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Algorithmic Issues in the Synthesis
of Dissipative Systems

MADHU N. BELUR' AND HARRY L. TRENTELMAN?

ABSTRACT

In this paper we discuss algorithmic issues that arise in the problem of synthesis of dissipative systems. We
deal with linear differential systems that can be controlled only through a restricted set of variables called
the control variables. The main feature of this paper is that we assume the system dynamics to be specified
in the most general form: a lutent variable representation, Starting from such a representation, we provide
concrete algorithms that finally fetch a controller to implement the desired behavior. Many other peripheral
algorithmic issues that crop up are also studied.

Keywords: Behaviors, dissipativity, strict dissipativity, quadratic differential forms, algo-
rithms, storage function, linear matrix inequalities.

1. INTRODUCTION AND NOTATION

The synthesis of dissipative system behaviors wedged in between two given behaviors
and satisfying certain maximality requirements has been studied in [1, 2]. In these
references, necessary and sufficient conditions were given for the existence of such
behaviors. In this paper we deal with algorithms for the verification of these existence
conditions. Further, for the case that these conditions are satisfied, we describe
constructive algorithms to compute such controlled behaviors. We also consider
issues concerning the synthesis of strictly dissipative behaviors and the related
algorithms,

The paper is structured as follows. In the remainder of this section we introduce the
necessary notation. In Section 2 we deal with linear differential systems, and review
the problem of synthesis of dissipative systems. We discuss only the basic definitions
there in order to be able to formulate the synthesis problem that has been treated in
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full detail in [1]. After a brief motivation for this problem we move over to a review of
quadratic differential forms in Section 3. Section 4 contains additional material
necessary for stating the main propositions from [1] and [3] on the dissipative
synthesis problem and the strictly dissipative synthesis problem. These propositions
follow in Section 5. In that section we also give a step-by-step procedure both for the
verification of the existence conditions, and for the construction of a required
controlled behavior (in case the conditions are satisfied). Some of these steps require
auxiliary algorithms themselves and these related algorithms have been collected in
Section 6. Section 7 deals with algorithms related to the concept of orthogonality.
Storage functions play a central role in the theory of dissipative systems and their
computation can be cast into solving a linear matrix inequality, and into a spectral
factorization problem. This has been studied in Sections 8 and 9, respectively.

The notation we use is standard. We use R to denote the field of real numbers and C
to denote the complex plane. R" and R™ * " are the obvious extensions to vectors and
matrices respectively. When specification of the row dimension is unnecessary, or if
the context clarifies it, we use R* "2, We typically use the superscript  (for example,
R") when a generic element w has w components. R[¢] denotes the ring of
polynomials in the indeterminate ¢ with coefficients in [, while R[( 7| is the
corresponding ring in two (commutative) indeterminates. We use R**"[£] and
R**¥[¢, 7] to denote the sets of matrices with entries from the above rings. The space
of infinitely often differentiable functions with domain R and co-domain R" is
denoted by €*(R,R"), and its subspace of compactly supported elements by
D(R, R"). When the domain and co-domain are clear from the context we shall use D
instead of D(R, R"). We use rowdim(M) to indicate the row dimension of a matrix M
and just dim(M) if M is a vector or a square matrix. We frequently need to stack
matrices with the same column dimension into a column. When we do this within text,
for improved readability we use the operator ‘col’, i.e. col(M,, M:) := [M] MZT]T.

2. BEHAVIORS

The behavior B of a linear differential system is a subspace B C €™ (R, R*) such
that, for some polynomial matrix R € R?*¥[¢], we have B = {w € €¥(R, R)")|
R(4)w = 0}. If this holds, then R is said to induce a kernel representation of B,
We use €" to denote the set of such behaviors. We shall often restrict ourselves to a
subset of £, namely the controllable behaviors. Roughly speaking, a controllable
behavior is a behavior in which for any two of its elements there exists a third element
which coincides with the first one on the past and the second one on the future (for
details, see [4]). 7, denotes this subset of controllable behaviors. Given a behavior

