
 

 

 University of Groningen

An assertional criterion for atomicity
Hesselink, Wim H.

Published in:
Acta informatica

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (2002). An assertional criterion for atomicity. Acta informatica, 38(5), 343-366.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/518c0e44-c5d5-4b3d-90eb-e8c16fb57ba4


Acta Informatica 38: 343–366 (2002)

c© Springer-Verlag 2002

An assertional criterion for atomicity

Wim H. Hesselink

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands
(e-mail: wim@cs.rug.nl, Web: http://www.cs.rug.nl/˜wim)

Received: 10 May 2001 / 6 December 2001

Abstract. A criterion is presented to prove atomicity of read-write ob-
jects by means of ghost variables and invariants. The criterion is applied
to Bloom’s construction of a two-writer atomic register from two one-writer
atomic registers and to the algorithm of Vitanyi and Awerbuch for the con-
struction of a read-write object withm readers and writers, based onm2

read-write objects for one reader and one writer. In both cases, the proof
comes down to the verification of a number of invariants. The hand-written
proofs of these invariants have been verified with a mechanical theorem
prover.

1 Introduction

In this paper we present a criterion for atomicity of read-write objects by
means of ghost variables and invariants. Since preservation of a given invari-
ant in a given algorithm is relatively easy to verify or falsify, the criterion
makes rigorous, evenmechanical, verification easier. The criterion provides
guidance to the designer since it introduces the ghost variables with required
invariants. It is up to the designer to encode the ghost variables in such away
that the invariants can be preserved. The criterion also reduces the possibil-
ity of errors in hand-written proofs: the proof breaks into inevitable cases,
and forces one to reason about actions rather than execution traces.

1.1 Atomicity and blocking

Concurrency is introduced for efficient utilization of processing capability.
It may lead, however, to undesirable interferences, e.g., when two processes



344 W.H. Hesselink

concurrently need exclusive access to some resource. This is the mutual
exclusion problem of [7], in which blocking of processes is unavoidable.
There are cases, however, where undesirable interferences can be avoided
without blocking.When available, such solutions are usually preferred since
blocking has always a performance penalty and introduces the danger of
deadlock.

Nonblocking methods to avoid undesirable interferences are more diffi-
cult to find and to argue about. Indeed, what are “undesirable interferences”
and what is the meaning of “nonblocking”? Instead of a negative goal as
the avoidance of undesirable interferences, we need a positive goal. This
positive goal was first defined in 1979 as serializability [22] or sequential
consistency [17]. Later refinements of the theory [12, 20] introduced the
terms of linearizability and atomicity.

The term “nonblocking” can also be interpreted in many ways. It is
related to fairness (e.g. see [9]). In this paper, we interpret “nonblocking” as
wait-free [11]. Informally speaking, a concurrent system is wait-free when
every process can achieve its current goal in a bounded number of steps,
independently of the (in)activity of other processes.

When we know what we mean by atomicity (linearizability) and non-
blocking, the problem becomes to give nonblocking implementations of
atomic objects of various types. Now the problem of correctness arises. In-
deed, since incorrect solutions of concurrency problems do appear in the
literature, the solutions must be verified and must be verifiable for others.

1.2 Verification: assertions or behaviours

There are two methods for the verification of concurrent algorithms. One
method, the assertional approach, is to rely on invariants and variant func-
tions, cf. [21]. The alternative, the behavioural approach, is to argue about
execution sequences where certain actions precede other actions, cf. [18].
In [15], we introduced the terms synchrony and diachrony to distinguish
these approaches.

The behavioural approach is closer to operational intuition and, often,
also to the requirements that we want to satisfy. The assertional approach
is more convenient for formal, possibly mechanical, verification. The two
approaches do not mix conveniently, but they are complementary and, for
every nontrivial algorithm, we need the right combination of them.

Indeed, the operational intuition often suggests that certain actions are
needed to establish certain properties. The operational intuition is unreli-
able, however, when it comes to excluding undesirable interferences. For-
mal treatment based on execution sequences can be quite elegant, cf. [19],
but it always requires analysis of all possible execution sequences and offers



An assertional criterion for atomicity 345

no structure to exclude some of these. For the latter purpose, we often need
invariants but then we are back at the assertional approach. An assertional
design method for concurrent algorithms is presented in [8].

In our view, the designer may use all kinds of intuition to come to a
reasonable design or design step. Formal specification, analysis and proof in
assertional terms can then be used to give the indispensable complementary
evidence of correctness. We therefore aim at an assertional criterion for
atomicity.

1.3 Grain of atomicity

Every formal verification is based on a mathematical model. In the case
of concurrent algorithms where computations of different processes are in-
terleaved nondeterministically, the most critical modelling assumptions are
about the grain of atomicity, i.e., the sizes of the chunks that are guaranteed
to remain together in all interleavings. It may be easy to prove the correct-
ness of an algorithm under assumption of a coarse grain of atomicity, but
this can impose too severe restrictions on the implementation. A fine grain
of atomicity is easier to implement, but it may make it harder to prove the
correctness of the algorithm.

The solution is to apply hierarchy: use fine grain atomicity to implement
atomic commands of a coarser grain of atomicity. In other words, composite
commands are accepted as atomic when they are behaviourally equivalent
to atomic commands. This idea was proposed in [17, 22] under the names
of sequential consistency and serializability. In [12], the formalization was
sharpened to linearizability, which is a property of the accessed data objects.
Lynch [20] introduces the termatomic for linearizability since there is no
observable difference.

When constructing an atomic data object with a given specification, two
ingredients must be combined: a sequential implementation of the required
functional behaviour and a set of primitive atomic data objects to control the
concurrency. The papers [11,13], e.g., describe implementations of an arbi-
trary atomic data object, given a sequential implementation of its functional
behaviour, and using as primitives read-write registers, consensus registers
and a compare and swap register. In the present paper, we restrict ourselves
to the construction of atomic read-write registers andwe only use read-write
registers with bounds on the numbers of readers and writers.

1.4 The applications

This investigation was triggered by Groote’s remark in [10] that he did not
know an elegant way to prove the correctness of Bloom’s construction of



346 W.H. Hesselink

a two-writer atomic register from two one-writer atomic registers. Indeed,
Bloom’s original proof in [3] is complicated, as well as behavioural. After
some analysis, we constructed a simpler and assertional proof.

Inspired by the proof of Bloom’s algorithm in [20] Sect. 13.4.4, which
is behavioural, we here present a general assertional atomicity criterion for
read-write objects. This criterion is then used to proveBloom’s algorithm [3]
and the algorithm of Vitanyi–Awerbuch [24]. In both cases, a comparison
with the behavioural proofs in Lynch’s book [20] is in order. Our assertional
proofs remain closer to theactual codeand require verifications that aremore
easily formalized for a mechanical theorem prover. The behavioural proofs
of [20] are more abstract, more conceptual, and better suited to interest and
convince a human audience.

