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On the Dynamic Analysis of
Piecewise-Linear Networks

W. P. M. H. Heemels, M. Kanat Camlibel, and J. M. (Hans) Schumacher

Abstract—Piecewise-linear (PL) modeling is often used to ap- PL mapping can be rewritten in the complementarity format.
proximate the behavior of nonlinear circuits. One of the possible This explains the extensive use of tiieear complementarity

PL modeling me_thodologies is based on the linear compleme_ntarit_y problem[6] (together with a number of variants) in the study of
problem, and this approach has already been used extensively in PL electrical networks I51. [71. 18], [101—[14

the circuits and systems community forstatic networks. In this eélectrical ne .or s8], [7]. [ ]'_[ ,]_[ ] . .
paper, the object of study will be dynamic electrical circuits that In many electrical networks switching elements like thyris-

can be recast as linear complementarity systems, i.e., as intercon-tors and diodes are already present for a great variety of ap-
nections of linear time-invariant differential equations and comple- plications in both power engineering and signal processing. To
mentarity conditions (ideal diode characteristics). A mathemati- o4y ce the simulation time of the transient behavior of such net-

cally precise framework is developed that formalizes the mixed dis- . .
crete and continuous behavior of these switched networks. Within works [15]-[19] and for analysis purposes (of e.g., stability or

this framework, the fundamental question of well-posedness (exis- chaos) [20], [21] these switches are often modeled ideally.
tence and uniqueness of solution trajectories given an initial con-  As a consequence, two different motivations can be given
dition) is studied and additional properties of the behavior are de- for the use of ideal diode (or complementarity) models in
rived. For instance, a full characterization is presented of the in- the study of nonlinear and switched electrical circuits: as

consistent states. h . "
a modeling methodology for PL networks and as idealized
Index Terms—Circuit analysis, linear complementarity descriptions of physical devices. In this paper we will consider
problem, passivity, piecewise-linear networks, switched circuits. PL networks that can be modeled (or realized) by using ideal
diode characteristics (complementarity conditions) and linear

|. INTRODUCTION resistors for thestatic (PL) part and inductors and capacitors
for capturing thedynamicpart of the network. This results
: . . . ) in models that are combinations of linear electrical networks
nents like capacitors and inductors astdtic nonlinear

| t h ist dt - T | escribed by linear time-invariant differential equations) and
eléments such as resistors and transistors. 10 analyz€ jiey giodes (complementarity conditions). As such, the sys-

behavior of such networks, the nonlinear elements are Oftf‘é?ns at hand form a subclasslioar complementarity systems

gpproximated by pi_epewise-l!near (PL) desgriptions. In tIEl], [22]-[25], which can be seen as dynamic extensions of
literature many explicit canonical representations of PL fun e linear complementarity problem.

tions can be found that store the parameters in a minimal way;, . ;
o It ell-known that ideal network models may well be of
[1]-{4]. Reference [5] developed an implicit model based on 'S W W ! W S may w

the li | tarit bl t math tical mixed, discrete, and continuous nature. In particular, the cir-
€ linéar compiementarity problem ot mathematical progran,s oy o)yes through multiple topologies (modes) depending on
ming [6]. Basically, the complementarity relations correspory

to ideal diode ch teristics. In 71, 181 it has b h e (discrete) states of the diodes characteristics (“on” or “off")
0 Ideal diode characteristics. In [71, [.] It has been show equivalently, the complementarity conditions. For each com-
that the complementarity framework includes the expllcgi

: . . . nation of the discrete states of the diodes (blocking or con-
canonical representations given in [1]-{3]. Consequently, stajy cting) other equations govern the evolution of the system’s
PL elements can be replaced by networks consisting of id

. . . . iables. The mode transitions are triggered by inequalities
d|od_es and I|r_1ear resistors (see Sect|or_1 lll for an exampl d may result in discontinuities and Dirac impulses in the net-
For instance, in [5, Ch. 9] complementarlty models hgve be ks variables, see e.g., [15], [16], [18], [19], [26]-[28].
presented for voltage controlled switches, MOS transistors an n this paper we provide a mathematical framework that

digital gates. Actually, [9] showed that any static (continuoualows the precise formulation of a solution concept for the

complementarity class of continuous/discrete networks. The
Manuscript received March 10, 2000; revised March 22, 2001. The work Bitroduction of a solution concept is coupled to the question

M. K. Camlibel was supported in part by the Dutch Organization for Scientifigf well-posedness, i.e., existence and uniqueness of solutions
Research (NWO).This paper was recommended by Associate Editor G. Settl=f h K del f | initial diti Much eff
W. P. M. H. Heemels is with the Department of Electrical Engineering, Eind? the network model for all initial conditions. Much effort

hoven University of Technology, 5600 MB Eindhoven, The Netherlands (e-maltas been invested in considering existence and uniqueness of

w.p.m.h.heemels@tue.nl). _ __solutions tostatic (dc) models of electrical networks [29]—[35].
M. K. Camlibel is with the Department of Mathematics, University, he d . ival h | ical th f ordi
of Groningen, 9700 AV Groningen, The Netherlands (e-mail: k.canfort e dynamic equivalent, the classical theory of ordinary

libel@math.rug.nl). _ _differential equations guarantees existence and uniqueness of
J. M. Schumacher is with the Department of Econometrics and Operatiog§|utions under a LipSChitZ Continuity condition (see e.g., [36]).

Research, Tilburg University, 5000 LE Tilburg, The Netherlands (e-mai: . . . .

ims@kub.nl). ere however we will be considering networks containing

Publisher Item Identifier S 1057-7122(02)02261-4. ideal diodes, for which such conditions are not fulfilled. The

ANY electrical networks consist oflynamiccompo-

1057-7122/02$17.00 © 2002 |IEEE



316 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002

only papers known to the authors dealing with well-posednetée proof of global well-posedness is presented. Finally, we state
for dynamic circuits containing non-Lipschitz elements aréne conclusions.

[37], [38]. However, the obtained results in [37], [38] do not

cover the networks considered here, since an ideal diode cannot [I. NOTATION

be reformulated as a current or _voltag_e-contrqll_ed rGSiStF’r'The following notational conventions will be in forckl de-
To show that the well-posedness issue is nontrivial, we Wél

¢ work | i i istor t otes the set of natural numbdfs 1, 2, ...}, Rthe real num-
present a network example containing a negative resistor %"s,ﬂh the nonnegative real numbers (including zero) and
has multiple solutions for certain initial conditions and n

the complex numbers. K is a (column) vector, we denote

solutions for others. Hence, not all PL circuits are weII—posq ith component bys;. M is the transpose of the matrix
and additional assumptions are required to guarantee e CmXn and M* ijenotes the complex conjugate trans-

existence .and uniqueness of trajectories. . pose. A (not necessarily symmetric) matd € C™*™ is
The main purposes of the paper are the following. called nonnegative definite and we writé > 0 if Rex* Mz =

, . . . * N = ™, ict in-

1) Define a mathematically precise solution concept for d)é—lﬂ)a_j (M + M*)x > Oforall z € C. In case strict in
. S . quality holds for all nonzero vectors we call the matrix pos-
namic PL circuits that can be modeled by linear comple- - . . :
: itive definite and writel/ > 0. By Z we denote the identity ma-

mentarity systems.

