yi����� (2)

where� describes the modulooperation, and the com-
putation assumes the triangle vertices are sorted in
counter-clockwiseorder to preserve positive area sign.
In subsequent derivations we drop the modulo nota-
tion for simplicity.

Let Sg be the area of the target silhouette. The area
alignment cost, i.e. the difference between the model
and image silhouette areas, is:

ea �
�

	��
�
X

t�Vt

Sa � Sg�
� (3)

The gradient and Hessian for the area-based cost-term
can subsequently be derived (by dropping the scaling
term):

ga �
dea

dx
� �
X

t�Vt

Sa � Sg�
X

t�Vt

�Sa

�x
(4)

where:

�Sa

�x
�

�X

i��

�xi

�x

�

�yi�� � yi��� (5)

�

�X

i��

xi�
�yi��

�x
�
�yi��

�x
�� (6)

Ha �
d�ea

dx�
�
X

t�Vt

�Sa

�x

� �Sa

�x
(7)

��
X

t�Vt

Sa � Si�
X

t�Vt

��Sa

�x�
(8)

One should notice that the individual partial deriva-
tives �xi

�x
and �yi

�x
represent the columns of the indi-

vidual Jacobian matrix evaluated at the correspond-
ing prediction for the mesh nodei, ri�x� � �xi� yi�.
In practice, computing node visibility and area differ-
ences is rather fast, as we use the frame and z buffers
to this end.

4.2 SILHOUETTE ATTRACTION TERM

This second term pushes the model inside the image
silhouette. Adding over all projected model nodesi,
this term writes:

es �
�

	��

X

i

esi (9)

whereesi is the distance from a predicted model point
ri�x� to a given silhouetteSg. We estimateesi by
computing the distance transformD of the silhouette
Sg and evaluating it in the pointsi:

esi�ri�x�� Sg� � D�ri�x�� (10)

We use a level-set based approach to quickly and ro-
bustly estimateD, as follows. We initializeD to zero



onSg , i.e. regardSg as the zero level set of the func-
tion D. Next, we computeD by solving the Eikonal
equation [Seth99]:

jrDj � � (11)

for all points outsideSg. The solution of equation 11
has the property that its isolines, or level sets, are
at equal distance from each other in the 2D space
(Fig. 3). Consequently,D is a good approximation of
the distance transformD.

a) b)

c) d)

Figure 3: Distance transform computation:
original image (a), silhouette (b), distance plot
(c) and distance level sets (d)

Equation 11 is efficiently solved by using the fast
marching method (FMM), introduced by Sethian in
[Seth96]. We briefly outline here the FMM. A detailed
description of the FMM, up to the implementation
details we have ourselves used, is given in [Seth96,
Seth99]. First,D is initialized to zero in all points on
the silhouetteSg . Next, the solutionD is built out-
wards starting from the smallest knownD value. This
is done by evolving a so-callednarrow band of pix-
els, initially identical toSg, in normal direction toSg,
with unit constant speed. As the narrow band evolves,
it takes the shape of the consecutive, equidistant level
sets, or isolines, of the functionD (Fig. 3 d).

Using the FMM to compute the distanceD has sev-
eral advantages. First, the functionD obtained is con-
tinuous over the 2D plane, which is important as we
need to evaluate its first and second order derivatives,
as explained below. Secondly, the FMM performs ro-
bustly even for noisy silhouettesSg . This is essential

for practical applications, as the silhouettes extracted
from real images have many disconnected, spurious
pixels (Fig. 3 b is a typical example). Thirdly, the
FMM is very efficient, as it needsO�n 	 logk� opera-
tions, wheren is the number of image pixels andk is
the average number of pixels in the narrowband, of the
same order as the number of pixels on the silhouette’s
contour.D is computed in real time for
��� pixel im-
ages on an SGI O2 R5000 machine. Finally, imple-
menting the FMM is straightforward, as described in
[Seth96]. Overall, we believe that using the FMM to
computeD is a more efficient and effective method
than e.g. chamfer based methods widely used in vi-
sion and imaging applications.

The gradient and Hessian of the corresponding sil-
houette attraction term are computed from the model-
image Jacobian, as follows:

gs �
X

i

dD�ri�x��

dx
�
X

i�V

J�i
�D

�ri
(12)

Hs �
X

i

d�D

dx�


X

i�V

J�i
��D

�r�i
Ji (13)

Figure 4 shows the effect of the silhouette attraction
and area overlap terms for two images taken from a
longer tracking sequence. The figure shows the initial
images (a,e), the initial model configuration (b,f), and
the fitting results obtained when using only the silhou-
ette attraction term (c,g) and finally both the silhouette
attraction and the area overlap terms (d,h). One can
notice that the silhouette attraction term does not suf-
fice for a good fit. Indeed, any parameter configura-
tion which places the model inside the image silhou-
ette can be potentially chosen. Adding the area over-
lap term stabilizes the estimation and drives it towards
relatively satisfactory results. Moreover, the cost term
has the desired properties of a wide attraction zone.
This makes it a good candidate in tracking applica-
tions where recovery from tracking failures is highly
desirable.