B € £ if w € B then it is possible to choose some of the components of w to be any
function in €(R,R). The maximal number of such components (called free
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components) is called the inpur cardinality of B, and is denoted by m(%B). Given a
nonsingular matrix ¥ € R*"" such that ¥ = %', we denote its signature by
sign(X) = (04 (), 0_(X)), where, o, (£) and o (%) are the number of positive and
negative eigenvalues of ¥, respectively. ¥ defines a quadratic form w”w on R”. We
call a behavior B € L7 dissipative with respect to the quadratic form w’ Sw (or, £-
dissipative) if [, w'Swdr > 0 for all w € B 1 D. Half-line dissipativity on R plays
an important role in stability issues: B € €7 is called Y-dissipative on R if
j{jx w!Ewdr > 0 for all w € BN D. Strict dissipativity is defined as follows, B is
strictly E-dissipative if there exists an € > 0 such that [, w’ Swdr > ¢ Jo w!wdt for
all w € B 1 D. Strict dissipativity on R is defined analogously. Additional material
on dissipativity with respect to general quadratic differential forms follows in the next
section, Section 3.

The main purpose of this paper is to describe algorithms concerning the following
two problems. Let ¥ = £7 € " ** be nonsingular and let N, P & £ be such that
N C P. The first problem whose algorithmic issues we want to study is the problem
of dissipative system synthesis: find K € " such that:

cont
s NcKcp,
o K is E-dissipative on [{_,
o m(K) =, (X).

The second problem for which we want to develop algorithms is the problem of
strictly dissipative system synthesis: find such a K & L% that is strictly S-dissipative
on R_, instead of just ¥-dissipative on [_.

We call a K having these desired properties a controlled behavior. P is called the
plant behavior and is specified by a plant to be controlled. We wish to restrict this
plant behavior to a desired sub-behavior K~ by means of control. Imposing N C K is
equivalent to ensuring that A is implementable through a set of variables called the
control variables, which are different from the w-variables that we are actually
interested in controlling. The controlled behavior is a result of interconnection of the
plant with the controller as depicted in Figure 1. This has been studied in [1] and we
will return to this issue later in this section.

w

Fig. |. Plant and controller interconnection.
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K being Y-dissipative is the basic control design specification, and depending on
the particular choice of ¥, this has important consequences. For example, if

w = (d.f) and if ¥ is chosen as £ = [i) (}
—if

H..-disturbance attenuation design problem. Half-line dissipativity takes care of the
required stability of f when the exogenous disturbances d are equal to zero. This has
been explained in detail in [2]. It has also been shown there that a system being
passive is equivalent to the behavior being dissipative with respect to X of the

} then we exactly obtain the familiar

. I s T
form ] Hence designing a controller that renders a system passive 1s

0
i
equivalent to the above synthesis problem with this particular ¥, The input-cardinality
condition on A is a fiveness requirement. In the H. problem it assures that the
exogenous disturbances remain free. Also in the synthesis of passive systems it has an
important interpretation, see [2].

We now introduce some additional notions that are needed to state the main
propositions from [1] and [3] on the existence of K satisfying the conditions of the
dissipative system synthesis problem, and the strictly dissipative system synthesis
problem formulated above. After stating these propositions, we will deal with
algorithmic issues to compute a required A.

We have defined a behavior as the kernel of a polynomial differential operator.
Often, we encounter behaviors that are not represented as a kernel. Let
R.M € R***[¢], and

B = {n‘ € C™ (R, RY)

. - I d d’y -
f'e 1y g : — 3= — s,
6 € € (R, R") such that R(dr w=M &

By the elimination theorem (see [4], Chapter 6) the set defined above is indeed a
behavior in the sense we have defined. A representation of B like the one above is
called a latent variable representation (with ¢ as the latent variable). The full behavior
By € €971 is the set of all (w,f) that satisfy the equation R(%)w=M($)L.
Further, controllable behaviors admit latent variable representations of a special kind:
namely latent variable representations with R(£) =1, ie. B = {w e €*(R,R")|
¢ e € (R.R') such that w = M( 4 )f}. Such representations are called image
representations. In a latent variable representation the latent variable £ is said to be
observable from the manifest variable w if (w, £), (w, f3) € By implies £ = 5. In
this case we refer to the representation as an observable latent variable representation
of B. When a behavior B is not controllable, we often deal with its controllable part:
Bont. Beon is the largest controllable behavior contained in B.

