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We derive general conditions under which forward and/or put unbiasedness occurs and show 

that restrictions on the probability distribution suffice for simultaneous unbiasedness of 

forwards and puts, even if consumers are assumed to be risk averse.  We examine the optimal 

production and hedging decisions by a risk-averse producer.  If the producer’s state prices are 

derived from his marginal rates of substitution an unbiased market forward price is overpriced 

and an unbiased market put price is underpriced.  Even in this case the full hedging and 

separation theorem still holds and, contrary to previous literature, there is a hedging role for 

puts. 
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Income uncertainty and optimal hedging decisions by a competitive commodity 

producer have been the object of considerable research.  This paper examines two 

issues which are not addressed or have caused some confusion in the hedging 

literature.  We first derive general conditions under which forward and/or put price 

unbiasedness occurs.  Contrary to the traditional belief that unbiasedness occurs only 

under risk-neutrality, we show that restrictions on the probability distribution suffice 

for unbiasedness, even if consumers are assumed to be strictly risk averse.  Second, 

we examine the optimal production and hedging decisions by a risk-averse producer.  

Hedging is utility-enhancing for this producer only if his private state prices (derived 

from the marginal rates of substitution) differ from the market state prices.  If the 

producer’s state prices are derived from his marginal rates of substitution, he will 

perceive an unbiased market forward contract to be overpriced and an unbiased 

market put price to be underpriced.  Contrary to the previous literature we show there 

is a hedging role for put options�together with forward contracts. 

 In a pioneering article, McKinnon (1967) presents a model of a commodity 

producer who minimizes income volatility in a mean-variance framework.  He shows 

that the correlation between stochastic price and production is crucial in the optimal 

hedging decision.  A missing feature in McKinnon’s model is that production cannot 

be chosen.  Baron (1970) and Sandmo (1971) develop a model of optimal production 

under price uncertainty, which is extended by Danthine (1978), Holthausen (1979), 

and Feder, Just, and Schmitz (1980) to incorporate optimal hedging decisions as well.  

They show that, when output is nonrandom, the well-known separation theorem 

holds.  The optimal production decision is independent of the producer’s risk 

preferences and expectations and can be separated from the optimal hedging decision.  

If the forward price is unbiased, the optimal production decision is to produce until 
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the marginal costs equal the forward price and the optimal forward position is a full 

hedge. 

 The results above—extended by Benninga, Eldor, and Zilcha (1983) and 

Lapan, Moschini, and Hanson (1991)—apply to a competitive producer who faces 

price risk only.  For most commodities, however, a producer faces multiple sources of 

risk.  Lapan and Moschini (1994) consider a producer facing price, production, and 

basis risk.  They derive an exact solution to the optimal hedging problem under the 

assumption that price, production and basis risk are joint-normally distributed and that 

the producer maximizes an exponential utility function.  An important finding is that 

the optimal hedge depends on the degree of risk aversion, even if the forward price is 

assumed to be unbiased. 

 The use of options as a hedging instrument has been examined much less than 

the use of futures.  Lapan, Moschini, and Hanson (1991) consider a producer facing 

price and basis risk and compare the use of futures to put options as a hedging device.  

They show that, when the futures price is unbiased, options are redundant hedging 

instruments since futures provide a payoff that is linear in price risk.  Moschini and 

Lapan (1995) study the problem of a producer facing price, (non-linear) basis, and 

production risk.  They provide analytical solutions to the use of futures contracts and 

straddles, assuming an exponential utility function and joint-normal distributions 

between the risk factors.  Under the assumption of unbiased forward and straddle 

prices, they show that the optimal strategy is to buy straddles along with a short 

position in futures.  Batterman, Braulke, Broll, and Schimmelpfennig (2000) compare 

the use of forward contracts and put options within a one period utility framework.  

They show that, in case of unbiased put prices, the optimal hedging strategy is to 

overhedge and the optimal output decision is to produce up to a point where the 

marginal costs are less than the forward price (assuming unbiasedness of the forward 

price).  Furthermore, forwards will always be preferred to puts when both instruments 

are perceived as unbiased predictors of future payoffs. 

 In all of the above papers hedging is the result of well-specified risks and 

derivatives markets which allow the complete or partial (through cross-hedging) 

hedging of these risks.  An innovative paper by Franke, Stapleton, and 
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Subrahmanyam (1998) examines the hedging motive when there are unhedgeable 

background risks.  This hedging behavior has similar origins to that discussed in the 

current paper:  Where individuals disagree strongly with the market prices (whether 

through greater background risk or for the unspecified reasons in this paper), they will 

be more strongly motivated to use non-linear derivative instruments to try to complete 

the market. 