Bloom’s algorithm is the construction of a two-writer atomic register
for an arbitrary number of readers from two one-writer atomic registers, by
means of one additional bit to express recentness. The algorithm of Vitanyi
and Awerbuch is an implementation of a read-write atomic object withm
ports that can both read and write, givenm2 registers, each for a single
writer and a single reader. It needs unbounded integers for the reading ports
to choose the most recent value.

1.5 Mechanical verification

In mathematics, handwritten proofs have served well for ages. Why then do
we need mechanical theorem proving for concurrency? In our view, the rea-
son is that, broadly speaking, in concurrency the combinatorial complexity
is higher than in mathematics, although the conceptual complexity is lower.
Even short code fragments may require dull case distinctions that must be
handled carefully but can be dealt with effectively by a machine.

In concurrency, handwritten proofs have also the drawback that, when
the program is modified only marginally, the whole proof is in jeopardy.
This is not the case with mechanical proofs. If the old proof is applied to
the new program, the prover automatically indicates where the old proof
needs modification. It is our experience that, when the modification of the
program is correct and not too big, a moderate modification of the proof
may be sufficient.

After our work in [13–15], we now have a prelude [16] that defines
the semantics of concurrency with shared variables in less than 120 lines
for the theorem proverNQTHM of [4, 5]. This prelude can be used only for
the assertional approach. Indeed, it mainly defines a function that, given a
concurrent program and a list of shared variables, determines the possible
atomic steps, i.e., how the global state is modified when any of the processes
executes a single atomic command. For a specific program, we then let the



An assertional criterion for atomicity 347

prover verify a number of lemmas that specify how each variable ismodified
by an atomic command. After this, we use the prover to analyse whether
proposed invariants are preserved. As shown in [14], progress can also be
verified.

In this system, we model nondeterminacy in the following way. We use
an auxiliary private variableoracle, which is a pair. Every nondeterministic
choice is based on the first component oforacle. After each inspection,
oracleis updated bymeans of the undefined function. The value oforacleis
not allowed in the invariants. Since the second component oforacleremains
hidden, arbitrary choice sequences canbegenerated in thisway.Sinceoracle
is a private variable, its usage can be combined atomically with actions on
shared variables.

A side-effect of our work withNQTHM on concurrency proofs is that it
has taught us sharper modes of reasoning about invariants.

1.6 Overview

In Sect. 2, we define atomicity of concurrent data objects, specialize to read-
write objects, and then present and prove our criterion for atomicity of the
latter, followed by a brief comparison with Lynch’s atomicity criterion.

In Sect. 3, we describe Bloom’s algorithm, transform it so as to apply our
atomicity criterion, prove the atomicity criterion by means of a number of
invariants, and give an indication how this proof is supplied to the theorem
prover.

Section 4 contains the treatment of the algorithm of Vitanyi and Awer-
buch along the same lines. This algorithm is a more straightforward illus-
tration of the criterion, in the sense that its treatment requires less creativity.
Section 5 contains concluding remarks.

2 Atomicity of concurrent objects

A concurrent data object is an automaton that holds a value, which can be
accessed and modified via a number of ports. Atomicity of an object means
that theobject regardedasablackbox cannot bedistinguished fromanobject
in which the operations take place instantaneously, even though invocations
and responses may require some time. It follows that the implementer of
an atomic object has two responsibilities: correct functional behaviour and
atomicity.

In this paper,we treat atomicity of read-write objects. A read-write object
is an object that only allows the value to be read or to be replaced by an-
other value. Since we like to treat actual protocols by means of assertional
reasoning, we present an assertional criterion for atomicity of read-write



348 W.H. Hesselink

objects and we apply it to two of the examples in [20]. We shall prove the
validity of our criterion by relating it to the formal definition of atomicity.
We therefore start with the formal definitions of concurrent data objects and
their atomicity. We use a terminology close to those of [12,13,20].

2.1 General definitions

A variable typeT is a tupleT = 〈V, Inv,Res, v0, f〉 whereV , Inv andRes
are sets,v0 is an element ofV , andf is a functionf : V × Inv→ V ×Res.
An objectof typeT is an automaton that holds a current valuev ∈ V , which
initially equalsv0. The setInv holds the possible invocations of objects of
typeT , the setResis the set of responses. The effects of the invocations on
the current value and the responses are determined by the transition function
f in the following way. If an object of typeT holds current valuev ∈ V
and is invoked byu ∈ Inv, it gets a new valuew ∈ V and responds with
r ∈ Res, as determined byf(v, u) = (w, r).

The object is calledconcurrentif it can be accessed concurrently over
a finite number of ports in such a way that an invocation over some port is
eventually answered by a response over the same port. The port cannot be
used for a new invocation before this response has come.

The observable behaviour of the object is determined by its set of execu-
tions. Executions are defined in the following way. Let us definecommuni-
cationto mean invocation or response. Anexecutionof the object is a finite
or infinite sequencee of pairs(q, u) with portsq and communicationsu.
An executione iswell-formediff, for every portq, the subsequence ofe of
the pairs with first componentq alternates between invocation and response
and starts with an invocation. The last invocation ofq need not (yet) have a
corresponding response.

Since invocations and responses over different ports may interleave, we
have to specify the relation between invocations and responses carefully.
The concurrent object is calledatomiciff all its executions arelegal, where,
informally speaking, an execution is legal if its responses can be justified by
postulating interleaved transitions of the object. Each transition must take
place atomically at some moment between invocation and response. This is
formalized as follows.

An operationis a triple〈u, w, r〉 whereu is an invocation,w is a value,
and r is a response. We regardw and r as the new value and response
resulting from invocationu. A history is a sequence of pairs(q, z) where
eachq is a port and eachz is a communication or an operation.

If h is a history andp is a port, thelocal historyhp is the subsequence
of h of the pairs with first componentp, from which the (now redundant)
first componentsp have been removed. A local historyhp iswell-formediff



An assertional criterion for atomicity 349

every responser in it is immediately preceded by some operation〈u, w, r〉
and every operation〈u, w, r〉 in it is immediately preceded by the invocation
u and every invocation (except for the very first invocation) is immediately
preceded by some response. So, the last invocation ofp need not (yet) have
a corresponding operation and the last operation ofp need not (yet) have a
corresponding response. A historyh iswell-formediff its local historieshq,
for all portsq, are well-formed.

A historyh fits an executione iff e is obtained fromh by removing all
pairs(q, z)wherez is an operation. Informally speaking, the operations can
be removed since they are not observable, but they have to take place at
some moment between invocation and response.

