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ABSTRACT
This paper presents a method for combined interactive fil-
tering and visualization of volumetric data. The user can set
the filter parameters of a shape preserving class of morpho-
logical filters, called connected filters, efficiently. The fil-
ters work by computing some attribute describing the shape
or size for each connected component, and then deciding
which to keep based on some threshold. We use a method
in which the computation of attributes and connected com-
ponent analysis is separated from the decision stage of the
filtering process. After performing the first stage as initial-
ization, we can perform the (much faster) decision stage
many times with different threshold values, allowing inter-
active filtering and visualization of the results. The results
indicate that filtering can be performed at about 5 frames
per second on a2563 data set using a Pentium 4 at 1.9 GHz.
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1 Introduction

In this paper, we present a method for combined filtering
and visualization of volumetric data in such a way that the
user can set the filter parameters efficiently, allowing fil-
tering at interactive rates. We use a shape preserving class
of morphological filter calledconnected filter. Connected
filters have received much attention in recent years, in al-
gorithm development [1, 2], and applications [3, 4]. Con-
nected filters are shape preserving, because they never in-
troduce new edges in images. A subclass of these areat-
tribute filters, the first of which were area openings and
closings, which remove image detail smaller than a par-
ticular area [5]. These in turn were extended toattribute
openingswhich accept or reject image details based on any
of a wide range of size parameters [6]. They also put for-
ward the idea of attribute thinnings, which allow image fil-
tering based on shape, rather than size criteria. This idea
has been formalized to so calledshape filters[7], which
have been applied to the problem of vessel enhancement in
angiographic volume data sets [4].

In the binary case, attribute filters work by computing
some parameter (or attribute) describing the shape or size

Figure 1. Decomposition of binary image of nuts and bolts
of different sizes into different shape classes: (left) original
image; (middle) filter with criterion “number of holes> 0”;
(right) difference between (left) and (middle).

for each connected component, and then deciding which to
keep based on, e.g., some threshold or window on these pa-
rameter values. An example is shown in Fig. 1, in which
the nuts are separated from the bolts based on the number
of holes. In grey scale, attribute filters can be implemented
simplistically by thresholding the image at each grey level,
applying a binary filter to each, and recombining them.
Faster algorithms have been developed [1], but in the case
of volumetric data, filtering is still too slow to be interac-
tive in many cases. For example, filtering of a2563 data set
for vessel enhancement may take 12 s even on a Pentium 4
at 1.9GHz with 800 MHz RDRAM. This is a serious draw-
back when optimal threshold settings are being determined
for the filtering process. In this paper, we use a method first
proposed by Salembieret al. [2], in which the computation
of attributes and connected component analysis (stage 1) is
separated from the decision of the filtering process (stage
2). After performing the first stage as initialization, we can
then perform the (much faster) decision stage many times
with different threshold values, allowing interactive filter-
ing and visualization of the results.

2 Filtering using Max-Trees

An efficient implementation of attribute filters relies on
computing both the hierarchy of connected components
in the data set, and some attribute for each component to
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use as a filter criterion. AMax-Treerepresentation of the
dataset was introduced by Salembieret al. [2] as a more
versatile structure to separate the filtering process from the
computation of connected components and attributes. The
building of this tree structure is called theconstruction
phase, while its use for filtering is called thefiltering phase.
In this section we will briefly discuss this data representa-
tion, and how it can be used to perform filtering.

Let M ⊆ R
n be some image domain (n = 2 for

images,n = 3 for volumes), andf : M → R the grey
scale image (volume) under study. Implicitly we assume
the existence of some neighborhood graph (i.e. a grid) on
M.

A Max-Tree is a tree where the nodes represent sets of
flat zonesor connected componentsof f . A setF ⊂ M is
called a flat zone or connected component if for allp, q ∈ F
there exists a path fromp to q along which the function
value is constant, and the setM is maximal in size.

The threshold setXh(f) of image f is the set of
points that remain after thresholding at levelh, i.e.

Xh(f) = {x ∈M|f(x) ≥ h}. (1)

A peak componentat a grey levelh is a connected
component of the threshold setXh(f). The number of
these peak components is finite and can thus be enumer-
ated. We introduce the notationP kh to denote thekth peak
component at levelh.