trix of any dimension. Giverd/ € R**! and two subset§ C

2) Prove (global) existence and uniqueness of solutio i . ;
under a condition that all elements are passive (excludigg}i'n'e'd g;\?ndf] g(j;{/ll’ )' o tr:ﬁ(ga,‘si)]sutf{r?atnx c;?/[vxz
1J = wgleel,jed- = IR ’

negative resistors as in the example mentioned above),

3) Establish regularity properties of the solutions. In partic?i-:ice’:’;giﬁ/[h- If I = {1, ..., k}, the notationM, ; is some-

ular, it will be proven that derivatives of Dirac impulses A triple of matrices(A, B, C) with A € R"™", B € Roxm

do not occur (even for inconsistent initial states) and Dirac . L . .
( ) and ¢ ¢ Rr*™ js a called minimal if the matrices

impulses may occur orlly at the |n|t|aI"t|m.e. The consis- AB ... A"'B] and [CT ATCT...(AT)1CT]
tent states (also called “regular states”) will be charact ve full rank

ized fully in terms of set inclusions and linear comple- ' : . .
mentarity problems. Moreover, it will turn out that the set By R(s) we denote the field of real rational functions in one
' ! ariable. M(s) € R¥*!(s) means thatM(s) is ak x  ma-

of switching times is a right-isolated set, meaning that foI{. X A ; L
X A : " . 1rix with entries inR(s). A rational vector or matrix is called
lowing all time instants there exists a positive length tim

interval in which the diodes do not change their discre strictly) proper, if for all enmes the degree of the numerator is
state smaller than or equal to (strictly smaller than) the degree of the

) ) ) ~denominator.

These results will be used to provide a rigorous basis for o vector« € R* is called nonnegative (positive), and we
so-called “time-stepping” methods (see e.g., [5], [11], [39]) thgfrite «, > 0 (u > 0), if w; > 0 (u; > 0) forallé € {1, ..., k}.
are used fqr smulatlon of dynamic PL circuits. Although seVs o vectorsu, y € R* are orthogonal, i.ey Ty = 0, we write
eral numerical simulation methods have already been proposgd,, - similarly, we writeu(s)Ly(s) for two rational vectors
to deal with phenomena that arise in nonsmooth circuits [3], [31(3)’ y(s) € R¥(s), if uT(s)y(s) = 0forall s € C.
[11], [12], [16], [17], [39], little attention has been paid to the The set of arbitrarily often differentiable functions frdrto
question if and in what sense the computed time functions cqg~ s denoted byC™(R; R™). £&(to, t,) denotes the set of
verge to the true solution of the network model. On the basi§j measurable functions from (to, ;) to R* for which the
of the frame\{vork presented in the current paper, a Companﬁﬂ'fbgralj'il||v(r)||2dT is finite.
paper [40] gives a formal statement and proof of the consis- 0
tency—copvergence of the approximateq time fun_ctions tg the ll. COMPLEMENTARITY MODELING
exact solution of the network model—of time-stepping routines _ ) _ ) )
for the simulation of a class of internally switched electrical cir- AS @lready mentioned in the introduction, many dynamic PL
cuits. Another way of approximating dynamic circuits with ideg§lectrical networks can be modeled (or realized) by using linear
diodes can be obtained by replacing the ideal characteristicrﬁyﬁ'smrs' capacitors, inductors, gyrators, transformers aqd_|deal
smooth functions between diode current and voltage. The intéfodes. Reference [7] (see also [8]) shows that all the explicit PL
ested reader is referred to [41] for more details on the consf§Presentations proposed by [1]-[4] are all covered byinne
tency of such “regularization” or “smoothing” methods. leCl_t _rrjodel based on the linear complementarlty _problem (_see

The outline of the paper is as follows. After the notationd€finition V.10 below) of mathematical programming [6]. This
conventions in the next section, complementarity modeling BRPlicit model was developed by [S] and can represent all static
PL dynamic circuits is discussed in Section III. In Section I\continuous) PL functions as proven by [9]. Van Bokhoven's
we describe the evolution of the network model within a givefodel is of the form
mode, i.e., with the diodes replaced by either an open (blocking) z=Az+Bu+yg (1a)
or short (condpctlng) cwcwjt. Ne?<t, an extenspn of 'the linear y=Cx+Du+h (1b)
complementarity problem will be introduced, which will play an
important role in the proof of well-posedness. In Section VI the Osyluz0 (1c)
regular (or consistent) states are introduced and characteriggdch describes a PL mapping framto z. In (1) A, B, C, D
explicitly. In Section VII the solution concept is introduced andre matrices ang, h are vectors of appropriate dimensions.
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Fig. 3. A circuit containing a negative resistor.
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Fig. 4. Alinear relation and complementarity conditions.

Fig. 2. An equivalent “complementarity” circuit of the network in Fig. 1. gr voltage) sources. As we aim at providing sufficient condi-
tions for the existence and uniqueness of solutions (so-called
Givenz € R™ one has to solve the linear complementarityell-posedness) we will not consider networks includirega-
problem (1b)—(1c) for the auxiliary variables and u, after tjve resistors as are used in [5, Sec. 2.3]. Indeed, negative re-
whichu can be substituted in (1a) to obtain sistors can result in ill-posed circuits as is illustrated by the
To illustrate this modeling methodology, we consider the e%imple example given in Fig. 3. The circuit consists of a ca-
ample of the nonlinear resistor in [11] given by the characterisfigcitor (¢ = 1F), a negative resistoi{ = —1¢2) and an ideal

L., .20 diode. The corresponding complementarity model is given by
V, = max (% I, I,,) = { L (
34, I, <0. (t) =u(t) (5a)
The voltage over the resistor is given by, while I, denotes y(t) =2 (t) — u(t) (5b)
the (_:urrent through the resistor. This PL characteristic can be 0 <y(t)Lu(t) > 0 (5¢)
rewritten as
V.ol (3a) with x the voltage across the capacitor, an@nd y the cur-
=50 +u rent through and (minus) the voltage across the diode, respec-
y=—1I.+2u (3b) tively. In Fig. 4 the linear relation betweenand« given by
0<ylu >0, (3c) (5b) and the complementarity conditions (5c) are drawn. It is

Indeed, _ max((1/2)I,,0) and  thus qbwous that in case thg initial state satisfig®) >0 m_ul—
tiple solutions exist, while forz(0) < 0 no solution trajec-

V, = max((1/2)1,, 1,.), which is equal to the PL function (2). : :
: : : ; : ry can be found. Indeed, in cas€d) = 1 the diode can be
The nonlinear resistor given by (2) is now embedded in tgagoth blocking & — 0) and conductings( — 0), which results

dynamic network from [11], which is depicted in Fig. 1. Takin th \ution traiectori — 0 - — 1 and
C = 1F, L = 1H and R = 12 we obtain the system descrip- n e sofution trajec ories(t) = N o (t) . y(t) = -an
u(t) = z(t) = et, y(t) = 0, respectively. This simple example