It remains to express that the object respects its specification as given by
transition functionf . For this purpose, we define theoperation historyh′
of h to be the sequence of subsequent operations of historyh; this sequence
is obtained by first removing fromh all pairs(q, u) with communications
u, and then removing the port components. An operation historyh′ with
elements〈ui, wi, ri〉 wherei ranges over0 ≤ i < m, is defined to belegal
iff f(wi−1, ui) = (wi, ri) for all i, wherew−1 = v0 by convention.

A history h is defined to belegal iff its operation historyh′ is legal.
An executione is defined to belegal iff there exists a well-formed legal
historyh that fits it. A concurrent data object is defined to beatomiciff it is
guaranteed that every occurring execution of it is legal.

Example. Assume each of the portsq0, q1, q2, q3 submits one invoca-
tion. The invocation ofq1 is treated before the invocation ofq0, but only
q0 receives the response. The executione has the form:(q0, u0), (q1, u1),
(q2, u2), (q3, u3), (q0, r1). Thehistoryhcanhave the form:(q0, u0), (q1, u1),
(q1, 〈u1, w0, r0〉), (q2, u2), (q0, 〈u0, w1, r1〉), (q3, u3), (q0, r1). The corre-
sponding operation historyh′ is 〈u1, w0, r0〉, 〈u0, w1, r1〉. The historiesh
andh′ are legal ifff(v0, u1) = (w0, r0) andf(w0, u0) = (w1, r1). The
local historyhq1 of port q1 is u1, 〈u1, w0, r0〉.

Summarizing, the object is atomic iff all its executions are legal. An
execution is legal iff it canbemergedwitha legal operationhistory, decorated
with port names, to a well-formed history.

The definition of atomicity in [20] uses serialization points instead of
pairs(q, z) wherez is an operation, as above. It is equivalent to the present
one since the values ofq andz can be reconstructed from the other infor-
mation. The definitions of linearizability in [12,13] differ in other aspects,
but are also equivalent.

Remark.An execution is calledsequentialiff it is well-formed and every
invocation in it is immediately followed by the corresponding response,
possibly except for the very last invocation. A concurrent object is called



350 W.H. Hesselink

sequentially correctiff every sequential execution of it is legal. Sequential
correctness is much weaker than atomicity, but it is also useful. An object
that is merely sequentially correct, can be used by concurrent processes
under mutual exclusion.

2.2 Atomic read-write objects

We now restrict our attention to a read-write variable type for values of type
V . For such a type, we have only write commands and read commands.
We model the write commandv := x by means of an invocation(Write, x)
with the responseAck. We model a read command of the valuev by means
of an invocationReadanswered byv. We now have that the setInv of
invocations is the disjoint union({Write} × V ) ∪ {Read} and the setRes
of responses is{Ack} ∪ V . The transitions are specified by functionf with
f(v, (Write, x)) = (x,Ack) andf(v,Read) = (v, v).

We turn to the question of proving atomicity for a concurrent read-write
object, i.e., a concurrent object of a read-write variable type. In view of our
preference for the assertional approach, we aim at a criterion in terms of
states and invariants. Since the state often holds not enough information, we
extend the state with additional variables that play no role in the algorithm
but only serve in the proof. Such variables are called ghost variables [6],
auxiliary variables [21] or history variables [1]. We prefer the first term,
since “auxiliary” often has a general connotation and “history” suggests a
specific role. Since ghost variables are conceptual only, arbitrary atomic
commands can be extended with actions on ghost variables without danger
to the atomicity.

We regard a port as a process or thread that executes the operations it
participates in. The invocation of an operation takes place when the port
starts the execution. The response coincides with the termination of the
operation. The ports communicate via shared variables. Theymay also have
some private variables. We use the general convention that shared variables
are in type writer font and private variables are slanted. In predicates over
the total state, we writex.p for the value of private variablex of portp. Like
ordinary variables, ghost variables can be shared or private.

We now give an assertional criterion for atomicity of a concurrent read-
write object. The idea is to prove the atomicity (or linearizability) of the
object by extending its implementation with actions on ghost variables in
such a way that the order of the operations is sufficiently determined.

Setting. In order to prove atomicity, we provide every port with private
integer ghost variablesstart andsqn(sequence number). We usemasq to
denote themaximalnumbersqnof thecompletedoperations.Moreprecisely,



An assertional criterion for atomicity 351

masq is a shared ghost variable with an arbitrary initial valuet0. Every port
updatesmasq at the end of every operation by

masq := max(sqn, masq) .

In every operation of a port, it updates its private variablesstart andsqn
precisely once as described now. Every operation of a port starts by copying
the current value ofmasq to start.

We assume that during every write operation, before the actual writing,
the writing port determines some number forsqnand attaches this number
as a kind of time stamp to the value to be written. In order to express that
writers always choosedifferent numbers forsqn, we introduceasharedghost
variablesnlist of the type list of integers withsnlist = [t0] initially.
Whenever a writer chooses a number forsqn, it appends this number to
snlist . The freedom of writers in their choices ofsqnwill only be limited
by the conditions in TheoremCRIT below.

Every port that copies a value, also copies the number attached. When
a reading port interprets a value as the value read, it copies the attached
number to its private variablesqn. The initial valuev0 of the implemented
object is tagged with the initial numbert0. Since the connection between
values and attached numbers is preserved by copying, we have that, when a
port encounters a value(x, t), then(x, t) = (v0, t0) or there is a writer that
has written(x, t).

Theorem CRIT. Assume that every write action of a portp has the post-
condition start.p < sqn.p and that every read action of a portp has the
postcondition start.p ≤ sqn.p. Assume thatsnlist always remains with-
out multiple occurrences. Then the object is atomic.

Proof. An object is atomic iff all its executions are legal. We therefore
consider an arbitrary execution of the object, i.e., a sequence of invocations
and responses resulting from the actions of a number of ports on the object.
We have to prove that this execution is legal. The execution is well-formed
since each port can execute at most one operation at a time: it needs to wait
for a response before it can invoke again.

In order to prove that the execution is legal, we have to form a fitting
legal history. We shall use the order of the numbersmasq andsqnfor this
purpose. We first tag all communications with a number. Every invocation
is tagged with the value ofmasq that is assigned tostart at the moment
of the invocation. Every response is tagged with the value ofmasq written
at the end of the operation. Sincemasq is incremented only, the tags are
ascending (i.e., non-decreasing) along the execution.

We now have to determine the operations and to form a fitting history by
placing the operations in the execution.We first determine which operations



352 W.H. Hesselink

to add, and tag these operations for adequate positioning later on. For every
writing invocation, we add an operation to the history, even if the execu-
tion does not contain the corresponding response. For a reading invocation
we only add an operation to the history when the execution contains the
response.