Max-Tree nodes are connected components, and
therefore there exists a unique mapping from Max-Tree
nodes to peak components. We use the notationCkh to de-
note the node that consists of the subset ofP kh with grey
levelh.

The root node represents the set of pixels belonging
to the background, that is the set of pixels with the lowest
intensity in the image. The Max-Tree is a rooted tree: each
node has a pointer to its parent, i.e. the nodes correspond-
ing to the components with the highest intensity are the
leaves (see Fig. 2). Hence the name Max-Tree: the leaves
correspond to the regional maxima. This means that the
Max-Tree can be used for filters that process peak compo-
nents, i.e. starting from the regional maxima. Conversely, a
tree in which the leaves correspond to the minima is called
a Min-Tree and can be used for filters that process valley
components, i.e. starting from the regional minima.

During the construction phase, the Max-Tree is built
from the flat zones of the image. After this, the tree is pro-
cessed during the filtering phase. This filtering removes
flat zones based on some property. These properties are de-
fined by an attribute valueT (P kh ) of a nodeCkh , from an
ordered universe (typicallyR or Z) on which an order≤
exists. Given a threshold valueλ from this universe, the
algorithm decides whether to preserve, or remove a node.
Two classes of strategies exist:

• pruning strategies, which remove all descendants of
Ckh , if Ckh is removed
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Figure 2. The peak components of a grey level imageX
(left), the corresponding attributes (middle) and the Max-
Tree (right)
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Figure 3. Result after filtering the signal in Fig. 2 with
four different decision rules, usingλ = 10 as the attribute
threshold

• non-pruning strategies, in which the parent pointers
of children ofCkh are updated to point at the oldest
“surviving” ancestor ofCkh .

Salembier describes four different rules for the algo-
rithm to filter the tree: theMin, theMax, theViterbi, and
the Direct decision. The first three are pruning strategies.
In addition, Wilkinson and Urbach [7] introduced another
non-pruning strategy, called theSubtractivedecision. The
decisions of these rules are as follows:

Min A nodeCkh is removed ifT (P kh ) < λ or if one of its
ancestors is removed.

Max A nodeCkh is removed ifT (P kh ) < λ and all of its
descendant nodes are removed as well.

Viterbi The removal and preservation of nodes is consid-
ered as an optimization problem. For each leaf node
the path with the lowest cost to the root node is taken,
where a cost is assigned to each transition. In this pa-
per we do not consider this rule. For details see [2].

Direct A nodeCkh is removed ifT (P kh ) < λ; its pixels are
lowered in grey level to the highest ancestor which
meets the criterion, its descendants are unaffected.

Subtractive As above, but the descendants are lowered by
the same amount asCkh itself.

Figure 2 shows the peak components of a 1-D dis-
crete signal, their attribute values, and the corresponding
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Max-Tree. The results of applying the Min, Max, Direct
and Subtractive methods on this image withλ = 10 are
shown in Fig. 3. Which of these rules is the most appropri-
ate depends mainly on the application.

Consider an image with just three nested peak com-
ponentsP 1

3 ⊂ P 1
2 ⊂ P 1

1 at intensity levels 3, 2, and 1,
respectively. Furthermore letT (P 1

3 ) ≥ λ, T (P 1
2 ) < λ,

andT (P 1
1 ) ≥ λ. No pruning strategy can simultaneously

retainP 1
3 andP 1

1 , while removingP 1
2 . Using the direct

rule, the differencef − φTλ (f), whereφTλ (f) is the filtered

Original imagef

φTλ (f) f − φTλ (f) φTλ (f − φTλ (f))

Min

Max

Dir.

Sub.