tion 0 1 0 shows that well-posedness does not hold for all PL systems and
z(t) = <_1 _§> z(t) + <_ ) u(t) (4a) additional assumptions (like allowing only positive resistors)
2 are required to guarantee the existence and uniqueness of tra-
y(t)=(0—-1) z(t)+2u(t) (4b) jectories.
A second restriction that will be applied in this paper is that
0 <y(t)Lult) > 0 (4c) we assume absence of current and voltage sources. Unlike the
wherez is the voltage over the capacitar; is the current positivity assumption on resistors, this restriction is imposed
through the inductor an#f,. is eliminated by using (3). From just to keep the presentation as uncluttered as possible. In this
this reformulation we can now obtain the equivalent networbaper we therefore consider the basic case of networks realized
as depicted in Fig. 2 that consists of linear (positive) resistotsy linear electrical networks consisting of (linear) positive re-
capacitors, inductors and ideal diodes only. In other words, sistors, inductors, capacitors, gyrators, transformers (RLCGT)
derived a “dynamic complementarity model” of the nonlineaand ideal diodes (like the one in Fig. 1). An extension to the
network depicted in Fig. 1. case including sources that generate even piecewise Bohl sig-
In fact, [5, Sec. 2.3] presents a structured method that mals [e.g., constants, exponentials and (co)sines and combina-
places any static PL two-pole element by an equivalent circtiibns of these] can be given on the basis of the current paper as
consisting of ideal diodes, linear resistors and constant (currenbutlined in [42].
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L storagefunction), such that for alk, < ¢; and all time func-
V- tions (u, x, y) € LET" (1, t,) satisfying (6) the following
I >| h v inequality holds:

t1
Viato)+ [ Oued > Vis(t)
Fig. 5. The ideal diode characteristic. to

The above inequality is called tlgéssipation inequalityThe

The networks considered here lead directly to a compleméHorage function represents a notion of “stored energy” in the
tarity model as mentioned in e.g., [5], [8]. Indeed, the linedtetwork. The following proposition gives several equivalent

(RLCGT)-part of the network can be described by the staf@aracterizations of passivity. .
space model Proposition 111.2 [44]: Consider a systerfd, B, C, D) in

. which (4, B, C) is a minimal representation. The following
(t) = Aw(t) + Bu(?) (62)  statements are equivalent.

y(t) =Cx(t) + Du(t) (6b) * (A, B, C, D) is passive.

under suitable conditions (the network does not contain all-ca- * The transfer matrixG(s) := C(sZ — A) !B + D is
pacitor loops or nodes with the only elements incident being ~ positive rea)i.e.,z*[G(A\) +G*(A)]x = 0 for all complex
inductors, see [43, Chapter 4] for more details.) In {B)e vectorsz and allA € C such thatReA > 0 and A is not
R™", B e R*™** C e R**" andD € R*** denote real ma- an eigenvalue ofi.
trices of appropriate dimensions, andienotes the state vari- ¢ The matrix inequalities
able of the network (typical!y consisting of linear combinations “ATK - KA —-KB+CT
of the currents through the inductors and voltages across the ca- < _BTK+C D+ DT ) 20 (9a)
pacitors). Moreover, the pafr;, ;) denotes the voltage—cur- and
rent variables at the connections to thie diode, i.e., T

K=K >0 (9b)

(wi ==Vinyi= L)V (u =Li Ny = =V;)

whereV; andl; are the voltage across and current through t
ith diode, respectively, and denotes the Boolean (nonexclu
sive) “or” and A the Boolean “and”-operator. The ideal diod
characteristics are described by the relations

have a solutiork’.
Tﬁoreover, incas€A, B, C, D) is passive, all solutions to the
éinear matrix inequalities (9) are positive definite [i.e., (9b) holds
with strict inequality] and a symmetrig is a solution to (9) if
and only ifV(z) = (1/2)z " K= defines a storage function of

ViSOANLZ0A(V; =0V =0) (7)  the system(A, B, C, D).
as shown in Fig. 5. This proposition enables us to verify that the network in Fig. 1
By suitable substitutions the following system description igelds an LC$4, B, C, D)-model with(4, B, C, D) passive
obtained: for which sometimes the nomenclatuieear passive comple-

mentarity systems used. Indeed, it is easily verified that the

o(t) = Ax(t) + Bu(t) (8a)  matrix inequalities (9) are satisfied for (4) witli = (; 9).
y(t) = Ca(t) + Du(t) (8b) Moreover,V(z) = (1/2)x? + (1/2)+3% is a storage function,
0 < y(t)Lu(t) = 0. (8c) which is physically clear as it represents the total electrical en-

ergy in the capacitor and the inductor in both Figs. 1 and 2.
Atechnical assumption that we will often use is the following.
Assumption 111.3: B has full column rank andA4, B, C) is
minimal representation.

In this formulationt € R denotes the time variable(t) the
state, and«(¢) andy(¢) the complementarity variables at time
t. The system (8) is called Enear complementarity system

System descriptions of this form were introduced in [23] an'?:] These assumptions imply that (specific kinds of) relsdun-

were further studied in [22]-[25], [41]. We use the nOtatior@anc have been removed from the circuit. The minimality re-
LCS(A, B, C, D) toindicate the system given by (8). Note that . y - ' y
quirement of(A, B, C) indicates the fact that the number of
(8c) means that for all € {1, ..., k}y(t) =2 0A w(t) = : . . :
. . . . states (i.e., the total number of capacitors and inductors) is the
0 A (y:(t) = 0V w,(t) = 0). Rather than using this explicit .. :
exoression. we shall below usually employ the more compal nimal number needed to realize the transfer functigs/ —
P ' y employ P J—lB + D from u to y (see also [43, Ch. 8]). Minimality is a

notation (8c). Observe that the description (4) for the rlor]Ime‘s”\tandard assumption in the literature on dissipative dynamic sys-

circuit in Fig. 1 is exactly of the form (8). L
Since (8a)—(8b) is a model for the RLCGT-multiport ne tems [44]. The full column rank condition is included to prevent

- " . . . redundancy in the collection of diodes. See [45] for two simple
work consisting of positive resistors, capacitors, inductors, g

rators and transformers, the matrix quadruple B, C, D) is Metwork examples that illustrate the implications and relevance

not arbitrary, but satisfies a passivity condition. To be recis%f Assumption I11.3.
Y, P y i P "We note the following consequence of passivity, which will

(A, B, C, D)is passive (orin the terms of [44]issipativewith be used frequently in the sequel.

TN ;
respept_t_o the supply. rate y) in the following SENse. Lemma Ill.4: Consider a systenjA, B, C, D) in which
Definition 1.1 [44]: A system(A, B, C, D) given by (6) . L . .

. . ST (A, B, C)) is a minimal representation ar@di, B, C, D) is
is calledpassive or dissipativewith respect to the supply rate
u "y, if there exists a nonnegative functiéfh R* — R, (a 1See Section Il for a definition of “minimality.”
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R ) * Mode! = J: Both diodes are blocking in this mode, i.e.,
Uy = Uy = 0.
* Mode I = {2}: The first diode is blocking while the
!1_)2 second one is conducting, i.@;, = y2 = 0 in this mode.
* ModeI = {1}: The first diode is conducting and the
second one is blocking, i.e; = uo = 0 in this mode.
* Mode! = {1, 2}: In this mode both diodes are con-
ducting, i.e.qs = y2 = 0.

The mode will vary during the time evolution of the system
(diodes go from conducting to blocking or vice versa). The
system evolves in a certain mode as long as the inequality con-
ditions in (8c) are satisfied. At the event of a mode transition,
the system may in principle display jumps of the state variable
z. Jumping phenomena are well-known in the theory of unilat-
erally constrained mechanical systems [46], where at impacts
the change of velocity of the colliding bodies is often modeled
as being instantaneous. These discontinuous and impulsive mo-
T : o : o AT tions are also observed in electrical networks (see e.g., [15],
‘(g; v) 2forTarIkygaiyzOeTR ing’V de Ry'ell()jS’V ST(A _K ar [16], [18], [19], [26]-[28]) and consequently, a distributional

)Zf + e ( . ) S due to(. ) v = .~ ._framework will be needed to obtain a mathematically precise
.ConS|der.|ng this eTxpressmn is an mquahty fpr aqluadraucfogglution concept. We restrict ourselves to the Dirac distribution
in y, we find that;:« (KB—C")v=0.Sincez is arbitrary, we (supported at = 0) denoted by and its derivatives, whe@@?
obtain(K B — ¢ )v = 0. = denotes théth (distributional) derivative oé.