For every writing invocationu = (Write, x) of a portq, we introduce
an operationω = 〈u, x,Ack〉 and we tag the pair(q, ω) with the number
sqnchosen by writerq. For every reading responsev with attached number
t, say by portq, we introduce the operationω = 〈Read, v, v〉 and we tag
the pair(q, ω) with the tagt. This determines the operations that have to be
added to get a history. It remains to determine the order.

We first insert all reading operations into the execution in such away that
the attached numbers remain ascending and that every reading operation is
placed between the corresponding invocation and response. This is possible
because of the assumptionstart.p ≤ sqn.p and the final updates ofmasq.

We then insert all writing operations, in such away that the attached time
stamps remain ascendingand that every write operation precedes all other
operations tagged with the same number. This is possible sincesnlist
never has multiple occurrences and, hence, different write operations have
different tags. Since a writer always choosessqn > start, the operation
comes after the invocation. It comes before the response because of the final
update ofmasq. This implies that the resulting history is well-formed. The
history fits the execution by construction.

The resulting history is legal because of the assumption that, whenever
a reader reads(x, t), then (x, t) = (v0, t0) or there is a writer that has
written(x, t). In the first case, the read operation takes place before all write
operations of the history. In the second case, the latest write operation of the
history has written(x, t). This concludes the proof of the theorem.

Remarks.A verifier whowants to apply TheoremCRIT to a given algorithm,
has only to invent a prescription for the writers’ choice ofsqnand then to
verify the three assumptions of the theorem. When the verifier is also the
designer of the algorithm, he or she can use the assumptions of the theorem
as guiding principles for the design.

The atomicity criterion Lemma 13.16 of [20] generates more compli-
cated proof obligations than TheoremCRIT. It is also more general in the
sense that it can be used to prove TheoremCRIT, but we do not describe that
proof since it is more difficult than proving TheoremCRIT from scratch.

If writing occurs in the last atomic action of the write operation,masq is
always the highest number that can be read by a reader. In that case,masq
need not be updated in the final actions of readers. Below, this applies to
Bloom’s algorithm but not to the algorithm of Vitanyi and Awerbuch.



An assertional criterion for atomicity 353

The proof of atomicity of the handshake register of Tromp [23] in [15]
and the snapshot algorithm of [20] 13.4.5 can also be cast in the present
setting.

It is not hard to prove that the typeinteger of the ghost variablesstart,
sqn, andmasq can be replaced by an arbitrary type with a linear order. In
particular, one may use reals or lexically ordered strings.

3 Verification of Bloom’s algorithm

In this Section, TheoremCRIT is used to prove atomicity of Bloom’s register,
cf. [3]. The problem solved by Bloom’s algorithm is to construct, i.e., to
simulate, an atomic register that can be modified by two writers and can be
read byn readers, given two atomic registers that can be modified by one
writer and can be read byn + 1 readers.

Bloom solves this problemas follows. The twowriting ports, calledwrit-
ers, are numbered 0 and 1. Each writer (sayq) has its own one-writer atomic
registerReg[q], which has one bit more than the register to be simulated.
This additional bit (d) is used to indicate which of the two registers contains
the current value (v) of the simulated register. We usevw for the value to be
written and a private variablevr for the value to be read. We use the name
self for the acting process. All ports have some additional private variables
(e.g.d, x). We use the operator⊕ to denote addition modulo 2. The writers
and readers are given by the following code.

Write (vw) :
read (d, x) from Reg[1 − self]
write (d ⊕ self, vw) to Reg[self]
return Ack.

Read:
read (d0, x0) from Reg[0]
read (d1, x1) from Reg[1]
read (d, vr) from Reg[d0 ⊕ d1]
return vr .

The commandsWriteandReadare clearly wait-free since the code contains
no loops or blocking commands. Note that when a port reads a pair from a
register, it always uses only one component and ignores the other component
of the pair.

The expressiond ⊕ self in the writers’ code is explained as follows.
Sinced ⊕ (d ⊕ q) = (d ⊕ d) ⊕ q = q, we have that, if the processes do
not interfere, writerq establishes the postconditionq = d0 ⊕ d1 whered0,
d1 are the additional bits of the two registers. The readers use this property



354 W.H. Hesselink

to determine which register to read. This shows that the object is at least
sequentially correct. Note that the initial values of the additional bits are
irrelevant for this.

If the processes do interfere, however, correctness is far from obvious.
We proceed with the analysis in the following way. In 3.1, we transform the
program to our notation, make some initial observations and establish the
first invariant. In 3.2,we turn to the application of our atomicity criterion.We
introduce ghost variables in the program and express the proof obligations
in three invariants. Preservation of these invariants is proved by means of
some auxiliary invariants in 3.3.

3.1 Initial transformation

For the ease of notation, the registersReg are split in registersdir for the
tag bits, and registersval for the values, according to the declarations

val : array bit of value,
dir : array bit of bit ,

wherebit = {0, 1}.
As is well known, actions on private variables can be combined atomi-

callywith actionsonsharedvariables, cf. [2] Theorem6.26.Sincewewant to
verify the invariants mechanically, we introduce explicit program locations.
The locations are numbered from 20 or 30 for easy finding in the code for
the theorem prover. Each number stands for one atomic instruction. For the
ease of the verification, we combine atomic commands whenever possible.

We need one private variableloc for both writers and readers. We thus
represent Bloom’s code as follows.

Write (vw) :
20 loc := dir [1 − self] ⊕ self;
21 val [self] := vw ;

dir [self] := loc ;
22 goto20 .

In action 20, the writer determines the value of the additional bitloc that
stands for the expressiond ⊕ self in Bloom’s code. Action 21 represents
the write action toReg[self] and is therefore regarded as a single atomic
command. The final command is chosen to model that a writing port can
write again. Note that, when it does so, it may use a fresh valuevw to write.
In ourNQTHM modelling,vw is updated nondeterministically with the first
component oforacle, see Sect. 1.5.

In order to show that the order of the first two read actions of the readers
is irrelevant, we give each reader a private variablepr to indicate where to



An assertional criterion for atomicity 355

read first. The value ofpr is chosen nondeterministically, again by means
of oracle.

Read:
30 loc := dir [1 − pr] ;
31 loc := loc⊕ dir [pr] ;
32 vr := val [loc] ;
33 choosepr in {0, 1} ;

goto 30 .

In order to give some feeling for the protocol, we start with a bottom-up
analysis. Recall that the value of a private variablex of processq is denoted
x.q. In particular,pc.q is the program location of processq.