A latent variable representation of B € ¥¥ is called a state representation if the
latent variable (denoted here by x) has the property of state. that is. il (wy.xq),
(wa,X2) € By are such that x;(0) = x2(0) then (wy.x;) A (w2, x3), their concatena-
tion at 7 = 0, satisfies the equations of By in a weak sense (i.e., in a distributional
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sense). We call such an x a state for 8. A state map for B is a differential operator
X(4) (induced by X € R**“[¢]) such that X(4)w is a state for B. A state map
X € R**"[¢] is minimal if every other state map has at least as many rows as those of
X, and this minimal number of rows is called the McMillan degree of B, denoted by
n(B). A minimal state map X(§ ) is also rrim, i.e. for all a € R"™ | there exists a
w € B such that (X (5 )w)(0) = a. This is equivalent to the behavior X (£ )8 being
trim: a behavior B € ¥ is called trim if for all @ € R* there exists a w € B such that
w(0) = a.

We now return to the problem we are studying. The plant in Figure 1 consists of
variables w (the to-be-controlled variables) and ¢ (the control variables). Usually, we
have the full plant behavior Py € €' given by a latent variable representation:

d d dy,
Ru(dr)lt‘f'l{(d—r)( *Rl(df)é_o (I)

Here, £ is a latent variable that comes in as a result of the modeling process of the
plant. P is the manifest plant behavior and is the set of trajectories the w variable can
assume. P is obtained from Py by eliminating ¢. For the part concerning algorithms,
we will try as much as possible to assume that Py is represented in this most general
form [Equation (1)), and to describe algorithms starting from this representation.

A controller brings aboul a restriction in the plant behavior by introducing
additional laws. This restriction is brought about through only the control variables ¢,
that is, we are trying to shape the w trajectories through the ¢ variables. A given
behavior K~ € £ is called implemeniable if it can be obtained from Py by putting
restrictions on ¢, i.e. if there exists C € ¥ such that:

K = {weE°(R,RY)

3 ¢ such that (w,¢) € Ppy and ¢ € C}. (2)

To what extent this is possible is expressed by the condition N C K C P. Here \ is
called the hidden behavior and is defined as:

N = {w e €% (R, R")[3 ¢ such that (w,0,¢) satisfies Equation (1)}.

In other words, w € A" < (w,0) € Pyy. It has been proven in [1] that K € €¥ is
implementable if and only if A" C K C P. This is the reason why we have the
condition A" € K’ C P in the problem formulation.

3. QUADRATIC DIFFERENTIAL FORMS

This section contains a brief review of bilinear differential forms and gquadratic
differential forms. Let & € B" ** [(.y]. Such a polynomial matrix can be expressed
as a finite sum ®({, ) = Ly 0P’ with &y € BR¥ ¥ its coefficient matrices.
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Let B; € £ and B, E 53‘“ Then, ¢ ll]dIJCﬂb the  map Ly : B x B, — CF(R,R)
defined by La(wi,w2) =20 (le) @kt( wy). We call this the bilinear
differential form (BDF ) on B, x B, induced by ® and denote it by La|g, . 5,- When
w; = w, = wand B € €%, ® also induces the map Qg : B — €°(R, R) defined by
Q¢(w) = Lg(w,w). We call this map the quadratic differential form (QDF) on EB
induced by ® and denote it by Qg|y. Define the * operator by ®*((,n) := ®(n, C)
When considering QDF’s it is sufficient to consider ®’s that are symmetric, that is,
those that satisfy ® = ®*. For a symmetric ®, we also speak of the degree of @, which
is the highest power of ¢ (and 7) that appears in ® with a nonzero coefficient.
Henceforth, unless otherwise specified, the two variable polynomial matrices that will
appear in this paper shall be assumed to be symmetric. For QDF’s we have the
important notion of non-negativity. Let 8 € €" and ® € R* " "[(, 7)]. We call the QDF
Qg non-negative on B (and denote it by Qs |y = 0)if Qp(w)(t) > Oforallt € R and
w € B. The quadratic form R" induced by the matrix § = ST € R** ¥ isaspecial case
of 2 QDF. We shall also use [w; § to denote w” Sw, and when § = [ the subscript is often
dropped.