Definition 1V.2 [47]: An impulsive-smooth distributiois a
distributionu of the formu = u;,,p, + req, Where

Equation (8c) implies that, for altt, and for every  « u;  isalinear combination of and its derivatives, i.e.,
it = 1,...,k w(t) = 0ory(t) = 0 must be satisfied .

(the diode is conducting or blocking and can be replaced by a A Z u—ig®
short or an open circuit, respectively). This results in a multi- P
modal system witf2* modes, where each mode is characterized 4 v
by a subsef of {1, ..., k}, indicating thaty;(t) = 0if i € I forvectorsu™ € R*, ¢ =0,...., [, .
andu;(t) = 0if i € I° with I° == {i € {1, ..., k}|i ¢ I}. * 1., IS an arbitrarily often differentiable func-
For each such mode (also called “topology,” “configuration,”  tion from (0, oc) to R* such that wd (0+) =
or “discrete state”) the laws of motion are given by differential ~ limyjo (¢ ureg/dt™)(t) exists and is finite for all
and algebraic equations (DAE’s). Specifically, in mabithey m=0,1,2 ...
are given by (we omit the time arguments for brevity) The class of impulsive-smooth distributions is denoted’(p‘yp.
. For a distributionu € Ci’;‘np, Uimp IS called the impulsive part
& = Az + Bu (11a) andu,., is called the smooth part. In casg,, = 0 we call
y=Czx+ Du (11b) 4 aregular or smoothdistribution. If the Laplace transform of
y; =0, i€l (11c) an impulsive-smooth distribution is rational, we call the distri-
w =0, il (11d) bytiqn o_f Bohl typ_eor a Bohl distribution F_or a smooth Bohl
distribution, we will use the terrBohl function

Example IV.1: For an illustration of the ideas of this paper \We also would like to introduce the notion of the derivative
in the simplest possible context, consider the linear RLC circw@t an impulsive-smooth distribution.

(with R =1 Q, L = 1H andC = 1F) coupled to two ideal  Definition IV.3: Let u be an impulsive-smooth distribution

I
[

Dlx c-

Fig. 6. RLC circuit with ideal diodes.

passive. Ifv € R* satisfies(D + DT )v = 0 (or equivalently,
v Dv = 0), thenC v = K Buv for any K satisfying (9).
Proof: According to Proposition Il.2, passivity of the
system implies thak( is symmetric, K > 0 and satisfies
ATK + KA KB-CT
B'Kk-Cc —(pD+D7)|SY (10)

Premultiplication of (10) by~ "+ ") and postmultiplication by

IV. DYNAMICS IN A GIVEN MODE

=0

diodes as shown in Fig. 6. The network is described by that can be written as = Wiy + Weg, Where

T1=T2— U1 +u 12a !

o v2e) o = 3 w69

Xo = —X1 — Lz — U2 (12b) imp ar

Yy =—71 (120) — FA .

forvectorsu™ € R*, ¢ =0, ..., [ andu,.g is the smooth part.
Y2 =Ty + T2+ Uz (12d)  The derivative ofu is denoted by: and defined by
0<uly>20 (12e) .

wherez, is the voltage across the capaci€@rz; is the current u= Z w ST g (04)8 + lireg (13)
through the inductak, u; andu, are the current through ang =0

andy are (minus) the voltage across diode 1 and 2, respectivelshereu,., denotes the usual derivative of a function(on oc).
Depending on whether the diodes are blocking or conducting,Lemma 1V.4: Consider the matricest € R™*", B ¢
the system hag? = 4 modes or circuit topologies. R™** C ¢ R¥*" andD € R¥** such that Assumption I11.3 is



320

satisfied and A, B, C, D) represents a passive system. Then 2) This statement follows from [47, Theorem 3.10].

the following holds.
1) Foralll C {1, ...,
exists a unique solutiofu, x, y) €
the dynamics for modé given by

k} and for all initial states:o, there
e Crtntk gatisfying

imp

x=Ax+ Bu+ x096 (14a)
y=Cx+ Du (14b)
v;=0, i€l (14c)
u, =0, e€l° (14d)

as equalities of distributions. We denote this solution by gl » > o, the principal minors of3

(uacg,I7 Xacg,17 yacg,f)

2) For all modes! there exist matriceg’! and K’ such
that for all initial states:o the smooth parté, =, y) :=
(e’ %", yigg") of (u*o:!, x*o 1, y* 1) are Bohl
functions and satisfy

&=Flg (15)
w=K'z (16)
y =Cx + Du. a7

The matrice’” and K’ only depend on the modeand
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Remark IV.5: In terms of [24, Definition 3.2] the first prop-
erty of Theorem IV.4 states that all modes atgonomousTo
be specific, modd is called autonomous (see also [24, Lemma
3.3)) if for all initial statesz( there exists a unique impulsive-
smooth solution to (14).

Remark IV.6: The positive realness of/(s) implies that
G(o) is nonnegative definite for ab > 0. Since a nonneg-
ative definite matrix has only nonnegative principal minors
[6, p. 153] anddet G;;(s) # 0 (as shown in the proof of
Lemma IV.4), it follows that there exists@ € R such that
(o) are positive, i.e.,
det Grr(o) > O0forall I C {1, ..., k}. Interms of [6, Def.
3.3.1] this means thaf(o) is a P-matrix for all sufficiently
largeo.

Example IV.7: To demonstrate Lemma IV.4 we continue the
running example IV.1. In particular, we will consider mable-

{2} in whichu; = y» = 0. Using (12d) ands» = 0 yields that

us = —x1 — T2. Sinceu; = 0, it holds thaty = K1}z with
K1 = (2 _9). Substitutingu; = 0 andus = —z1 — x2 in
(12a)—(12b) leads té; = —xz; andd, = 0. Hence, {1} =
(T50)-

L x%o ! y“’07 ) have rational Laplace

)3

not on the particulag, at hand. The solutions(u®e- !

Proof: transformg(@®e- 1 (s), %0, A(s), g7 1(s)), which satisfy
1) The existence and uniqueness of a solution for (14) for 5270 1(s) = Az® 1(s) + B (s) + x (22a)
all initial statesz is equivalent to the transfer matrix 0
Grr = Cre(sI — A)™*B,; + Drs being invertible as §rol(s) =Cx® L (s) + Da™ 1 (s) (22b)
a rational matrix [47, Prop. 3.23, Thm. 3.24, Thm. 3.26]. g TO, 0 29
This can also be seen from (22)—(23) below. Suppose on (s) = (22¢)
the contrary thaflet G;;(s) = 0. Then there exists a ra- a7 1(s) =o0. (22d)
tional vectoru(s) # 0 such thatG;;(s)v(s) = 0. Take
o > 0 such thats(c) # 0 andoZ — A is invertible. De- We introduce G(s) = O(sZ — A)™'B + D and
fine w as -t
= {0 ifigl
T\ wilo), ifiel.
The triple
w(t) =uet (18)
z(t) = (0T — A)~* Bue”* (19)
y(t) = G(o)uce” (20)
satisfies the system equations (6), whé(e) = C(sZ —

A)"B+D. Since(4, B, C, D) is passive, there exists
a K > 0 such that the dissipation inequality

x ! (to)Kx(to) +/ 1 w! (H)y(t) dt >

to

o (t)Kx(ty) (21)

holds for all ¢, and ¢; with ¢
be verified thatw ' (t)y(t)

27(0) T Grr(o)u(o)
tend to—oc, (21) results in
0 2 xT(tl)Kx(tl)

for all ¢;. BecauseX' > 0, this implies thatz(t;) = 0
for all ¢;. From (19) it follows thatBw = 0. SinceB is
of full column rank,z = 0 and hence also(s) = 0. We

> to. It can
' TGlo)u
0 for all ¢. By letting ¢

reached a contradiction and consequently proved the fifst eachzy € R* and! C {1, ...,

statement.