We first investigate what is read by a reader that performs the actions 30,
31, 32, when no writer has an interleaving action 21. In that case, the reader
reads the value at indexloc = dir [0] ⊕ dir [1]. Anthropomorphically
speaking, such a fast reader acts as ifdir [0] ⊕ dir [1] is thelatest writer
of the register. We therefore define the state functionLaWr by

LaWr = dir [0] ⊕ dir [1] .

When a writerq = LaWr executes action 20, it establishespc.q = 21 and
loc.q = dir [1 − q] ⊕ LaWr = dir [q]. It turns out that this property is an
invariant of the system:

(Bloom) q = LaWr ∧ pc.q = 21 ⇒ loc.q = dir [q] .

This is shown as follows. Apart from action 20 byq itself (as treated just
now), the only threat to predicate (Bloom) is when a portp �= q executes 21
and thusmodifiesLaWr. ItmodifiesLaWr only if loc.p �= dir [p]. Predicate
(Bloom) therefore implies thatp �= LaWr initially. Sincep modifiesLaWr,
it becomes itself equal toLaWr and then haspc.p = 22. This shows that,
indeed, (Bloom) is preserved.

Remark. It is not true that, conversely,q �= LaWr andpc.q = 21 implies
loc.q �= dir [q]. In fact, if q = LaWr andpc.q = 21, the other writer may
modify LaWr, but it cannot modifyloc.q or dir [q].

3.2 The main analysis

We turn to the proof of the protocol. In view of TheoremCRIT, we give every
port a private ghost variablesqnto hold a number. We introduce a shared
ghost variabletime and we let the sequence number of a writer be obtained
by the action

time ++ ; sqn:= time ;
snlist := sqn: snlist .



356 W.H. Hesselink

Here, we use the operator++ for incrementation and: for adding an element
to a list. In the concluding write action 21, the sequence number is tagged
as a time stamp to the value written. For this purpose, we introduce a shared
ghost variabletag for the time stamps, according to the declaration

tag : array bit of integer.

We then extend action 21 with

tag [self] := sqn;
masq := max(sqn, masq) .

We use the analysis of Sect. 3.1 to decide at which moment a writer gets
its sequence number. If writerLaWr executes 20 and the other writer then
modifiesLaWr byexecuting21,wemust justify thebehaviour of fast readers
by giving the second writer a later sequence number than the first one.
We therefore give a writer its new sequence number at action 20 if it then
equalsLaWr. Otherwise, the sequence number is obtained in action 21.
The question whether the writer equalsLaWr can be encoded by the test
loc= dir [self] after the assignment toloc in 20. We thus get the following
extended code for the writers.

Write (vw) :
20 start := masq ;

loc := dir [1 − self] ⊕ self;
if loc= dir [self] then

time ++ ; sqn:= time ;
snlist := sqn: snlist fi ;

21 if loc �= dir [self] then
time ++ ; sqn:= time ;
snlist := sqn: snlist fi ;

val [self] := vw ;
dir [self] := loc ;
tag [self] := sqn;
masq := max(sqn, masq) ;

22 goto20 .

Since loc.q anddir [q] are modified only by writerq itself, every write
action obtains precisely one sequence number. Note the update of the ghost
variablemasq according to the setting of TheoremCRIT.

When a reader starts reading, its private ghost variablestartbecomes a
copy ofmasq. When the reader executes 32, the private ghost variablesqn
records the time stamp of the value that is read. The program for the readers
therefore becomes



An assertional criterion for atomicity 357

Read:
30 start := masq ;

loc := dir [1 − pr] ;
31 loc := loc⊕ dir [pr] ;
32 vr := val [loc] ; sqn:= tag [loc] ;

masq := max(sqn, masq) ;
33 choosepr in {0, 1} ; goto30 .

At this point one easily verifies the setting of TheoremCRIT. In particular,
whenever a reader reads a pair(x, t) in instruction 32, there has been awriter
that wrote the same pair in instruction 21. This follows from the atomicity
of the instructions 21 and 32 and the observation that the arraysval and
tag are modified only in 21.

Remark.This atomicity might have been more apparent when we had rep-
resented the pair of arraysval , tag by an array of pairs. The present set-up
was chosen sincetag is a ghost variable whereasval is an actual variable.

According to TheoremCRIT, it now suffices to prove the invariants

(Iq0) pc.q = 22 ⇒ start.q < sqn.q ,
(Iq1) pc.q = 33 ⇒ start.q ≤ sqn.q ,
(Iq2) IsSet(snlist ) ,

where predicateIsSetdetermines whether its argument is a list without mul-
tiple occurrences.

3.3 The verification

In this subsection we prove that the predicates (Iq0), (Iq1), (Iq2) are in-
variants of the system. This requires the invention of a number of other
invariants. We can assume that all invariants hold as a precondition for each
atomic step and then have to prove that they hold in the postcondition. Often
this requires detailed case distinctions. The proof given below matches the
formal proof [16] that has been verified with the theorem proverNQTHM.
Onemay notice that, for a theorem prover, boring trivialities and subtle case
distinctions are not far apart.

The method used is as follows. We start with the invariants postulated,
here (Iq0), (Iq1), and (Iq2).Foreach invariant,we thenverifywhethereachof
theatomic commandspreserves it.Whensomeatomic commandmay falsify
it, we postulate some auxiliary invariants to hold in the precondition of that
atomic command that prevent this falsification. These auxiliary invariants
should be as weak as possible. Indeed, they must hold initially, and we have
to maximize the likelyhood that they in turn are preserved by all atomic
actions. When the resulting list contains an invariant that is implied by other
invariants, such an invariant can be removed from the list.



358 W.H. Hesselink

In this way, the invariants appear in an unsystematic order. For example,
lookingahead,onecansee invariants (Jq3)and (Jq6),whichcanbecombined
to

q ∈ {0, 1} ⇒ tag [q] ≤ sqn.q ≤ time .

We separate such invariants since we need them at different points and since
the proof of invariance is easier when they are separated.

A predicateP is said to bethreatenedby a commandA iff it is not true
thatA started with preconditionP always has postconditionP . If P is a
predicate threatened by a commandA, we need more information thanP
alone to prove its invariance, i.e., we have to postulate some other invariant
Q such thatA started with preconditionP ∧Q always has postconditionP .

Sincepc,start, andsqnare private variables, predicate (Iq0) is threatened
only when a writing portq executes 21. If it does so, it preserves (Iq0) if
and only if we also have the invariants

(Jq0) pc.q = 21 ∧ loc.q = dir[q] ⇒ start.q < sqn.q ,
(Kq0) pc.q = 21 ∧ loc.q �= dir[q] ⇒ start.q ≤ time .

We first note that (Kq0) is implied by postulating the slightly stronger in-
variants

(Jq1) pc.q ∈ {21, 31, 32} ⇒ start.q ≤ masq ;
(Jq2) masq ≤ time .