5 SILHOUETTE SMOOTHING

The gradientg and HessianH introduced in the pre-
vious sections are at the core of the optimization pro-
cess that fits the model to the observed image features.
The stability of the optimization is influenced by the
behavior ofg andH : if the silhouette data are noisy,
then the cost termses andea, and their derivativesg
andH , are not smooth functions. In such cases, the
optimization process might fail or take too long to con-
verge or might fit the model erroneously to the image
silhouette.
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hgfe

Figure 4: Model estimation based on various silhouette terms original images (a,e), initial models (b,f), sil-
houette attraction term only (c,g), silhouette attraction and area overlap terms (d,h)

We alleviate this problem by performing asmoothing
on the silhouettes acquired from the image data. The
smoothing aims to produce silhouettes from the im-
age data that can be easier approximatedby our human
body models than the original ’raw’ silhouettes. The
process runs as follows (see Fig. 6 for an overview).

Figure 5: Examples of raw silhouettes, skele-
tons, and smoothed silhouettes

First, the raw silhouettes are extracted from the im-
age data, as explained in 4. Due to the limitations of
the extraction process, these silhouettes may have a
jagged boundary, contain spurious pixels, or miss pix-
els on the real silhouette, as in Fig. 6 b.

In second next step, we compute theskeleton of the
silhouette, as follows. We apply the FMM algorithm
inwards on the raw silhouette and compute the dis-
tance mapD� of all the points inside the silhouette
to its boundary (Fig. 6 b). The silhouette skeleton is
then computed as being those points of the evolving
narrow band that meet other similar points due to the
band’s evolution under normal speed. In other words,
the skeleton points are those points where the narrow
band collapses onto itself during its evolution driven
by the FMM algorithm. We identify these points using
a technique similar to the ones described in [Sidd99,
Ogni95b].

In the third step, the obtained skeleton (Fig. 6 c) is
pruned of its small, less significant branches by retain-
ing only its points that originate from points on the
initial narrow band situated at a distance larger than
a given threshold [Ogni95a, Ogni95b, Sidd99]. The
above pruning scheme is based on two observations:
a) every skeleton point is generated by the collaps-
ing of a compact segment of the original boundary
[Sidd99, Kimm95], and b) the importance of a skele-
ton point can be measured by the length of the bound-
ary segment out of which it originates [Ogni95a,
Ogni95b].

In the last step, we ’inflate’ the pruned skeleton to ob-
tain the smoothed silhouette. To do this, we execute
again the FMM algorithm outwards from the skeleton,
as follows. We initialize the narrow band to the skele-
ton points and the functionD to the value of�D� at
those points, whereD� is the distance from the skele-
ton to the silhouette, computed in the previous step.
We stop the FMM execution when points of the out-
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Figure 6: Skeleton-based silhouette smoothing pipeline

wards evolving narrow band reach aD value of zero.
At that moment, the inflated skeleton matches the ini-
tial silhouette (Fig. 6 d). However, due to its pruning,
most of the noise of the initial raw silhouette has been
removed, as seen in the examples in Fig. 5.

Since the FMM algorithm performs in real time, as
noted in Sec. 4.2, the whole skeleton-based smooth-
ing process takes less than a second for our typical im-
ages. By adjusting the skeleton pruning threshold, we
obtain different smoothing levels. Smoother silhou-
ettes, produced by a higher threshold, lead in practice
to a more stable and sensibly faster convergenceof the
model parameter estimation. Moreover, pruned skele-
tons typically lead, due to the properties of the Eikonal
equation used in the reconstruction, to silhouettes hav-
ing rounded edges. These shapes are easier appproxi-
mated by the superquadric shapes used in our human
body model than the raw, arbitrarily shaped silhou-
ettes. However, if the skeletons are pruned too much,
the smoothed silhouettes might miss important image
cues, such as the orientation of a limb. Conversely,
less smoothed silhouettes are closer to the observed
data, thus more accurate, but, as mentioned, may lead
to numerically unstable derivative estimations. Cur-
rently we estimate, by trial and error, a good value for
the pruning threshold for a given application configu-
ration (camera parameters, lighting, raw silhouette ex-
traction parameters, optimization method parameters,
etc). This value works well for the various images we
have tried it on. However, a better strategy we plan
to investigate is to use an adaptively optimal threshold
for each image.

6 CONCLUSIONS

We have presented a method to build more consis-
tent likelihood terms for silhouettes, and applied it
for human pose estimation in a model based context.
Aiming to build cost surfaces whose minima accu-
rately reflect the good configurations in the problem,
we define a novel likelihood model composed of an

attraction term and an area overlap term which en-
sures consistent model localization in the image with
improved attraction zones. Secondly, we propose a
smoothing method for the silhouettes extracted from
the image data that stabilizes the optimization process
used for pose estimation. Both the likelihood attrac-
tion term and silhouette smoothing method are based
on distance functions extracted using level-set tech-
niques for evolving boundaries under constant speed
in the normal direction. In particular, the fast march-
ing method allows us to calculate distance transforms,
skeletons, and to reconstruct silhouettes from their
skeletons in a simple to implement and efficient way.

Our future work aims at employing silhouette skele-
tons, extracted with level set methods, directly as like-
lihood terms for human pose estimation applications.
Together with this, we aim to develop an automatic
procedure of setting the prunung threshold for the
skeleton-based smoothing we employ on the image-
extracted silhouettes.
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