R(s) = C(sZ — A)~". Since Gy(s) is invertible as a
rational matrix (see the proof of Lemma IV.4), the equations
(22) can be solved explicitly. This yields that the Laplace

transformgi®e- (), % 1(s), §%0:1(s)) are given by

457 7(s) = =G () Rrels) (232)
A?S,I(S) -0 (23b)
270 1(s) = (sT — A)"'Bwo + (sZ — A)~1Bu™(s) (23c)
7707 (s) = [Rreo(s) = Grer(s)Gr (9)Rua(s)] 70 (23d)
oo r(s) -0 (23e)

Hence, the solutions of the mode dynamics (14) are one-to-one
related (by the Laplace transform and its inverse) to solutions
satisfying (22). On the basis of this relation, we can prove
that only Dirac impulses (and not its derivatives) show up
in passive electrical networks with diodes. Note that this
statement is implied by the fact that the Laplace transforms
(@ I(s), x%0-1(s), §%0-1(s)) are proper for anysg € R"
andI C {1,..., k}.

Theorem [V.8:Consider matricesA € R**"™ B ¢
R™* C € R¥*™ andD € R*** such that Assumption I11.3 is
satisfied and A, B, C, D) represents a passive system. Then
k} the Laplace transform
i 1(s) is proper.
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Proof: Denotei® (s) by u(s) for brevity. The triple The following properties can be proven for the impulsive part
of an impulsive-smooth distribution satisfying the mode dy-
u(t) =u(o)e” (24)  hamics.
7(t) =(0Z — A) "L Bu(o)e”? (25) Lemma IV.9: Consider matricesd & R"*", B ¢
5(t) = G(o)u(o)e (26) R™%*, C e R*™andD e R*** such that Assumption I11.3

is satisfied and(A, B, C, D) represents a passive system.
satisfies (6) for al- € R such thavZ — A is nonsingular. It Consider the impulsive-smooth soluti¢n®: 1, x*o: 1, y*o. 1)

follows from passivity that there existsf& > 0 such that for to (14) for model and initial statexo. The impulsive part

all ¢, and#o with £, > g u® !is given byu®§ for some vecton® € R* that satisfies
ty wWTDu’ =0 anduOTC(azo + Bu®) = 0.
T (t)KE(t) — T (t)KT(to) < / a'(ty(t)dt. (27) Proof: As stated before, the propernessigP:/(s) im-
to zo,

plies thatu? ! = %6 with u® = lim,_. ., 4% (). For brevity

By substituting (24)—(26) into the dissipation inequality (27)we will denoted “ I (s) by u(s) and§ *:1(s) by y(s) in this
one obtains proof. Take the power series expansion:0f) around infinity
wT ()BT (6T — A" TK (0T — A)~' Bu(o) as

1

< —u

20
Since K > 0, B has full column rank, andoZ — A)~* = . . .
(1/0)T + (1/02)A + (1/3)A? + -- - is strictly proper, there  u' (s)y(s) =u' (s) [C(sT — A)" o + G(s)u(s)] =0

exists an > 0 such that (33).
Substituting (32) into this equality and considering the coeffi-

(a7
;HU(O’)H2 <u'(0)BT(6Z-A)" " K(0I-A)"'Bu(o) (29) cients corresponding t&’ ands~"! yield

T(0)G(o)u(0). (28) u(s) =’ +utsTH b s 32)

Because for all eitherw,;(s) = 0 or y;(s) = 0, we have that

for all sufficiently larges. We know from (22) that: T (s)y(s) = wTDu’ =0  (34)
0, wherey(s) := §20:1 = C(sT— A)"Lzo+G(s)u(s). Hence, w0 T Czo+u® " Dul + 0t TDul +u°TCBu® =0.  (35)
the right-hand side of (28) satisfies

1 1 The relation (34) implies that

4T __ -7 -1
5 & (0)G(o)u(o) 55 U (0)C(oZ — A" xo (D + DT = 0. (36)
< 2i IC(oT — A) Lag|lu(o)|  Now, (35) and (36) give
g
B wT Cwg+u’TCBu’ =0 (37)
< 5z llu(@)llizoll- (30)
which establishes together with (34) the desired identitids.
The last inequality follows from the existence offia> 0 such
that||C(oZ — A)~H|| < B/o for all sufficiently largeo. Thus, V. THE RATIONAL COMPLEMENTARITY PROBLEM

(28)—(30) yield||u(o)|| < (8/2a)||z0]| for all sufficiently large . . . o i
o. Henceu(s) must be proper. In the previous section, the dynamics within a mode (i.e.,

The fact that solutions of linear passive networks with ide&fith a fixed state of the diodes) has been considered, while the

diodes do not contain derivatives of Dirac impulses is widely bgw_i?l;aliti/oc;)ndigi(}ns have been ignored. However, a solution

lieved true on “intuitive” grounds, but the authors are not awaf@”™” "> ™", v ) within a mode (14) will in general only

of any previous rigorous proof. The framework proposed hepé valid for a limited amount of time, since a change of mode

makes it possible to prove the intuition. (diode going from conducting to blocking or vice versa) may
To summarize the discussion so far, it has been shown that#& triggered by the inequality constraints. Therefore, we would

stead of considering impulsive-smooth distributions as the sol[€ t© express some kind of “local nonnegativity.” We call a

tion space within a mode, we can restrict ourselves to Bohl dismooth) Bohl functiorv initially nonnegativef there exists an

tributions with impulsive part containing only Dirac impulse§ > 9 such thats(¢) > 0 for allz & [0, €). Note that a Bohl
and not its derivatives (.., Bohl distributions withoper ra- function v is initially nonnegative if and only if there exists a
tional Laplace transforms). oo € R such thatits Laplace transforifc) > 0forall o > o¢.