Predicate (Jq0) is threatened by command 20, but preserved because of
(Jq2). Sincestart is set tomasq in 20 and 30 andmasq is incremented
only, predicate (Jq1) is an invariant. Predicate (Jq2) is threatened only by
21 and 32. It is preserved at these points because of the obvious invariants
for writers

(Jq3) q ∈ {0, 1} ⇒ sqn.q ≤ time ;
(Jq4) q ∈ {0, 1} ⇒ tag [q] ≤ masq .

This concludes the proof of invariance of (Iq0).
Sincepc,start, andsqnare private variables, predicate (Iq1) is threatened

only by action 32. It is preserved by 32 because of the new postulate

(Jq5) pc.q = 32 ⇒ start.q ≤ tag [loc.q] .

Predicate (Jq5) is threatened by 21 and 31. It is preserved whenp executes
21 with loc.p �= dir [p] because of (Jq1) and (Jq2). It is preserved byp at
21 with loc.p = dir [p] because of the new postulate

(Jq6) q ∈ {0, 1} ⇒ tag [q] ≤ sqn.q .

Predicate (Jq5) is preserved at 31 because of the new postulate

(Jq7) pc.q = 31 ⇒ start.q ≤ tag [loc.q ⊕ dir [pr.q]] .



An assertional criterion for atomicity 359

Sincetag [q] andsqn.q are modified only by writerq, predicate (Jq6) is
threatened only by action 20. It is preserved because of (Jq2) and (Jq4).

Predicate (Jq7) is threatened only by the actions 21 and 30. Recall that
LaWr = dir [0] ⊕ dir [1]. Preservation of (Jq7) at 30 now follows from
the new invariant

(Jq8) masq = tag [LaWr] ,

which, as a justification of the acronymLaWr, expresses that the time stamp
of LaWr is the highest time stamp.

Preservation of (Jq7) when writerp executes 21 is complicated, since
bothtag anddir canbemodifiedby21. It is shownas follows. Ifdir is not
modified, i.e., ifloc.p = dir [p], it suffices to use (Jq6). Ifdir is modified,
let Y be the new value ofloc.q ⊕ dir [pr.q]. If p = Y , preservation of
(Jq7) follows from (Jq1) and (Jq2). Otherwise, we use the invariant (Bloom)
verified in Sect. 3.1. This invariant implies thatp = 1 − LaWr. Therefore,
Y = LaWr and preservation of (Jq7) follows from (Jq1) and (Jq8).

Predicate (Jq8) is threatened only at 21 and 32. It is preserved at 32 since
(Jq4) implies thatmasq is not modified in 32. Preservation of (Jq8) when
a writer p executes 21 is shown as follows. Ifp = LaWr then (Bloom)
implies thatloc.p = dir [p]. ThereforeLaWr remainsp and preservation
of (Jq8) follows from (Jq6). Ifp �= LaWr andloc.p �= dir [p], preservation
of (Jq8) follows from (Jq2). In the remaining case, withp �= LaWr and
loc.p = dir [p], we use the new postulate thatLaWr is the only writer that
can havesqn.q > masq:

(Jq9) q ∈ {0, 1} ∧ masq < sqn.q ⇒ q = LaWr .

Predicate (Jq9) seems to be threatened by the actions 20 and 21. Ifp executes
20 and incrementssqn.p, it becomesLaWr, so that (Jq9) is preserved. Ifq
executes 21, it setsmasq ≥ sqn.q. Finally, if p �= q executes 21, it preserves
(Jq9) because of (Jq3) applied toq. This concludes the proof of invariance
of (Iq1).

The invariance of (Iq2) easily follows from the obvious invariant

(Jq10) x ∈ snlist ⇒ x ≤ time .

It remains to initialize the variables such that all invariants hold. For the
ghost variablestime andmasq, we take the initial valuest0 = 1. For the
two writers,q, we specify initiallypc.q = 20 andtag [q] = sqn.q = t0. For
the readers, it suffices to specify thatpc= 30 initially.

Remark. The initialization ofsqn.q of the writers is needed because the
invariants (Jq3), (Jq6), and (Jq9) are stronger than necessary. A stricter
analysis shows that these inequalities are needed only whenpc.q = 21 and
loc.q = dir [q].



360 W.H. Hesselink

The above proof uses implicitly that 0 and 1 are the only writing ports.
Themechanical proofmakes this explicit by requiring theobviousadditional
invariant

pc.q ∈ {20, 21, 22} ≡ q ∈ {0, 1} .

The mechanical proof also needs the type invariants thatloc andpr are bits.
The mechanical proofbloom in [16] is anNQTHM events file, cf. [4,5].

The method employed is the same as used in [14, 15]. The filebloom is
the input to the theorem prover. It consists of around 1250 lines. After a
call of the prelude for concurrency that was mentioned in Sect. 1.5, the first
part of this file (340 lines) contains the program and the analysis of how
the variables are modified in the atomic steps. The proofs of the individual
invariants require 630 lines. The remainder is taken by the proof that the
individual invariants combine to one global invariant (140 lines) and the
proof that the global invariant can be initialized (140 lines). This remainder
is an administrative check of global consistency.

4 The Vitanyi-Awerbuch algorithm

In this section, we use TheoremCRIT to prove the atomicity of the algorithm
of Vitanyi and Awerbuch [24], see also [20], Sect. 13.4.5.

This algorithm is an implementation of a read-write atomic object with
m ports that can both read and write. It usesm2 registers, each for a single
writer and a single reader. It is based on the declarations

type
Port= [0 . .m − 1] ;
Reg= record

val : Value;
tag : Integer;

end ;
var x : array Port,Port of Reg;

Registerx [p, q] is a variable that can be read only by portp and written only
by portq. All registers are initially equal to(v0, t0) wherev0 is the initial
value of the abstract object andt0 is some initial number.

In this algorithm, the fieldstagare actual variables that must be able to
hold arbitrary large integers. These fields serve to hold the tags used in our
atomicity criterion. The algorithm also uses private variables that play the
roles of the ghost variablessqnof the atomicity criterion. These variables
are therefore namedsqnhere.

The algorithm works as follows. A writing port that has to write a value
vw, first reads all tags that it can read and then chooses a numbersqnbigger



An assertional criterion for atomicity 361

than all of them. To ensure that different writers always choose different
numbers, the writer keepssqnmod m equal to its process identifierself.
It subsequently writes the pair(vw, sqn) to all available registers. These
designdecisionscouldhavebeen inspireddirectly byTheoremCRIT.Though
Vitanyi and Awerbuch clearly did not need it, this is the guidance to the
designer that we suggested in the introduction.

Write (vw) :
num:= 0 ;
for all j in Port do

num:= max(num, x [self, j].tag) od ;
sqn:= (numdiv m + 1) ∗ m + self;
for all i in Port do

x [i, self] := (vw, sqn) od ;
return Ack.