If B e £ and ® € R"*¥[(, 7] then ® (assumed symmetric) can be expressed as
B(¢, ) = FLOF.(n) ~ FL(QF-(n). with F = col(F, F) € R**¥[g, such tht
F(4)% is trim. Such a factorization of @ is called a canonical factorization on B. It

yields the signature and the rank of Qglg by defining sign(Qgp|g) := (rowdim(F_),
rowdim(#.)) and rank (Qulg) :=rowdim(F). Qaly can then be expressed as

Qs(w) = |Fy (§)wl" l (§)wl's forwe B,

4. DISSIPATIVITY

In Section 2 we have reviewed dissipativity with respect to QDF’s of the form |wi§
with ¥ = £7 constant. Dissipativity with respect to arbitrary QDF’s is defined as
follows. Let ® € R***[¢,n] and B € L% . B is said to be dissipative with respect to
Oy (or briefly, ®-dissipative) if [, Qp(w)dt = Oforall w € B 1 D. B is said to be -
dissipative on R_ if f_) . Qs(w)dt >0 for all we BN D. Dissipativity on R, is
defined analogously.

For a behavior B € £ and ® € R***[(, ], we say that ¥ = ¥* € R"""[(, 7]
induces a storage function Qg for B with respect to Qg if the dissipation inequality
4 Qu(w) < Qq(w) is satisfied for all w € B. It has been shown in [3] that existence of
a storage function is equivalent to ®-dissipativeness of B. Moreover, B is -
dissipative on R_ if and only if there exists a storage function Qy that, in addition,
satisfies Q| > 0. Analogously, B is ®-dissipative on R, if and only if there exists a
nonpositive storage function Qy. In [6] it was established that every storage function
is a state function, i.e. if X € R"” "[¢] induces a state map for B, then associated with

any storage function Qy there exists a K € R" ™" such that Qy(w) = | X( df)w| « for
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all w € B. Storage functions are not unique, However, there exist a maximal one Qy+
and a minimal one Q- between which every storage function Qy lies, that is, for all
w € B: Qu-(w) < Qu(w) < Qu-(w).

Finally, we review the notion of X -orthogonality of two behaviors. 8,8, € €7
are called X-orthogonal if [ w! Swadt = 0 for all (wy,wq) € (B; x Bs) N D. For
such B and B, there exists a ¥ € B *"[(, 7] such that %L\F(M'],W}) = w] Zw, for
all (wy,w2) € By x By. We call this BDF Ly the L(‘B;,‘BZ):E] adapted bilinear
differential form. The -orthogonal complement B~ of a behavior B € €7 is
defined as follows:

B i= {w £ C™(R,RY)

/ w! Sudt = 0 for all v € BN ﬁ}. (3)
Ju

For ¥ = I we obtain the ordinary orthogonal complement of ‘B, and this behavior is
denoted by B

5. PROBLEM SOLUTION AND CONSTRUCTION OF K

Equipped with what has been described up to now, we state the following proposition
from [1] which gives necessary and sufficient conditions for the existence of a
behavior K satisfying the properties required in the dissipative system synthesis
problem stated in section 2. Given N and P € £ with A" C P, let Ly . bethe
[(N,P'); 5] adapted bilinear differential form. o

Proposition 1 A behavior K. & L] with the properties required in the dissipative

system synthesis problem exists if and only if the following conditions are satisfied:
. N is Y-dissipative,

2. P s (—X)-dissipative,

3. the coupling QDF

Qepr(wisw2) = Oy (w1) — Qu- | (wa) + 2Ly (wi,wa) (4)

(NT=E)
satisfies Qepi| a7« pis = 0.