Consider a solution to (14) for modeand initial statero. An Henc_e, there is a connection betV\_/een sma_ll ti_me values for time
important observation is that a nontrivial impulsive pargf / ~ functions and large values for the indeterminatethe Laplace
will result in a re-initialization (jump) of the state. tf,,, = transform. This fact is closely related to t_he weII_—quwn initial
w08 i.e.,u® = lim, .. @7 7(s)], then a jump will take place vqlu_e theorem (§ee_e.g_., [48]): The definition ofllnmal nonneg-
according to ativity for Bohl distributions will be based on this observation
(see also [24], [25]).
Xreg(04) := lim xeq (t) = x0 + Bu°. (31) Definition V.1: We call a Bohl distributiorv initially non-
o negative if its Laplace transforné(s) satisfiesv(o) 2 0 for all

The proof can be found in [47]. sufficiently large reab.
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phase diagram

Remark V.2: To relate the definition to the time domain, note s
that a scalar-valued Bohl distributianwithout derivatives of : : P
the Dirac impulse (i.e iy, = v°6 for someu® € R) is initially A U AR S U
nonnegative if and only if - : j

1) v > 0, or 1 - S T

2) v° = 0 and there exists an > 0 such that,e,(t) > 0 -
forallt € [0, €). SN U N R P
Definition V.3: We call a Bohl distribution(u, x,y) € :
CEAFE aninitial solution to (8) with initial statex, if there - i .

imp

exists an/ C {1, ..., k} such that _ _ _
1) (u, x, y) satisfies (14) for modé and initial statery in -2 S SR SR RS
the distributional sense and : _ e
2) u, y are initially nonnegative. Sp— . : e T
According to Lemma V.4 condition 1 means tifaf x, y) = : : v
(w0 I x¥o, 1 yoo. Iy for an LCS with(A, B, C, D) passive
and satisfying Assumption 111.3. Fig. 7. Phase diagram of the circuit given in Example IV.1.
Example V.4: Consider the systedt) = u(t), y(t) = x(t)
together with (8c). This represents a system consisting of a caEven when a solution within some mode exists and is unique
pacitor connected to a diode. The current in the network is eq@aten an initial state, it still might be possible that different
to « and the voltage across the capacitor is equaltox. For modes give rise to different initial solutions (see for instance,
initial statex(0) = zo = 1, (u, x, y) with u = 0 (no cur- the example of the circuit in Fig. 3 containing a negative re-
rent) andy(¢) = x(¢) = 1 for all ¢ € R is an initial solution. sistor). Itis also possible that there are no initial solutions at all,
This corresponds to the case that the diode is always blockirg}, no solution within a mode satisfies the initial nonnegativity
and there is no (nonzero) current in the network. To demonstratenditions. We will start our investigation of well-posedness for
that the distributional framework is needed, consider the inititthear passive complementarity systems by studying existence
staterg = —1, for which(u, x, y) withu = 6, x(¢) = y(¢) = and uniqueness of initial solutions. An important tool in exis-
0, t > 0 is the unigue initial solution. This corresponds to atence and uniqueness of initial solutions is thtonal comple-
instantaneous discharge of the capacitor at time instant 0. Notentarity problen{RCP) [22], [25].
that a state jump occurs at time 0 froai to 0. Definition V.6  (The Rational = Complementarity
We emphasize that an initial solution only satisfies the equBroblem): Let the vector zo € R® and matrices
tions (8) in the following local sense. In case an initial solutiod € R™*", B € R™** C € R**"™ andD € R*** pe given.
has a nontrivial impulsive part, only the re-initialization as givefihe rational complementarity proble®RCP¢,, A, B, C, D)
in (31) forms a piece of the global solution. If the initial soluis the problem of finding rationak-vectorsu(s) € R¥(s)
tion (u, %, y) is smooth, the largest interval on whith, x, y) andy(s) € R*(s) such that
satisfies the equations (8) is equal@p ), wheres is equal to 1) foralls € C

e=inf{t > 0fueg, i() <O OF yycq,i(t) <O for somei}. (38) y(s) =C(sT — A)"rao + [C(sT — A)"'B+ D]u(s) (39a)

Example V.5: Consider again the network in Example IV.1. u(s)Lu(s) (39b)
We will compute the initial solutions for two initial states, to wit and
(@1(0), 22(0))" = (=¢, 1) " and(1(0), z2(0)) " = (1, 1)". 2) there exists a, € R satisfying for allo > o

If the response of modeé= {2} is computed for initial state
(71(0), 22(0))T = (—e, 1) T (see also Example IV.7), it can be y(o) = 0andu(s) > 0. (40)

seen thak; (t) = —C(I_t), Xg(t) =1w (t) = G(I_t), llQ(t) =

1=t _ 1 u; =y, = 0. Hence, this is indeed an initial solu-Any pair of rational vectorgu(s), y(s)) satisfying the above
tion for initial state(—e, 1) asu andy are initially nonneg- conditions is said to be solutionto RCP(o, 4, B, C, D).
ative. Note that the initial solution is smooth and satisfies tHe 4, B, C and D are clear from the context, we also write

equations (8) on the intervd, 1) [i.e.,e = 1 in (38)]. RCRz) for brevity.
For initial state(z1(0), z2(0))T = (1, 1) it can easily be ~ From the definition of initial nonnegativity and (22), the fol-
verified thatx; = 0, xo(t) = ¢, y1 = 0, yao(t) = ¢, u; = lowing important relation is clear from [24].

§ + et uy = 0, which complies with modd = {1}. As Theorem V.7:Consider the matricest € R"*", B €

u andy are initially nonnegative, we have indeed derived @R"**, C € R**™ andD € R*** and assume that all modes of

initial solution starting in(1, 1)T. Note that there is a jump in LCS(4, B, C, D) are autonomous (see Remark IV.5). Then

the state component from 1 to zero caused by the presence dhe following statements hold.

theé. The physical interpretation is that there is an instantaneous  All initial solutions are of Bohl type.

discharge of the capacitar. » There is a one-to-one correspondence between initial so-
In this manner, the complete behavior of the network can be lutions to (8) and solutions to RCR{). More specifi-

derived, which results in the phase diagram as givenin Fig. 7. cally, (u, x, y) is an initial solution to (8) if and only
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Definition V.13: Let Q be a nonempty set iR*. The dual
coneof @, denoted byQ*, is defined as the set

Q* = {weRMw'v > 0forallv e Q}.

 The following statements are equivalent. Theorem V.14:Consider matricesd € R"*™ B €

1) There exists a unique initial solution for initial statd? " » € € R¥*™andD € R*** such that Assumption I11.3
2o to LCS(4, B, C, D). is satisfied and(A, B, C, D) represents a passive system.

if its Laplace transform(i(s), x(s), y(s)) is such that
(i(s), ¥(s)) is a solution to RCR:) and

2(s) = (s — A)7two + (sT — A)"'Bi(s). (41)

2) RCR) has a unigue solution. Denote the solution set of LGP, D) by Q := SOL(0, D).

» The initial solution is smooth if and only if the corre-
sponding solution to RCR() is strictly proper. Similarly,

Furthermore, le{u,, (s), ys,(s)) be the (unique) solution to
RCRzg). The following assertions hold.

the initial solution has an impulsive part containing only 1) For allzo € R", C(zo + Bu’) € QF whereuw’ =

Dirac distributions (and not its derivatives) if and only if
the corresponding solution to RC#) is proper.

limg o s, (8).

2) wu,,(s) is strictly proper if and only iCzo € O*.

As a consequence, studying existence and uniqueness of iniS) 1t oo sy (s) € Q.
tial solutions is equivalent to studying existence and uniqueness Proof:
of solutions to RCP’s. In [25] necessary and sufficient condi- 1) In view of Remark V.11 and Remark V.12, we have for

tions for existence and uniqueness of solutions to RCP’s have

been presented in terms of familieslmfear complementarity
problemdcf. Definition V.10 below). Based on this relation and
the literature on linear complementarity problems the following
result has been proven in [25].

Theorem V.8:Consider matricesA € R™*"™ B €
R* C e R¥>" andD € R¥** such that Assumption I11.3 is

satisfied and A, B, C, D) represents a passive system. TheWﬂU0 (@)

RCRz¢) has a unique solution for ally.

Theorem V.7 now yields the following.