A reader reads the record with the highest number and also transfers that
record to all its writing registers. At this point, we cannot see this, but the
latter activity is needed so that the writing ports can obtain a good estimate
of the ghost variablemasq of the atomicity criterion.

Read:
num:= 0 ;
for all j in Port do

if num≤ x [self, j].tag then
dat := x [self, j] ;
num:= dat.tag fi od ;

for all i in Port do
x [i, self] := dat od ;

return dat.val .

These implementations ofWriteandReadcontains no blocking commands
or unbounded repetitions. They have a time complexity of orderm, the
number of ports. Therefore, both writing and reading are wait-free.

As before, one easily verifies the setting of TheoremCRIT. In particular,
whenever a reader reads a pair(v, t) in its first for loop, it was the initial
value(v0, t0) or there has been awriter that wrote the pair(v, t) in its second
for loop.

4.1 Initial transformation

We turn to the verification of the assumptions of TheoremCRIT. For conve-
nience, we represent the arrayx of pairs by a pair of arraysval andtag
in the obvious way. So, now, arraytag is an actual variable, not a ghost
variable as in Sect. 3. Yet, its elements will figure as the tags of the atomicity



362 W.H. Hesselink

criterion. The private variablessqnof the writing ports are also actual vari-
ables. Since we need invariants during thefor loops, we introduce a private
variablelis for the set of port numbers that yet have to be treated in the loop.

Write (vw) :
20 start := masq ; num:= 0 ; lis := Port ;
21 if IsEmpty(lis) then goto 22 else

choose j ∈ lis ; lis := lis \ {j} ;
num:= max(num, tag [self, j]) ;
goto21 fi ;

22 sqn:= (numdiv m + 1) ∗ m + self ; lis := Port ;
23 if IsEmpty(lis) then goto 24 else

choose i ∈ lis ; lis := lis \ {i} ;
val [i, self] := vw ;
tag [i, self] := sqn;
goto23 fi ;

24 snlist := sqn: snlist ;
masq := max(sqn, masq) ;
goto20 or 30 .

The finalgoto is chosen to model that, after writing or reading, a port may
decide to write or read again. In ourNQTHM modelling, the choice between
20 and 30 is determined by theoracleas explained in 1.5. We could have
done the same for the choices ofj and i from lis, but we did not regard
that as worth the effort. Indeed, looking at the proof below, one easily sees
that the order of treating the elements oflis is irrelevant. For the sake of
symmetry, the valuedatdetermined by the reader is represented by the pair
of private variables(vr, sqn).

Read:
30 start := masq ; num:= 0 ; lis := Port ;
31 if IsEmpty(lis) then goto 32 else

choose j ∈ lis ; lis := lis \ {j} ;
if num≤ tag [self, j] then

vr := val [self, j] ;
num:= tag [self, j] fi ;

goto31 fi ;
32 lis := Port ; sqn:= num;
33 if IsEmpty(lis) then goto 34 else

choose i ∈ lis ; lis := lis \ {i} ;
val [i, self] := vr ;
tag [i, self] := sqn;
goto33 fi ;

34 masq := max(sqn, masq) ;
goto20 or 30 .



An assertional criterion for atomicity 363

It is easy to see that we have followed the prescriptions of TheoremCRIT

with respect to the assignments tostart, sqn, masq, andsnlist .
According to TheoremCRIT, it now suffices to prove the invariants

(Lq0) pc.q ∈ {23, 24} ⇒ start.q < sqn.q ;
(Lq1) pc.q = 33 ⇒ start.q ≤ sqn.q
(Lq2) IsSet(snlist ) .

We strengthened (Lq0) by including location 24 for the sake of later conve-
nience.

4.2 Verification

We use the same method as for Bloom’s algorithm to verify preservation of
the invariants.

In view of the commands 22 and 32, preservation of (Lq0) and (Lq1)
follows when we also have the invariant

(Mq0) pc.q ∈ {22, 32} ⇒ start.q ≤ num.q .

In order to prove preservation of (Mq0) whenq executes 21 or 31, we need
an invariant that incorporates the tags that are yet to be encountered in that
loop. Indeed, preservation of (Mq0) follows from the new invariant

(Mq1) pc.q ∈ {21, 31} ⇒ start.q ≤ max(num.q,
(MAX j ∈ lis.q :: tag [q, j])) .

It is easy to see that (Mq1) is preserved by the commands 21 and 31: it is a
kind of loop invariant. Predicate (Mq1) is threatened by the modifications
of start, num, lis in 20 and 30 and by the modifications oftag in 23 and
33. It is preserved by the former when we postulate the invariant

(Mq2) masq ≤ (MAX j ∈ Port :: tag [q, j]) .

It is preserved by the latter when the modifications oftag are always in-
crementations, as will follow from the invariant

(Nq0) pc.q ∈ {23, 33} ∧ i ∈ lis.q ⇒ tag [i, q] ≤ sqn.q .

This predicate follows from (Lq0) and (Lq1)whenwepostulate the invariant

(Mq3) pc.q ∈ {23, 33} ∧ i ∈ lis.q ⇒ tag [i, q] ≤ start.q .

Sincetag [i, q] is modified only by portq, preservation of (Mq3) follows
from the invariant

(Mq4) pc.q ∈ {21, 22, 31, 32} ⇒ tag [i, q] ≤ start.q .

Preservation of (Mq4) follows from the invariant

(Mq5) pc.q ∈ {20, 30} ⇒ tag [i, q] ≤ masq .



364 W.H. Hesselink

Preservation of (Mq5) in its turn follows from the invariant

(Mq6) pc.q ∈ {24, 34} ⇒ tag [i, q] = sqn.q .

Finally, preservation of (Mq6) follows from the obvious invariant

(Mq7) pc.q ∈ {23, 33} ∧ i /∈ lis.q ⇒ tag [i, q] = sqn.q .

It remains to prove preservation of (Mq2). This predicate is threatened by
the assignments tomasqandtag . It is preservedwhen portp executes 24 or
34 sincesqn.p = tag [q, p] holds by (Mq6). It is preserved by assignments
to tag because of (Nq0).

We turn to the invariant (Lq2) that expresses the uniqueness of the se-
quence numbers. Here we use that each writing portq only usessqnwith
sqn.q mod m = q, as expressed in the obvious invariant

(Mq8) pc.q ∈ {23, 24} ⇒ sqn.q mod m = q .

In order to prove preservation of (Lq2), it suffices to prove the predicate

(Nq1) pc.q = 24 ⇒ sqn.q /∈ snlist .