Figure 4. Grey-scale decomposition of image using
I/A2 > λ thinning with λ = 1.1 using two pruning
(max and min) and two non-pruning filtering strategies.
From left to right: filtered imageφTλ (f), difference image
f − φTλ (f) and filtered difference imageφTλ (f − φTλ (f))
are shown for all four methods (the latter two columns have
been contrast enhanced for clarity). The min filter removes
the small bars within the larger circles from the image,
whereas the max pruning strategy leaves the large circles
in the filtered image. Of the non-pruning rules, the direct
method has the problem that the difference image contains
non-compact details, as can be seen by re-filtering withφTλ
(third column)

Table 1. CPU times in seconds for non-interactive (build-
ing) and interactive (decision) phases of the Max-Tree al-
gorithm for 3-D angiograms.

volume size greylevels building decision

vessels 2563 256 12.10 0.218

angio 2562 × 124 1324 8.30 0.746

function using criterionT and thresholdλ, will consist of a
zero background with one or more connected regions at in-
tensity level 1, consisting of those pixels ofP 1

2 which have
intensity level 2, i.e. the members ofC1

2 (which need not
be connected). In general, a peak component of this image
may satisfy the criterion. In the subtractive case, the differ-
ence image consists of only those peak components which
do not satisfy the criterion.

An example of these properties is shown in Fig. 4.
The attribute used isI/A2 which is the moment of iner-
tia divided by the square of the area. For a given object,
the moment of inertia is minimal for a circle, and increases
rapidly as the object becomes more elongated. In the case
of the subtractive rule, the filtered imageφTλ (f) contains
only elongated structures, andf − φTλ (f) contains only
compact structures.

3 Application to visualization

Salembieret al. [2] noted that the building phase of a Max-
Tree filter algorithm is by far the most costly. Therefore,
given the fact that the Max-Tree algorithm is one of the
fastest connected filter algorithms available, we assumed
that the decision rule stage alone should work an order of
magnitude faster than even the fastest method available [1].
For interactive filtering purposes, this would allow us to
build the Max-Tree once, and use it repeatedly for filter-
ing the image with different threshold levels. The speed
gain was determined by comparing the time necessary to
build the Max-Tree to the decision phase on different vol-
ume data sets. The results are shown in Table 1. The re-
sults indicate that, given fast rendering hardware, almost 5
frames per second can be reached on the2563 data set on a
Pentium 4 at 1.9 GHz, with 512 MB RDRAM. The smaller
data set with larger number of grey levels gave slower tim-
ings, probably due to cache trashing.

Figure 5 shows an example of an interactively filtered
magnetic resonance angiogram volume data set, visualized
by maximum intensity projection. The shape filter attribute
used wasI/V 5/3, with I the moment of inertia andV the
volume. This attribute is a purely shape dependent num-
ber, i.e. it is scaling invariant, which has a minimum value
for a sphere and increases rapidly with elongation (see [4]
for more details). The images show that by increasing the
threshold parameterλ, more and more structures that are
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not elongated disappear: for low threshold settings, only
background noise is affected, and for a high threshold, only
thin and very long structures remain.

The user was supplied with a simple GUI containing a
slider to set the threshold valueλ. Since the filtering stage
takes less than a second on datasets of this size, the user
can interactively choose a threshold and view the result.
For the particular example shown in Fig. 5, such interactive
filtering can be of great assistance to a radiologist when
dealing with noisy angiographic volume data.

4 Conclusion

In this paper, we have proposed a method for interactive fil-
tering of volume data sets based on a class of shape preserv-
ing filters. We have briefly introduced such filters and how
they can be implemented efficiently using Max-Trees. The
Max-Tree approach splits the filtering task in two stages.
The first stage is a construction of a tree, while the second
stage performs actual filtering using this tree. Building the
tree takes several seconds for small volumes, and up to 40
seconds for large volumes (i.e.5123). However, after the
construction of the tree, we have shown that a volume can
be filtered in fractions of a second, allowing interactive fil-
tering and visualization, even on standard commodity hard-
ware like PCs.
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Figure 5. Magnetic resonance angiogram volume data set
(size2563) filtered interactively with an attribute thinning
as shape filter. The attribute used wasI/V 5/3, with I the
moment of inertia, andV the volume of a peak compo-
nent; the top left-hand image is the original, in the others
the attribute threshold was 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and
4.0, respectively. This attribute is a shape dependent num-
ber that expresses elongation. Visualization was done by
maximum intensity projection.
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