Theorem V.9:Consider matricesA € R™**™ B €
Rk C € R¥*" andD € R*** such that Assumption I11.3 is
satisfied and 4, B, C, D) represents a passive system. From
each initial stater, there exists exactly one initial solution to
LCS(4, B, C, D).

According to Theorem V.7 there exists a one-to-one relation

between initial solutions and solutions to RCP. Since strictly 2)

proper Laplace transforms correspond to smooth Bohl distribu-
tions (without Dirac impulses and jumps of the state variable), it
is interesting to characterize the set of initial states for which the
corresponding solution to the RCP is strictly proper. In the fol-
lowing theorem such an explicit characterization will be given.
To formulate the theorem, we need the following concepts.

Definition V.10: Let a real vectoy; € R* and a real matrix
M € R¥** pe given. The linear complementarity problem with
datag and M (LCP(q, M)) is the problem of finding a real
vectorz € R* such that0 < z1(¢g+ Mz) > 0. Any such
vector z is called a solution to LCg;, M).

For an extensive survey on LCP’s, we refer to [6]. The set of
all solutionsz to LCP(gq, M) will be denoted by SOlg, M).

Remark V.11:1f (u(s), y(s)) is a solution to the problem
RCRzg, A, B, C, D), thenu(c) is a solutionto LCPC(csZ —
A)~Lzg, G(o)) for all sufficiently large (realyr, whereG(s) =
C(sZ — A)~'B+D.

(uw

eachv € Q := SOL(0, D) that

(o) =v)T (C(oT — A)tag + G(0)tay (0) — Dv) <0

for all sufficiently larges. SinceD > 0 [(9a) yields
D+ DT > 0landG(0) = C(0Z — A)7'B + D, we
obtain

— )" [C(6T — A) ™o
+ C(oT — A)"'Bu,,(0)] <0 (42)

for all sufficiently largecs. Multiplying this relation byo
and lettings tend to infinity yields, sincex,., (s) is proper

(u’ —v)" (Czo+ CBu°) 0.

It follows from Lemma IV.9 that' T (Czg + CBu®) > 0
for all v € Q and thusC(zq + Bu®) € Q*.
“Only if”: Supposeu,, (s) is strictly proper. Statement 1)
and«® = 0 yield Cxzo € Q.

“if”: Suppose thatCzy € Q*. From Lemma lll.4 and
Lemma IV.9 we obtain that

w0 TDu’ =0 (43)
uOTCa:O +4°TCBWY =0 (44)
(KB—-CTu’ =0 (45)

Since(u, (s), Y, (s)) is the solution to RCExo), u® >
0 and Du® > 0. Together with (43), this gives’ =
lim, oo us, (s) € Q [this proves statement 3)].

From (45), we obtain®TCBu® = «°T BT K Bu°.
Sinceu” € Q andCzy € QF, (44) gives

0> —uTCxog=u"TCBu =u’"BTKBu’ > 0.

Finally, positive definiteness ok and the full column
rank of B imply «° = 0, i.e.,u, (s) is strictly proper.

3) This has already been shown in the proof of statement

Remark V.12:Several times we shall employ the following 2) O

standard observation on solutions of LCPlfe SOL(q;, M;)
with ¢ € {1, 2} then

(1 —22) (g1 + Myz1) — (g2 + Maz))
=~z (@2 + Mazs) — 23 (@ + Miz1) < 0.

Finally, adual cones defined as follows [6].

A direct implication of the statements 1) and 2) in Theorem
V.14 is that, if smooth continuation is not possible fgy, it is
possible after one re-initialization. Indeed, by (31) the state after
the re-initialization is equal teg + B, if the impulsive part
of the (unique) initial solution is equal té. According to the
fact that the Laplace transform of an initial solution is a solu-
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tion to the corresponding RCP (which is automatically proper), Example VI.3: The circuit in Example V.1 is of the form (8)
it follows thatlim,_, ., u., (s) = u° is indeed the coefficient with
determining the impulsive part. Sin€&(x¢ + Bu®) € Q*, it 0o 1 11
follows from statement 2) that fromy + Bu® there exists a A= <_1 _1> ; B= < 0 _1> ;
smooth initial solution. To summarize this discussion, we for-
mulate a local existence result. o- <—1 0) . D <O 0)
Theorem V.15:Consider matricesA € R"*". B ¢ 1 1)’ 0 1/
R™** C ¢ R¥*™ andD € R*¥** such that Assumption I11.3 is o
satisfied and A, B, C, D) represents a passive system. For aﬁhe coneQ = SOL(0, D) is given by

initial statesro, there exists a unique Bohl distributi¢n, x, y) u S s —
defined on[0, ¢) for somes > 0 satisfying the following. [u1 > 0 anduz =0

1) there exists an initial solutiofw, %, y) such that

and thus
(uimp7 Ximp, yimp) = (ﬁimp7 iimp7 yimp) - Q* _ { <y1> " > 0} '
With Wy, = u°6 for someu® € R*. Y2
2) Xreg(04) = 2o + Bu’. As a consequence of Theorem VI.2, the set of regular states is
3) Forallt € (0, ¢) given by
t n _ n
Sroe(t) = 520s(04) + | [Asieg(r) + B ()] dr R = ton €RICraro > 07 = oo € RMfro.1 < 0
0 . . . . . .
Note that this is in agreement with the phase diagram in
Vreg(t) = CRreg(t) + Direg(t) g b g

Fig. 7. Moreover, in Example V.5 the initial solution for the
state(1, 1) turned out to contain a nontrivial impulsive part
and hence(1, 1) is not regular. This is in accordance with
(1, )T ¢ R. Similar statements hold for the initial state
—e, 1 T,
Another consequence of Theorem V.14 is the characteriz(a1:0r 3‘urther illustration of the structure of the con@é and

tion of so-calledregular stategsometimes also called consis-R some additional examples are in order.

tent states) as introduced in the following definition. Example VI.4: Consider the following situations. In each

Definition VI1.1: A state zo is called regular for case we assume that the quadruple B, C, D) is passive
LCS(4, B, C, D), if the corresponding initial solution is and satisfies Assumption 111.3.

smooth. The collection of regular states for a given quadruplea) If D = 0, thenQ = RI:L and Q" = R’i- Hence R —
(A, B, C, D) is denoted byR. {zo € R*|Cxzo > 0}.

We have the following equivalent characterizations of regular b) If D = (°°})
-\

0 € Ureg(t) Lyreg(t) 2 0.

VI. REGULAR STATES

5, then
states.

Theorem VI.2:Consider LC$A, B, C, D) given by (8) B U1 B
such that(4, B, C, D) is passive and Assumption II.3 is Q= U ur > 0anduz =0
satisfied. DefineQ := SOL(0, D) and letQ* be the dual cone

Consequently,

of Q. The following statements are equivalent.