In order to prove (Nq1), we introduce the set

SN(q) = {x ∈ snlist |x mod m = q}
and postulate thatstart.q is an upper bound ofSN(q):

(Mq9) x ∈ SN(q) ∧ pc.q ∈ {21, 22, 23, 24} ⇒ x ≤ start.q .

Predicate (Nq1) is implied by (Mq8), (Mq9), and (Lq0) as is shown in

pc.q = 24 ∧ sqn.q ∈ snlist
⇒ {(Mq8)}

pc.q = 24 ∧ sqn.q ∈ SN(q)
⇒ {(Mq9)}

pc.q = 24 ∧ sqn.q ≤ start.q
⇒ {(Lq0) }

false.

It is here that we use that (Lq0) has been strengthened to cover location 24.
The setSN(q) is modified only when portq itself executes command

24, but thenpc.q becomes 20 or 30. Predicate (Mq9) is therefore threatened
only when portq itself executes 20 and thus getspc.q = 21. At that point,
preservation of (Mq9) follows from the obvious invariant thatmasq is an
upper bound ofsnlist :

(Mq10) x ∈ snlist ⇒ x ≤ masq .

It is easy to see that the invariants can be initialized.
This concludes the verification of the assumptions of TheoremCRIT for

the Vitanyi-Awerbuch algorithm and thus proves that the algorithm imple-
ments an atomic read-write register.



An assertional criterion for atomicity 365

The mechanical proofvitanyi we constructed for this algorithm can
be obtained from [16]. The proofs of the invariants are somewhat easier
than inbloom , but the events file is longer (1482 lines) since it requires
arithmetic for command 22 and a quantification in invariant (Mq1).Wewere
able to mechanize our handwritten proof in less than two days since it was
almost flawless and we had the arithmetic for command 22 available. The
one flaw in our handwritten proof was an insufficient candidate for (Mq10).

5 Concluding remarks

We presented and proved an assertional criterion for atomicity of read-write
objects (TheoremCRIT). This criterion enabled us to prove the correctness
of Bloom’s algorithm for two writers and of the algorithm of Vitanyi and
Awerbuch for a bounded number of readers and writers. The proofs are
simple enough for straightforward verification with a mechanical theorem
prover.

It seems likely that our criterion is strictly weaker than the behavioural
criterion Lemma 13.16 of [20].We believe, however, that it is strong enough
for every atomic read-write object that is not specifically designed to be hard
to prove.

The proof for Bloom’s algorithm is based on the new (but natural) idea
to order the write operations as perceived by fast readers and to encode
this order by actions on ghost variables. The key to this was the invariant
(Bloom), the only invariant for Bloom’s algorithm that mentions no ghost
variables. In Bloom’s proof [3] the order of writing is not defined by fast
readersbut by theactual infiniteexecution.Thismayhavebeen the reason for
Groote to suggest in [10] to phrase the proof in terms of prophecy variables
(see [1]).

The criterionwas evenmore useful in the case of the algorithmof Vitanyi
and Awerbuch. For, in this case, the sequence numbers could be found as
actual variables of the algorithm.With our system, we always have to invent
the invariants, but in this case thatwaseasy.Conversely, aswehave indicated,
our criterion could have suggested the design of this algorithm.

It is a fairly straightforward exercise to apply the criterion to prove atom-
icity of the snapshot algorithm of [20] 13.4.5 or of Tromp’s handshake reg-
ister [15,23].

Acknowledgements.We are grateful for comments and suggestions of Gao Hui, Jan Jonge-
jan, Jan Eppo Jonker, and three anonymous referees.



366 W.H. Hesselink

References

1. Abadi M., Lamport, L.: The existence of refinement mappings. Theoretical Computer
Science82, 253–284 (1991)

2. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs. Berlin
Heidelberg New York: Springer 1991

3. Bloom, B.: Constructing two-writer atomic registers. IEEE Transactions onComputers
37, 1506–1514 (1988)

4. Boyer, R.S., Moore, J S.: A Computational Logic Handbook. Boston: Academic Press
1988

5. Boyer, R.S., Moore, J S.: A Computational Logic Handbook, Authorized Excerpts
from a Proposed Second Edition, to be obtained by ftp from Computational Logic Inc.
Information available atnqthm-request@cli.com

6. Clint, M.: Program proving: coroutines. Acta Informatica2, 50–63 (1973)
7. Dijkstra, E.W.: Co-operating sequential processes. In: F. Genuys (ed.): Programming

Languages (NATO Advanced Study Institute) pp. 43–112. London: Academic Press
1968

8. Feijen, W.H.J., Gasteren, A.J.M. van: On a method of multiprogramming. New York:
Springer 1999

9. Francez, N.: Fairness. Berlin Heidelberg New York: Springer 1986
10. Groote, J.F.: We moeten software leren beheersen. Inaugural Address, University of

Eindhoven, 1999
11. Herlihy, M.P.: Wait–free synchronization. ACM Trans. on Program. Languages and

Systems13, 124–149 (1991)
12. HerlihyM.P.,WingJ.: Linearizability:ACorrectnessCondition forConcurrentObjects.

ACM Trans. on Program. Languages and Systems12, 463–492 (1990)
13. Hesselink, W.H.: Wait–free linearization with a mechanical proof. Distrib Comput9,

21–36 (1995)
14. Hesselink, W.H.: Theories for mechanical proofs of imperative programs. Formal As-

pects of Computing9, 448–468 (1997)
15. Hesselink, W.H.: Invariants for the construction of a handshake register. Information

Processing Letters68, 173–177 (1998)
16. Hesselink, W.H.: www.cs.rug.nl/˜wim/mechver/imperative/, the NQTHM events files

concprelude , bloom , andvitanyi
17. Lamport, L.: How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE Trans. Computers28, 690–691 (1979)
18. Lamport, L.: On interprocess communication, Parts I and II. Distrib. Comput.1, 77–101

(1986)
19. Lamport, L.: How to make a correct multiprocess program execute correctly on a

multiprocessor. IEEE Trans. Computers46, 779–782 (1997)
20. Lynch, N.A.: Distributed Algorithms. San Francisco: Morgan Kaufman 1996
21. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta Infor-

matica6, 319–340 (1976)
22. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM26,

631–653 (1979)
23. Tromp, J.: How to construct an atomic variable. In: J.-C. Bermond, M. Raynal (Eds.):

Distributed Algorithms, Proceedings Nice. Lecture Notes in Comput. Sci., Vol. 392,
pp. 292–302. Berlin: Springer 1989

24. Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous hard-
ware. In27th Annual SymposiumonFoundations of Computer Science, pages 233–243,
Toronto, Ontario, Canada, 1986. IEEE, Los Alamitos, Calif. Corrigendum in 28th An-
nual Symposium on Foundations of Computer Science, page 487, Los Angeles, 1987