 This paper has two purposes:  First, we examine the conditions under which 

forward contracts and/or put options are unbiased.  It is sometimes argued that 

unbiasedness of derivative instruments only occurs under risk-neutrality.1  We show 

that this is not true, and that restricting the probability distribution is sufficient for 

unbiasedness of forward and put prices.  Second, we examine the impact of 

unbiasedness on optimal hedging and production decisions.  Our model extends 

previous research by showing that there is a hedging role for put options even if only 

price is stochastic.  We also show that, whereas unbiased forward prices do not affect 

production decisions, the use of puts reduces production.   

 The remainder of this paper is organized as follows.  Section 2 introduces the 

general model specification in which the conditions for the forward price and the put 

price to be unbiased are derived.  In section 3 we derive the optimal production and 

risk management decisions for a risk-averse producer.  We examine the possibility of 

optimal hedging and production under market completeness and under market 

incompleteness.  Section 4 concludes the paper. 

 

 

 ���	!"�#��"$�
We consider a two-date framework where today is denoted as time 0 and tomorrow as 

time 1.  Time 1 has � states of the world.  We examine an asset �, having a spot price 

�0 today and { }1 2 ...
1

� � � �= < < <�  prices in the states of the world tomorrow.  The 

                                                 

1 Among others, Chiang and Trinidad (1997), Wu and Zhang (1997), and Baillie and 
Bollerslev (2000) argue that forward unbiasedness occurs under the joint assumptions of 
efficient markets and risk-neutral consumers. 
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state probabilities are given by { }1 2 1
� �����π π π π=� , and the state prices by which 

financial assets are priced are denoted as { }1 2 1
� � �� ������=� . 

Assets are priced by the state prices.  For example, the equilibrium risk-free 

rate of interest �I is given by 
1

1

1

1

M

MI

�
� =

=
+ ∑ .  In general, given the state prices, any 

asset having state-dependent payoffs { }1 2 1
� � �� ������=�  will have price today 

0
1

1

M M

M

� � �
=

=∑ .  As shown by Beja (1972), we can write the value �0 as a function of 

the discounted expected payoff plus a covariance term representing the risk of the 

asset: 

0
1 1 1

1 1
M

M M M M

M M M I

� �� �
� � � � 	
� ��

�
π

π π= =

    = = = +  +  
∑ ∑

� � �
�

 (1) 

For future reference we note that in the case of a single representative 

consumer with a Von Neumann-Morgenstern time-additive utility function, the state 

prices are derived from the consumer’s marginal rates of substitution 

( )
( )0

M

M M

� 

�

� 

δπ

′
=

′
, where δ is the consumer’s pure rate of time preference, πM is the 

probability of state �, and 
M


  is consumption in state �.  At this point we leave open 

the question of whether the market state prices are determined by the individual 

consumer’s marginal rates of substitution (see Section 3). Suppose the size of optimal 

consumption is correlated to the commodity price so that 
1���
2�<��������
1.  Since the 

utility function is concave, it follows that for time-additive utility: 

( )
( )

( )
( )

( )
( )

1 21 2

1 0 2 0 0

... 11

1

� 
� 
 � 
 �� �
� 
 � 
 � 


δ δ δ
π π π

′′ ′
= > = > > =

′ ′ ′
 (2) 

 Before deriving the optimal production and hedging decisions in the next 

section, we first examine the conditions under which forward contracts and put 

options will be unbiased. 
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In this subsection we derive conditions for the forward price to be unbiased.  Let � 

denote the forward price at date 0 for the delivery of one unit of the asset at date 1. By 

definition of the forward price, � is set so that the time 0 cost is zero: 

( )
1

0
1

M M

M

� � �
=

− =∑   (3) 

Solving equation (3) for the forward price gives 

( )0 0
1

1
1

1

M M I

MI

�
� � � � � �

� =

= = ⇒ = +
+ ∑ . This forward price is unbiased if � � � =  

� .  

As shown above, we can write: 

1 1

,
1 1

1 1
M

M M M M

M MI M I

� ��� �
� � � 	
� �

� �
π

π π= =

    = = = +  + +  
∑ ∑

� � �
�

 (4) 

Solving for � gives: 

( )1 ,I

�
� � � � 	
� �

π
  = + +     
�� �
�

 (5) 

 Thus, the forward price is unbiased if and only if , 0
�

	
� �
π

  =  
� �
�

.  As the 

lemma below shows, the covariance is zero for two cases: 

 

�"##&��+  The forward price is unbiased if and only if one of the following holds: 

1. The state prices are derived from a risk-neutral representative consumer. 

2. The consumer is risk averse and there is one restriction on the probability 

distribution. 