1) zo is a regular state for (8). " { <y1 ) S }
= >0
2) Cao € Q. < w )

3) LCP(Czg, D) has a solution.
4) Czo € pos(I, —D), which means thaCz, can be
written as a positive combination of the columns of the

identity matrix / and the matrix—D. In other words, implies thatQ o R . and thusk = R". o
Cxo = v — Dus for two nonnegative vectors, > 0 In the next section, it will be shown that the characterization

andwv, > 0. of the regular states plays a key role in the proof of global exis-

Proof: Since strictly proper Laplace transforms corret-ence.Of solutions as the set of such initial states will be proven
to be invariant under the dynamics.

spond to smooth Bohl distributions, statement 2) in Theorem
gnl; ﬁcl\gjoag hSiavigfglgtfggE?(i %?Hﬁgijeiaggzzs 1) VII. SOLUTION CONCEPT AND GLOBAL WELL-POSEDNESS
and 2) are equivalent. Sinde > 0, [6, Cor. 3.8.10] completes In [24], [25] a (global) solution concept has been introduced
the proof. [0 thatis based on concatenation of initial solutions. In principle,
Hence, several tests are available for deciding the regularitys allows impulses at any mode transition time (necessary for
of an initial statezq. In [17] it is stated that a well-designede.g., unilaterally constrained mechanical systems). In the con-
circuit does not contain Dirac impulses. As a consequence, teet of linear passive electrical networks with diodes, such a gen-
characterization oR forms a verification of the synthesis of theeral notion of solution will not be needed. In fact, the solution
network. concept as formulated in Theorem V.15 will be extended such

and thusk = {l’o € Rn|01.$0 = 0}
c¢) If D is positive definite, it follows tha® = {0}, which



HEEMELSet al. ON THE DYNAMIC ANALYSIS OF PL NETWORKS 325

that mode changes are possible. This will be achieved by drop-Suppose the maximal interval on which a solutian x, y)

ping the Bohl requirement and allowing, functions as regular can be defined i0, 7*), 7* < T. According to Lemma
parts. The function spaa&s(0, T') consists of the distributions 1V.4 there is at most exponential growth & F/x) between

of the formu = wimp + Ureq, Wherew,, = u%6 with 4o € R mode changes. For shortness we drop the subsosiptin
andu,e, € L2(0, T'). the remainder of the proof. Sinceis continuous or(0, 7*)

Definition VII.1: Consider matricesd € R"™*™ B & and governed by at most a finite number of linear dynamics

Rk C € R¥*™ and D € R¥** such that Assumption (x = F'x), x is bounded [sayix(¢)|| < M forall t € [0, 7*)].

1.3 is satisfied and(A, B, C, D) represents a passiveOn an intervals, t) C [0, 7*) where(u, x, y) is governed by
system. Let a time horizo™ > 0 and initial statex, be the dynamics = F/x of model, the following estimate holds
given. (u,x,y) € L¥5(0, T) is called a solution to

T(t—s
LCS(4, B, C, D) on[0, 7], i I(8) = x()]| = || = x(s) - x(s)|
1) there exists an initial solutioft, %, y) such that < crlt — sl||x(s)|| € ex M|t —s|. (46)
(Wimp» Ximps Yimp) = (Timp, Zimps yimp) . Indeed, note that the matrix function — (' - It)/ is
bounded (by;) on [0, 7*). Hence, for(s, t) C [0, 7*) with x
2) Zreg(0+) = zo + Bu® with «® € R* given byu,,,,, = possibly evolving through several modes we get from (46) that
u08.
3) for almost allt € (0, T)) [=(t) — x(s)[| < M max crlt — s].

This implies that is Lipschitz continuous ofd, 7*) and thus
also uniformly continuous. It follows from a standard result in
mathematical analysis [49, ex. 4.13] thé&t:= lim, 1, x(¢) ex-
Yreg(t) = Creg (£) + Ditrey (f) ists. From the construction above it can be deriv;d;tfv;(at)e R
0 < Ureg(t)Lyreg(t) = 0. for all ¢ € [0, 7*) and hencex* € R, which implies that
smooth continuation is possible (local existence) frgimbe-
We have already proven local well-posedness (Theoretandr*. This contradicts the definition of*. Hence, existence
V.15). The question arises whether global well-posednessoisa solution or[0, 77 is guaranteed. O
also guaranteed.

Faeg (1) = Ereg(0) + / [A%peg (7) + Burag(7)] dr

B. Uniqueness

A. Global Existence It can easily be seen that the solutions obtained by the con-
We now come to the main existence result of this paper. struction in Theorem VII.2 must be Unique, because the initial
Theorem VII.2: Consider matricesd € R"*" B ¢ solutions are unique (see e.g., [25]). However, it might be pos-

R™* C e R**™ andD € R*** such that Assumption 111.3 Sible that a different construction yields other solutions. The fol-

is satisfied and(A, B, C, D) represents a passive systemlowing theorem states that this is not the case.

Then, for all initial stateszo and all7” > 0 the system Theorem VII.3:Consider matricesd € R"™™ B €

LCS(4, B, C, D) has a solution or{0, 7] in the sense of R™**, C' € R**™ andD € R*** such that Assumption I11.3

Definition VII.1. is satisfied and(A, B, C, D) represents a passive system.

Proof: The construction of a solution will be based oﬂ—hen for all initial stateseg and all final timesT” > 0 there
concatenation of initial solutions. Theorem V.15 implies that @ists at most one solutiofu, x, y) € L{+"**(0, T) to

solution(u, x, y) exists on[0, ;) [taker; as large as possible, LCS(4, B, C, D) in the sense of Definition VII.1.

i.e., equal ta as in (38)] from initial state:,. Note that(0+) € Proof: Suppose that two solutions(u, x, y) and

R and that(Wyeg, Xreq, Yreg) IS Part of a smooth initial solution (v’ ', y') existin the sense of Definition VII.1. According to

with initial statex,eq(0+). SiNCet — (Ureq, Xreg, Yreg)(t + p) Qprollary V.9 the.re. eX|s_ts exactly one |n|t.|al solution from the

forms a smooth initial solution for any € (0, 1), we have initial statezo. This implies that the impulsive parts of, x, y)

thatx,eg(p) € R for all p € (0, 71). SINCE(Ureg, Xreg, Yreg) is  ANA(W', ¥, y') must be the same and moreover, that the re-ini-

a Bohl function, the limitim,:, Xyes(t) = Xrex(71) exists. The tialization fromz, must be unique so that(0+) = x'(0+).

closedness oR [follows from statement 2) in Theorem V.14]Clearly,(u —v’, x —x', y — y) satisfies (6) from initial state 0

implies thatx(,) € R. Due to local existence of solutions andnd is smooth. The dissipation inequality yields

x(m) € R, there exists a smooth continuation (a smooth ini-

W/R fu(r) — (D] [y(r) ¥ ()] dr

tial solution) fromx(r) that defines a solution o}, 72) with

T9 > 71. This construction can be repeated as long as the li T ,
lim,+, x(t) exists, wherd0, 7) is the time-interval on which a > [x(t) =<' (1)) K[x(t) - x'(1)]
solution has been generated so far. An obstruction to the e>ﬂ§r— allt e

tence of a global solution (08, 7°]) might be that the intervals
of continuation[r;, 7;11) are getting smaller and smaller suc

thatlim; .., 7; = 7* < T andlimy .- x(¢) does not exist. To

complete the proof we will show the existence of the latter limit t
under any circumstances. A [u(r) =/ (D] T y(7) = ¥/ (7)ldr < 0.

(0, 00). From the fact that, v/, y andy’ are non-
negative almost everywhere and the complementaritfy.of )
nd(v’, y'), we obtain
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Hence, problems for these systems are essentially the same, all these
- ) research programs may benefit from a general theory as is cur-
[x(t) —='(t)] K[x(t) —<'(1)] <0 rently being developed for complementarity systems.

forall t € (0, o). SinceK > 0, we obtainx(¢) = x/(¢) for

all £. SinceB is of full column rank, it follows thatt = v’ and
y =y’ almost everywhere. O M. K. Camlibel would like to thank the Department of

Since the global solution is unique, the solution must be eqlzfonometrics and Operations Research of the Tilburg Univer-
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