Here, W, W, € R"""[(,n] induce the largest and the smallest storage functions

for N and P¥ as S-dissipative and (—¥)-dissipative systems, respectively.
Necessary and sufficient conditions for the strictly dissipative system synthesis

problem (stated in Section 2) are given in the following proposition from [3].

Proposition 2 A behavior K € L7 with the properties required in the strictly

cont
dissipative system synthesis problem exists if and only if the following conditions
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are satisfied:

1. N is strictly S-dissipative,

2. P s strictly (—X)-dissipative,

3. the coupling QDF Q. defined in equation (4) satisfies the following two
properties:

(i) Qepilp s pie = 0 and
(“) rﬂnk(.Qcpll,\:' X p~!;J = ‘r‘.(N') T ﬂ(P}

It has been explained in [1] and [3] that the conditions on the coupling QDF in the
above propositions is akin to the coupling of the solutions of the algebraic Riccati
equations that first appeared in |7].

We now give a step-by-step procedure to compute 2. We split the algorithm into
two parts. First we deal with verification of the conditions lor the existence of A.. Next
we look at computation of a suitable X and of a controller C € £° that implements X
with respect to Pgy.

5.1. Verification of the Conditions

Step 1. Given A and X, verify if A is (strictly) Y-dissipative. An algorithm for this
will be described in Section 8. When A is given in image representation w = M ( f,'r )€,
then E-dissipativity of A is equivalent to non-negativity the M7 (—iw)XM{iw) for all
w € R. For N expressed in more general representations, we refer to algorithm R in
Section 8. If dissipativity holds. we compute the maximal storage function Q.l,
Algorithms for this also will be described in Section 8. For the strict dlsslpauvny
synthesis problem, we use a modification of algorithm 8 (in Section 8) as explained in
the remark following it, to compute the maximal ¢, such that A" is dissipative with
respect to £ — e/, This e; will be used in Step 8 of the present procedure.

Step 2. Given P and ¥, compute a representation of P, If P is represented by an
observable image represenlation n':M(‘j )¢ then P-* is given in kernel rep-
resentation M” (— £ )¥w = 0. For more general representations of P, we refer to the
remark after lemma 6 in Section 7, specifically Equation (10), to compute a rep-
resentation of P+,

Step 3. Given P and X, verify if P** is (strictly) (—X)-dissipative. If this
dxwpatmty fails, the algorithm ends, since (—)-dissipativity of P~ is a necessary
condition. If dissipativity holds, compute the minimal storage function Qy- . We also
compute the maximal ¢, such that P'* is dissipative with respect to — ¥ 21, This €2
will also be used in Step 8 of the present procedure.

Step 4. Given X, N, and P-*, compute the [(N,P**); ¥-adapted bilinear differ-
ential form Ly S A and P** are given by observable image representations
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wy =M ()6 and wy = Ma(§ ) 2. respectively, then the associated two-variable
polynomial matrix should be lukcn as W piny(Gom) = M Note that ¥ - prey
need not be symmetric. For algorithms about carrying out ll'ns Lomputatlon we refer to
Sections 6.5 and 7.

Step 5. Verify the non-negativity of the coupling QDF Q. defined in Equation (4)
for w; € N and wa € P*¥, To verify the non-negativity of this QDF we factor it
canonically and then check if o (Quply . pi) = 0. This can be done using state
maps as explained in Step 6 below. Non-negativity of the QDF is necessary for the
existence of a K.

5.2. Computation of a Controlled Behavior A

Step 6. Compute matched pairs of minimal state maps (X, Zy) and (Xp. Zp) for
(N,N") and (P, P), respectively. A definition of matched pairs and an algorithm
for m.omputm,.n: them will be given in Subaecuon 7.1 1f Z\ ( d,) is a state map for N
then Zy ( )X is a state map for N *, Similarly, Zp( )Y is a state map for P*.