�

����(+�

� ����� �:  In this case the state prices are given by 
1

M

M

I

�
�

π
=

+
 and the 

covariance term is 
1

, , 0
1 I

�
	
� � 	
� �

�π
   = =    +   

� � �
�

. 
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� ������:  Given the market state prices ��  and the asset prices �� , unbiasedness 

of the forward price imposes restrictions on the state probabilities.  When there are � 

states of the world, forward unbiasedness occurs if 1

1

1

1

M M 1
M

M M1
M

M

M

� �

� �
�

π=

=

=

= =
∑

∑
∑

.  Given the 

state prices and the asset prices, this equation can be solved for any state probability 

N
π .  This means that unbiasedness imposes the following general restriction on 

N
π : 

( )
[ ]

1

1

1

M M 1 1

M � M N

N

N 1

� � � �

� �

π
π

−

= ≠

 
− − + 

 =
−

∑
 (6) 

where state 1 � �����.  || 

 

 The first result in Lemma 1 is standard, since under risk-neutrality all asset 

prices are unbiased.  The second part of the lemma shows that risk-neutrality is not a 

necessary condition for forward unbiasedness.  The restriction in equation (6) depends 

on all the other probabilities and on the state prices, meaning that both the probability 

distribution and the state prices can have any form.  Note that if there are only two 

states of the world, this restriction implies that 1
1

1 2

�

� �
π =

+
 and 2

2
1 2

�

� �
π =

+
.2  For 

three or more states, this restriction is unrelated to the degree of risk aversion of the 

consumers. 

 

� ��%�&'"��"''��(��!"�*���*���"�

Let  ( )� � denote the date 0 put price with and exercise price equal to �  The put is 

unbiased if it equals the discounted expected put payoffs.  Since we can write the put 

price as 

                                                 

2 We thank an anonymous referee for pointing this out. 
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( )
1

,
1

1

M M

M I

� � � �
� � � � � 	
� � �

� π

+

++

=

  −        = − = + −    +  
∑

�
� �
�

 (7) 

put price unbiasedness occurs if and only if 0
�

	
� � � �
π

+  − =   
� �
�

.   

 

�"##&� +  The put price is unbiased if and only if one of the following holds: 

1. The state prices for every state in which the put is in the money are risk-

neutral prices. 

2. The forward price is unbiased and the put is either always in or out of the 

money. 

3. A restriction on the probability distribution similar to that derived in 

Lemma 1 for forward prices is imposed. 

����(+   

 ������:  We start by recalling from equation (7) that3 

1

1

,
1

1

M M1
M

M M

M I

� �
�

	
� � � � � �
�

π

π

+

+ + =

=

 −     − = − −     + 

∑
∑� �

�
 

 Now suppose that the put option is exercised in states 1, ..., � of the world, 

i.e., that� 1 1 1...N N N� � � � �+ −> > > > > �� � In this case the put price is unbiased if and 

only if 

( )
( )

( )1

1 1

, 0
1 1

N

M MN N
M M

M M M M

M MI I

� �
�

	
� � � � � � � � �
� �

π
π

π
+ =

= =

−    − = − − = − − =     + +   

∑
∑ ∑� �

�
 

                                                 

3 Since [ ] [ ] [ ] ( )� � � � � � � 	
� ���⋅ = + , the covariance term 

( ) [ ] [ ] [ ]	
� ��� � � � � � � �= ⋅ − . 
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Since the factors ( ) 0, 1,...,
M

� � � �− > = , it follows that the put is unbiased if and 

only if 
1

1
M

M I

�

�π
=

+
 for every state in which it is exercised. 

 ������:  Suppose that �����1, so that the put is always out of the money.  In 

this case, ( )
1

0
1

M M

M

� � � � �
+

=

 = − = ∑ , so that the put is unbiased.  On the other hand, 

if the put is always in the money, i.e., �����1 , then 

( )
1 1

1 1

1

M M

M I

I I

� � � �
� � � � � ��� 	 � �




� � � � � ��
��� 	� �


 


π

π

+

++

=

  −        = − = + −    +  

   − −    = + − = + + 

∑
�

� �
�

� �� �
�

 

since the forward is unbiased. 

����� �:  Similar to deriving the restriction imposed on the probability 

distribution in case of forward unbiasedness, we can solve for put unbiasedness as 

well.  Given the market state prices and the asset prices, unbiasedness of the put price 

imposes a restriction on the probability distribution.  Again, when there are � states of 

the world, put unbiasedness occurs if 

( ) ( ) 1

1

1

1

1

M M 1
M

I M M1
M

M

M

� � �

� � 
 � �
�

π

+

+=

=

=

 − 
 ⋅ + = = − 

∑
∑

∑
.  Given the state prices ��  and the 

asset prices �� , this equation can be solved for any state probability 
N

π .  This means 

that unbiasedness imposes the following general restriction on 
N

π : 

( ) [ ]( ) [ ]

[ ] [ ]

1

1:

1

1

M M 1 11

M M N
M

M

N

N 0

� �
� � � � � �

�

� � � �

π

π

− + + +

= ≠

=
+ +

 
 − − − − + −  

 

=
− − −

∑
∑

 (8) 

where state 1 � 
����.  || 
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 Note the similarity between equations (6) and (8).  Note also that the 

conditions in part 1 of Lemma 2 are close to risk-neutrality, which occurs if and only 

if 
1

1
M

M I

�


π
=

+
 for all states �.  If the put price is unbiased for all exercise prices��, 

then there is risk-neutrality, so that the forward price is also unbiased.4   

 

� ���������	�
�	�
��
��
���	��
�����

Up to now we have only considered the possibility of forward unbiasedness or put 

unbiasedness.  Forward and put unbiasedness occurs if both 0
�

��� 	�
π

  =  
� �
�

 and 

0
�

��� 	 � �
π

+  − =   
� �
�

.  If we abstract from risk-neutrality, this only occurs if there 

are two restrictions on the probability distribution, and we simultaneously have to 

solve 1

1

1

1

M M 1
M

M M1
M

M

M

� �

� �
�

π=

=

=

= =
∑

∑
∑

 and  

( ) ( ) 1

1

1

1

1

M M 1
M

I M M1
M

M

M

� � �

� � 
 � �
�

π

+

+=

=

=

 − 
 ⋅ + = = − 

∑
∑

∑
.  This occurs if there are two 

states 
 and � (with 
 < �) for which the following restrictions hold: 

                                                 

4 Of course, in risk-neutrality all asset prices are unbiased. 
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[ ] [ ] ( )

[ ] [ ]

1 1 1

1

1 1 1 1

M M O M M N M 1

M � M N �O M � M N �O M � M N �ON
M

M

N

O N N O

� �
� � � � � � � � �

� �

� � � � � �

π π π

π

+ +

= ≠ = ≠ = ≠

=

+ +

  
      + − − + − + − −            =

− − −

∑ ∑ ∑
∑

 

[ ] ( )

[ ] [ ]

1

1

1

1

M M N 1
M � M N �O

N M M 1

M � M N �ON
M

M � M N �O

O

O N N O

� � � �
� �

� � �
� �

� � � � � �

π
π

π

+

+= ≠

= ≠

= ≠

+ +

  
− + −  

    + − −  
   =

− − −

∑
∑

∑
 (9) 

where state 1 � 
��������. 

 

 Given these restrictions on the probability distribution both forward contracts 

as well as put options are unbiased predictors of the expected payoff.  Contrary to the 

traditional belief that unbiasedness of derivative instruments only occurs under risk-

neutrality, it can also occur for certain probability distributions.   

 

 

���������	�����

������	�
�������	�	����������	������	���������

����

Up to this point we have proved some general statements about state price 

mathematics.  We now introduce a producer who maximizes a utility function which 

includes production and hedging.5  We assume that the producer’s state prices 

(denoted { }3

M
� ) are not necessarily the same as the market state prices which 

determine the prices of the forward contract and the put contract (from now on we 

denote these prices by { }0

M
� ).  In order to derive optimal production and risk 

                                                 

5 We assume that both the market and the producer have the same subjective state probabilities 
π. 
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management decisions we must first say something about the market conditions.  We 

say that markets are complete if the producer’s state prices and the market state prices 

are the same.6  In Theorem 1 we prove that in complete markets there is no advantage 

to the producer in hedging, either by using puts or by using forward contracts.   

 The market is incomplete if the producer’s and the market state prices are not 

the same.  In this case, the producer disagrees with the market about the pricing of 

forward contracts and put options, and the producer’s valuation of forward and put 

contracts (by using his private state prices) differs from that of the market.   

 

� �����	����������������	������

The producer faces uncertainty because the future price of goods sold is random.  At 

time 0 the producer, with initial wealth �0, chooses the output � to his production 

function; these inputs cost ( )� � , where � is a strictly convex cost function.  At time 

1, uncertainty regarding the commodity price is resolved; in each state of the world, 

the producer produces output � and realizes the proceeds from his sales given the 

stochastic commodity price.  

 If the producer has access to forward and put markets, he has to choose how 

many forward contracts (�)) and how many puts (�3) to buy or sell in order to solve 

the following problem: 

( ) ( ) ( )

( ) ( )
( )

0
1

0 0

. .

1

M M

M

3

M M 3 M ) M

���� � � � � � �

� �

� � � � � � �

� � � � � � � � �

δ π
=

+

  = + 

= − −

 = ⋅ + − + − 

∑�

 (10) 

 Before turning to the optimal production and risk management decisions we 

first examine the covariance factors 
3�

��� 	�
π

 
 
 

� �
�

 and 
3�

��� 	 � �
π

+  −   

� �
�

. 

                                                 

6 This will happen, for example, if the producer is also the representative consumer. 
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����	� ��  Suppose the producer does not have access to either put or forward 

markets.  If the producer’s state prices are derived from his marginal rates of 

substitution, then the covariance term 0
3�

��� 	�
π

 
< 

 

� �
�

 and 0
3�

��� 	 � �
π

+  − >   

� �
�

.  

Thus for this case both the put and the forward prices are biased. 

 �����  When the cost function is strictly convex there is a unique solution for 

optimal production 
�  and to state prices 
( )

( )( )
*

*
0

M M3

M

� � �
�

� � � �

π
δ

′ ⋅
=

′ −
.  This implies that 

the covariance factor can be written as: 

( )
( ) ( )

( )
0

0




M M


 
3
MM

M M M

M M

� �

� � � ��
��� 	� ��� 	� ��� 	�

� �

π
δ

δ
π π

 ′
 

 ′ ′   
 = =      ′    

   

,  

where 
�  denotes consumption given optimal production.  Given a strictly concave 

utility function, 
( )
( )0




M




� �

� �

′

′
 is a decreasing function in �, which results in a negative 

covariance factor 
3�

��� 	�
π

 
 
 

� �
�

 and a positive covariance term 
3�

��� 	 � �
π

+  −   

� �
�

.|| 

 

 !�
�����������
���	�
�����	�
��

The first-order conditions of (10)  with respect to output, forwards, and puts are given 

by: 
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( ) ( ) ( ) ( )
( ) ( )( )
( ) ( ) ( ) ( )

0
1

1

0
1

0

0

0

1

M M M

M

1

M M M

M)

1

M M M

M3

�� � �
� � � � � � �

��

�� � �
� � � �

��

�� � �
� � � � � � � �

��

δ π

δ π

δ π

=

=

+

=

   ′ ′ ′= − + =

   ′= − =

   ′ ′  = − + − = 

∑

∑

∑

�

�

�

 (11) 

 

��������"� �If the producer is representative in the sense that his marginal rates of 

substitution are equal to the market state prices, then an incremental purchase of the 

forward or the put contract does not increase the producer’s welfare.  In this case 

neither hedging with puts or forwards is preferable one over the other. 

 �����  As shown in Lemma 3, there is a unique solution to the optimal production 

decision which gives state prices 
( )

( )( )
*

*
0

M M

M

� � �
�

� � � �

π
δ

′ ⋅
=

′ −
.  Now suppose the producer 

is trying to decide whether to add a small quantity �) forwards or �3 puts to his 

position.  His expected utility will now be: 

( )( ) ( ) ( )( )
( )( )

*
0

*

1

,

 

) 3 3

1

M M ) M 3 M

M

� � � � � � � � � � � �

� � � � � � � � �δ π
+

=

  = − − 

 + ⋅ + ⋅ − + − ∑

�

 

Consider the choice of forward contracts first.  Using a standard first-order Taylor 

series expansion, it is clear that: 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )

* *
0

1

*

1

,0

0,0

1

) M M ) M

M

1

) M M M

M

� � � � � � � � � � � � � �

� � � � � � � � �

δ π

δ π

=

=

  = − + ⋅ + ⋅ − 

  ′= + ⋅ ⋅ − 

∑

∑

�

�
 

where ( )( )0 0� � � 	  �  is the expected utility and 
�  is the optimal production in case 

the firm does not hedge.  It is obvious that hedging adds value if and only if 
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( ) ( )*

1

0
1

) M M M

M

� � � � � �δ π
=

′ ⋅ ⋅ − >∑ .  However, dividing the previous equation by 

( )( )0 0� � �′  yields 
( )

( )( ) ( ) ( )
*

1 10,0

1 1
M

) M M ) M M

M M

� � �
� � � � � � �

� �
δ π

= =

′ ⋅
⋅ − = ⋅ −

′∑ ∑ , 

which equals zero by definition of the forward price.  This proves the theorem for 

forwards.  The proof for puts is similar.  || 

 

 Thus, if the producer is the representative agent, hedging with forward 

contracts or put options does not improve his personal utility of wealth, since buying 

or selling financial instruments is always a zero-NPV investment.  There will be 

welfare improvements only if the producer’s implicit state prices differ from the 

pricing for the forward/put contracts.  Thus, hedging can only add value if there is 

some kind of market incompleteness. 