Step 7. As described in Section 4 the fact that every storage function is a state func-
tion allows us to use a state map of a behavior to associate a constant matrix to a sto-
rage function of the behavior. An adapted bilinear differential form also turns out to be
a bilinear function of the states of the two E-orthogonal behaviors (see [1], corollary
11). We use the state maps obtain in Step 6 to compute the matrices K -, K, poe and L
corresponding to Qm Q.;. and Ly . respectively. Procedures to compute the
matrices K. and K. will be leLusxtd in Subsection 6.4 and computation of L
will be dl\CUHSLd in Sulmn 7. We form the matrix K = K7 defined by:

[{‘, L
k= {LT _K;_‘-\.:]‘

Using K we compute (., which is induced hy Wepr € BT 2¥[C, ) defined by:

o XN (O] | Xn(n)
Vet ) = [ZP(QJ : { zptrn]'
Non-negativity of the QDF Q., on N x P** is then equivalent to K > 0. The
conditions (i) and (i) on this QDF appearing in proposition 2 on the strict
dissipativity synthesis problem, are equivalent to K > (0. We continue this algorithm
only for the case K > 0, although for the existence of a nonstrictly dissipative K, the
condition K = 0 is sufficient.

Step 8. For the strict dissipativity synthesis problem we need some additional work.
We use the €| and e> computed in Step | and 3, respectively. Take 0 < ¢ < min(e, ¢2)
and recompute W . and ¥, that induce storage functions for N and P* as
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¥ — el and —¥ — el-dissipative systems, respectively. The matrix K, is recomputed
this way and e is chosen sufficiently small so that K, > 0 too. The fact that there exists
such an € > 0 has been studied in [3]. The precise choice of ¢ depends on the
eigenvalues of K. We proceed further with this . For the nonstrict dissipativity
synthesis problem one can continue the rest of this section assuming ¢ = 0.
d zN(i)EW3] *
f [ X‘p(%)'w;

Step 9. Factor
d d
2 A -
Vi e =l = Yy == Yii
W3- dt P (chr)"L3 (dt)vL3

for ws € PNN"E, with F($)(P AN™) trim, where F = col(F*, F~). Trimness
and canonical factorization will be discussed in Subsections 6.2 and 6.3.

Step 10. Define 7' as the behavior {ws € PNN"*|F~ (4 )ws = 0}. We are actually
interested in F := F ., the controllable part of F'. An algorithm to compute a
representation for the controllable part of a behavior will be discussed in Subsection 6.1.
Step 11. The behavior K defined by K := N + F satisfies all the conditions in the
problem formulation. The proof of this is the subject of [1] for the nonstrictly

dissipative case and of [3] for the strictly dissipative case.

2 2

5.3. Computation of a Controller

Step 12. It remains to find a controller C € £° that implements K € £" with respect
to Psy. Given K and Py, we define a controller ¢° € €° by:

= {c € €F(R, R°)|3w such that (w,c) € Ppy and w € K}. (5)

It has been proved in [8] that this C” implements K if and only if N” C K C P. The
controller C has been called the canonical controller.

Step 13. Let Pgy be given in latent variable representation R.,( Jw+ R, (dr e+
Rf( = )E 0 with latent variable . Then the hidden behavior A is given by the latent
variable representation R, ( )w-v%-Rp( )l’ = (). Equation (9) in subsection 7.2 is
useful to compute a latent variable repre‘;entanon of N’ such that N'** = = Ngon- W

define F":=Pnker(F (%)) NN, and 7" has the following latent vanable
representation (latent variables (¢, £, #;) and manifest variable wy ):

R R MH 0,
s Wy = ; b . TO d & . (6)
0 0 Z fw(;ﬂ?) ls

0 0 0 Ri(-%)

By statement 1 of lemma 4 in Subsection 6.1 below, we infer that 7, = F. Wc
define K := N + F" and using statement 2 of the same lemma, we obtain K, =
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We get the following latent variable representation for X' with manifest variable wo:
Ru(5)w2 =Ru(§ )1 - Ry(4)63 where wy € F.