 

� ����������	�
����
�������������

When markets are incomplete, the producer’s marginal rates of substitution are 

different from the market prices.  In this case the use of forwards and put options can 

lead to welfare improvements.  Suppose that the producer’s state prices are derived 

from his marginal rates of substitution from maximization problem (10), leading to 

state prices 
( )

( )( )
*

*
0

M M3

M

� � �
�

� 	 
 �

π
δ

′ ⋅
=

′ −
.  Furthermore, suppose that the market forward 

price is unbiased.  Then:   

1

1

1

1

0

M M 1
M

M M1
0 M

M

M

� �

� �
�

π=

=

=

= =
∑

∑
∑

  (12) 

If the producer agrees with the market valuation, then: 
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1

1

1

1

3

M M 1
M

M M1
3 M

M

M

� �

� �
�

π=

=

=

= =
∑

∑
∑

  (13) 

However, by Lemma 3, 
1

1

M M

M

� �π
=

<∑ .  From this we conclude that if the forward price 

is unbiased (using market state prices), then the producer views the market forward 

price as being overpriced.  A similar statement is true for puts. 

 Thus, if the market forward price is unbiased, then the producer thinks that 

the market forward price is too high and the put price is too low.  Therefore the 

optimal forward position for the producer is to short the forward contract and to go 

long the put contract. 

 

������������If the market forward price is unbiased and markets are incomplete, the 

producer will engage in a full hedge.  There will be separation between the production 

and hedging decision even though the producer perceives the forward price to be 

overpriced.7 

����	:  We consider a producer who maximizes his expected utility using forwards 

only: 

( ) ( ) ( )

( )
( )

0
1

0 0

. .

1

M M

M

0

M M ) M

��
� � � � � � �

� �

� 	 
 �

� � � � � �

δ π
=

  = + 

= −

= ⋅ + ⋅ −

∑�

 (14) 

                                                 

7 Note that we explicitly distinguish between the market forward price, which is given to the 
producer, and his private valuation which he would be willing to pay for the forward contract 
given his private state prices. 
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where 1 1

1

1 1

1 1

0 3

M M M M1
M M0 3

M M1 1
0 3M

M M

M M

� � � �

� � �
� �

π= =

=

= =

= = > =
∑ ∑

∑
∑ ∑

 implying that the producer perceives 

the market forward price to be overpriced (by Lemma 3).  The superscripts � and � 

are added to distinguish between the market forward price and the producer’s private 

valuation of the forward price.  The first order conditions for the producer are given 

by: 

( ) ( ) ( ) ( )
( ) ( )( )

0
1

1

0

0

1

M M M

M

1
0

M M M

M)

�� � �

 � � � � � �

��

�� � �
� � � �

��

δ π

δ π

=

=

   ′ ′ ′= − + =

   ′= − =

∑

∑

�

�
 (15) 

However, since both the producer and the market face the same probability 

distribution, the producer perceives the market forward price as being unbiased and 

the optimization problem becomes a standard decision.  Look at the choice of the 

number of forward contracts first.  The first-order condition can be rewritten as: 

( ) ( )( )

( )( )
( ) ( ) ( ) ( )( )

1

,

1

0

M M M

M)

0

M M

0 0

M M M M

�� � �
� � � �

��

� � � � �

� � � � � � 
�� � � � �

δ π

δ

δ

=

   ′= −

 ′= − 
  ′ ′= − + −   

∑
�

 

Since ( )0

M� � � −  is zero by definition of an unbiased market forward price, the 

first order condition is zero if and only if ( ) ( )( ), 00

M M
�� � � � �′ − = .  If the 

producer engages in a full hedge, i.e., 
)

� �= − , marginal utility is constant and the 

covariance term will be zero.  Thus, even though the producer perceives the forward 

to be overpriced, he still engages in a full hedge.  Now consider the optimal 

production  decision.  Dividing the first-order condition through ( )0� �′  yields: 
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( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( )

( )
( )

1 0 0

0 0

,

1
M

M M

M

� ��� � � � �

 � � 
 � � �

�� � � � �

� � � �

 � � � � 
�� �

� � � �

δ π δ

δ δ

=

′   ′  ′ ′= − + = − + ⋅ ′ ′  
   ′ ′

 ′= − + +      ′ ′    

∑
� ��

� �� �
 

However since the producer engages in a full hedge, ( )� �′ �  is constant which allows 

us to rewrite the first order condition as:8 

( ) ( ) ( )
( )

( )
( )

( )

( )

0 0

0

,

1

1
0

I

�� � � � � � �

 � � � � 
�� �

�� � � � �


 � �
�


 � �

δ δ
     ′ ′   ′= − + +      ′ ′    

′= − + ⋅
+

′= − +

� � �

 

This completes the proof.  || 

 

 By Theorem 2, production takes place up to the point where the marginal 

costs equal the current spot price (or alternatively:  production takes place up to the 

point where the forward marginal costs equal the market forward price).  The optimal 

hedge is a full hedge and the optimal production decision is to produce until the 

marginal costs of production equal the current spot price.  Thus, the producer’s risk 

preferences do not influence his optimal production decision, nor his optimal forward 

hedge.  This proof differs from the traditional papers on optimal hedging and 

production, in which the producer agrees with the market valuation of the forward.9  

Even though the producer does not agree with the market valuation of the forward 

contract (according to his private valuation the forward is overpriced) he still engages 

in a full hedge and there is separation between the production and hedging decision. 

 

                                                 

8 A bar ( ¯  ) is used to denote a nonrandom variable. 
9 See e.g., Benninga, Eldor, and Zilcha (1983, 1985). 
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�������:  If the market valuation of the put is unbiased and if producer and market 

agree on the interest rate, then the producer will view the put as underpriced.  Thus 

the optimal hedging position for the producer will be long in the put.10 

����	:  If the market valuation of the put is unbiased we must have the general 

restriction on the probability distribution, as given in equation (11).11  We will now 

show, by contradiction, that the producer cannot agree with the market valuation of 

the put.  If the market put price is unbiased then we have 

( ) ( ) 1

1

1

1

1

0

M M 1
M

I M M1
0 M

M

M

� � �

� � � � �
�

π

+

+=

=

=

 − 
 ⋅ + = = − 

∑
∑

∑
.  Now we will show that the 

producer does not agree with the market valuation of the put.  To see this, we proceed 

by contradiction by saying that if the producer would agree with the market put price, 

then: 

( ) ( ) 1

1

1

1

1

3

M M 1
M

I M M1
3 M

M

M

� � �

� � � � �
�

π

+

+=

=

=

 − 
 ⋅ + = = − 

∑
∑

∑
 

However, from Lemma 3, ( ) ( )
1

1
1

I M M

M

� � � � �π
+

=

 ⋅ + > − ∑ , from which we can 

conclude that if the market put price is unbiased, then the producer will view the put 

option as being underpriced.  This implies that the optimal put position will be long.  

|| 

 

�������� ��  If the market put price is unbiased, then the optimal put position 

depends on producer access to the bond market.  This can result in a full hedge, in an 

overhedge, and in an underhedge. 

                                                 

10 Remember that an unbiased put price means that the forward put price equals the expected 
payoff. 
11 We assume that at least one state of the world generates a positive payoff. 
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����	�  If the producer can use put options only, his maximization problem becomes: 

( ) ( ) ( )

( )

0
1

0 0

. .

1

M M

M

0

3

M M 3 M

��
� � � � � � �

� �

� 	 
 � � �

� � � � � �

δ π
=

+

  = + 

= − −

 = ⋅ + ⋅ − 

∑�

 (16) 

which results in the following first order conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( )

0
1

0
1

0

0

1

M M M

M

1
0

M M M

M3

�� � �

 � � � � � �

��

�� � �
� � � � � � �

��

δ π

δ π

=

+

=

   ′ ′ ′= − + =

   ′ ′  = − + − = 

∑

∑

�

�
 (17) 

Consider the choice of the optimal number of put options first. The question is, 

whether the producer—as in the case of hedging with forwards discussed above—will 

engage in a full hedge. Dividing the first order condition by ( )0� �′  and rewriting 

shows us: 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 0 0

0 0

01

1
M M0 0

M M M

M3

M M0

M M

M
M

M

I

� � � ��� � �
� � � � � � �

�� � � � �

� � � �
� � � � � 
�� � � �

� � � �

� � � � �
� � � �

� � �

δ π δ

δ δ

δ

+ +

=

+ +

+

+

 ′ ′       = − + − = − + −   ′ ′  
   ′ ′       = − + − + −       ′ ′    

  −  ′       = − + −  ′+   

∑
�

( )
( )

( )
( )

( )
( )

0

0 0

1

1

M

M

M M

M M

I

� �

�� � � �

� �

� � � �
� � � � 
�� � � �

� � � � �

δ

δ δ

+

+ +

 ′
  + −   ′ 

    ′ ′         = − ⋅ − + −       ′ ′ +     
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 ����� �:  If the producer has full access to the bond market then 

( )
( )0

1

1
M

I

� �
�

� � �
δ

 ′
  =

′ +  
.  This means that the covariance term 

( )
( )0

M

M

� �

�� � � �

� �
δ

+ ′
  −  ′ 

 must be zero in order to have an optimum.  As shown by 

Battermann, Braulke, Broll, and Schimmelpfennig (2000) this results in overhedging. 

 ������:  If the producer would like to borrow but cannot (e.g., because he has 

restricted borrowing) the term 
( )
( )0

1

1
M

I

� �
�

� � �
δ

 ′
  <

′ +  
.  This means that at a producer 

optimum: 

( ) ( )
( )

( )
( )0 0

0
00

1
0

1
M M

M M

3 I

� � � ��� � �
� � � � 
�� � � �

�� � � � � �
δ δ

+ +

>
><

    ′ ′            = − ⋅ − + − =       ′ ′ +     

�

�������
�����������������������

 

In order to set the marginal utility = 0, the Cov > 0; this means that for this case the 

producer buys fewer puts than in case 1, but still has a positive put position by 

Lemma 4.  Since setting the covariance equal to zero (as in Case 1) leads to 

overhedging we know that choosing the optimal number of put options can lead to the 

possibility of full hedging, underhedging, and overhedging. 