Step 14. We use K’ to compute a latent variable representation for the canonical
controller ' € ¥° similar to Equation (5), but with K replaced by X’. Note that
because the equations of Pgy were included in Equation (6). we also have
N C K" C P. Hence € obtained here is a canonical controller that implements K.
Equations (5) and (6) result in the following latent variable representation of C":

= _“12_
T—R(4)]  [Re(E) O 0 Ri(d) 0o 0 0 .
0 Ru(§) —Ru(@) R(E) 0 0 0 0 N
o |._| © R, (3) 0 R(%) Re(d) 0 h
0 0 F(5) 0 0 0 0
.
0 0 —1 0 0 0 0 ERT(-4) F:
Lo 1 | o 0 o 0 o 0 RI(-Y | .

In this latent variable representation of C' the manifest vari'lhlc is ¢, and the latent
variables are £y, £, (3. Lz, ¢y, wy and w>. We now take C := mm, the controllable part
of €', and it tums out that C implements K. This has been shown in the remark
following lemma 5 in Subsection 6.1. Computation of the controllable part of a
behavior is done using the algorithm discussed in the same subsection.

This completes the algorithm to compute a controller that renders a plant
dissipative or strictly dissipative.

6. RELATED ALGORITHMS

In the previous section we have given a broad outline of the procedure to compute a
controlled behavior. The necessary auxiliary algorithmic issues are discussed in the
present and the following sections.

6.1. Controllable Part of a Behavior

We often encounter the situation when a behavior is not controllable but we are
interested in its controllable part. For B € £, we already defined its controllable part
Bom to be the largest controllable behavior contained in B. It has the same input
cardinality as B. Let B € £" have a minimal kemel repre';t.m.allon R(L)w =0.(A
kernel representation of B induced by R € R " “[¢] is said to be mmtmal i every
other kernel representation of B has at least p rows. The representation is minimal if
and only if rank(R)=p.) For such a minimal kernel representation of B,
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m(B) = w — rank(N) = w — p. We compute an image representation for Boy as
follows. We write R in its Smith form using unimodular matrices U, V € R** ‘kf] such
that URV =[S 0] with S nonsingular and diagonal. We define M € R**™®)[¢] as

the last m(*B) columns of V, that is, M := V[?] where the identity matrix / has

dimension m(®B). This image representation is observable. More generally, let
B € € and let (Bru ) o have an image representation (with latent variable k):

W M, %)
;1= i
o] )
If Be " is obtained from By by eliminating ¢, then B, has an image
representation w = M.,.((-jl-r )k. But this representation need not be observable.

We now state some results concerning the controllable part of a behavior. These
results were used in Section 5 in the computation of controllers.

Lemma 3 Ler .B' B € €“ be such that B' € B* and m(B") = m(B?). Then we
have B! = B’

cont cont®

The above lemma is just another way of stating the following. Let Ry, R, € R **[¢]
and F € R?*7[£]. Suppose FR; = R, and suppose F is nonsingular. Though they
need not have full rank, R; and R, have the same rank because F is nonsingular.
Hence the kernels of Ry (<) and R;($) have the same input cardinality. The above
lemma asserts that their controllable parts are equal. The following lemma relates to
how intersection and addition of behaviors affects the controllable parts.

Lemmad4 Let B', B> ¢ 9. Then

(‘Bl %z)mm o (‘B:'(m! n BCZ‘GHIJLUI'II’
2 (‘Bl e = sBz)mm = ‘Btl.nm + B:"m

We use this lemma to prove the following result concerning implementability. We
need the following result to justify why we could proceed with X’ instead of X while
constructing a controller in Subsection 5.3,

Lemma 5 Let Py € €°7°. Ler €', C* € ©° implement K", K:e " respectively.
Then C. . =C: . implies that K., = K2 . In particular, if C € 8¢ implements

cont conl cont cont*

K € " and K is controllable, then Coon also implements K.