 ������:  If the producer would faces a binding lending constraint, then the 

term 
( )
( )0

1

1
M

I

� �
�

� � �
δ

 ′
  >

′ +  
.  In this case: 

( ) ( )
( )

( )
( )0 0

0
0

1
0

1
M M

M M

3 I

� � � ��� � �
� � � � 
�� � � �

�� � � � � �
δ δ

+ +

>
>

    ′ ′            = − ⋅ − + − =       ′ ′ +     

�

�������
�����������

 

Thus at an optimum, the covariance term must be negative, which means that the 

producer overhedges.  Note that in this case, the producer overhedges even more then 

in case 1.  || 
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 The results are summarized in Figure 1. 

 

�
����������
�
��������
���
��������	�
����
�
����

Number of puts

( )
( )0

M

M

8 F
&RY � ; 6

8 F
δ

+ ′
   −  ′ 

\ Case 3

Case 2

•
Case 1

 
 

 The benchmark case where the producer has full access to the bond market is 

in given by the thick dot and results in overhedging.  The thin part of the line is the 

case where the producer has restricted borrowing.  This will result in the possibility of 

underhedging, full hedging and overhedging.  If the producer faces a restricted 

lending constraint, his optimal put position is given by the thick part of the line.  In 

this case, the producer overhedges, and even more than in the benchmark case 1. 

 

�������� �:  If the producer uses put options in his optimization problem he will 

decrease total production. 

	���
:  A long position in puts increases future consumption in the states of the world 

where the put ends up in the money.  This means that buying puts (weakly) decreases 

the producer’s implicit state prices because of two reasons.  Recall that the producer’s 

implicit state prices are given by: 
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( )
( )0

M3

M

� �
�

� �
δπ

′
=

′
 

 Since buying puts increases future consumption in the “bad” states of the 

world, the numerator for these states of the world decreases because of declining 

marginal utility.  Since buying puts also decreases current consumption the 

denominator increases which will make the state prices go down for every state of the 

world.  Thus, buying more puts decreases all implicit state prices.  Now suppose we 

have an equilibrium in which the producer does not use puts, so that 0
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If we now add put options by increasing �3, this decreases the implicit state prices and 

therefore decreases �.  Puts therefore lead to a reduction in output.  || 

 

 Previous theorems have discussed the (separate) use of puts and forwards in 

the producer’s decision.  The next theorem proves properties of the combined use of 

these instruments. 

 

���������:  If the market forward price and the market put price are unbiased, the 

producer will decrease his total production, buy put options and fully hedge his total 

output with forward contracts. 

	���
:  If the producer can use unbiased forwards and puts he has to solve the 

following maximization problem: 
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resulting in the following first-order conditions: 
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 (19) 

 Consider the choice of the number of puts first.  As shown in Theorem 3, the 

optimal number of put options depends on the producer’s access to the bond market, 

which can result in underhedging, overhedging, and full hedging.  Furthermore, 

similar to Theorem 4, this results in the producer lowering his output related to the 

no-hedging case.  Finally, the second part of equation (19) is solved if the producer, 

as can be expected, fully hedges his total output.  || 

 

 Contrary to the traditional papers on optimal hedging and producing, there is 

a hedging role for both forwards and options, even if there is only one stochastic 

factor. 

 

 

����
�����������

In this paper we examine two issues which have caused some confusion in the 

optimal hedging literature.  We derive general conditions under which market prices 

for forward and put contracts can both be unbiased; this is to hold under risk 

neutrality or if a technical condition related on the state probabilities holds.   

 Our second line of research relates to optimal hedging by a producer who can 

use both puts and forwards to hedge production.  This problem has interest mainly in 

the case where the producer’s state prices are different from the market state prices; if 

both market and private state prices are identical, then hedging by producers is not an 

issue. 
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 When the market state prices differ from the producer’s private state prices, 

we show that unbiasedness of the forward price will lead to a full hedge, even though 

the producer will consider the forward contract to be overpriced.  Unbiasedness of the 

put price will lead to the producer taking a long position in the put.  The optimal put 

position depends on the producer’s access to the bond market.  This can lead to 

underhedging, full hedging and overhedging.  Furthermore, if the producer uses puts 

to hedge his price exposure, optimal production will decrease.  Finally, if both the 

prices of forward contracts as well as put options are unbiased there is a hedging role 

for put options.   
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