Using this lemma we shall explain why in Subsection 5.3 it is possible to find a
canonical controller ¢’ using K’ and then to take C := C,,,, instead of using K to
obtain the canonical controller C°. Comparing Equations (5) (in Subsection 5.3) and
(2) (in Section 2), we note that X” and C have switched roles. From Equation S, we can
say K implements its canonical controller il through Pygy. Similarly, ' implements

its canonical controller C'. Using lemma 5 with the roles of C and K reversed, we
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/

obtain that K[, =K =C,, =C, Further, because N CKCP and
N C K'C P, " implements K, and ¢’ implements A”'. Hence using lemma 5 again,
we infer that both " and €7, implement K. Thus it is sufficient to start with K,

as a controller that implements K through Py The

obtain ' and then take € := C,,
important reason that this has worked is that the desired K is controllable,

6.2. Trimness

We discuss here some algorithmic issues related to the notion of trimness that has
been defined in Section 2. It can be shown that a behavior B & " is trim if and only
if:

(e R* and n'w = 0 for all w e B) = 1 =0. (7)

Let Ny denote the zeroth order annihilators (i.e.. static relations) of B: A =
{ng € R~ “Ing®B = 0}. Ny can be computed as follows. Let ‘B be given by a minimal
kernel representation R($ )w = 0. We assume R is row reduced. (If R is not row
reduced then we premultiply R by a suitable unimodular matrix to obtain row
reducedness.) We refer to [9, Section 6.3] for a definition of row reducedness. One can
show that B is trim if and only if there are no zeroth order rows in R. If there are any
zeroth order rows then these rows generate Ay, Equation (7) is equivalent to A7y = 0.
If B & ¢ is not trim, there exist a matrix § € B" "7 (with v < w) and a trim behavior
B’ € ¢¥ such that B = SB'. Such an § and B’ can be computed as follows. Construct
Ny € R*™" from the zeroth order rows of R. Then we take for § a matrix whose
columns form a basis for the kernel of Ny. S has full column rank (say v) and we
compute a left inverse S’ of § and define B € €¥ by B' = SIB.If B € £¥_ is given
by an observable image representation, then checking the trimness of B can be
reformulated into checking the rank of a certain constant matrix as explained below.

6.3. Canonical Factorization of QDF’s

In Section 3 canonical factorization of QDF's was defined. Here we discuss how we
obtain such a factorization. We first deal with one variable polynomial matrices. For an
F € R *9[¢], we define the constant matrix mat(F), called the coefficient matrix of F.
as follows. We write out the finite sum F(£) =3, Fyé" and define mat(F) =
[Fo Fy--+Fi-+-]. For this constant matrix mat(F) we have F(£)= mat(F)
col(I,1¢, ..., 16", ...) where the I's are identity matrices of dimension q. Trimness
of the behavior B with image representation w = F (l‘J',)f is equivalent to linear
independence over R of the rows of F. This is further equivalent to full row rank of
mat(F).

We now come to two variable polynomial matrices. Given a @ € R™ * " [ 5], we
use a similar procedure to define its coefficient marrix mat(®). We first write out the

< W
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finite sum ®((,7) = 3, g @kpg‘r]‘ and then form the infinite block matrix mat(®)
with @y at the (k + 1,2+ 1)™ position, that is,

Do P -0 Dy
Dy Py -0 By
mat(®)=| * i . i i (8)

Dy Py o D

Note that only a finite number of entries of mat(®) are nonzero. ¢ € R**"¥[(, 7] is
symmetric if and only if mat(®) is. In this case we factor mat(®) into I I"; —
I'T_ with col(I'y,I'_) surjective. We have sign(mat(®)) = (rowdim(I"_),
rowdim(T'y)) = sign(Q;.) More generally, when we have a behavior 8 € £7 with
an observable image representation w = M(4)¢, we define @' € Rl"l[g‘, nl b
D'(¢,n) = MT(C)®(¢,n)M(n). Then Q¢(W) Q.y(f) whenever w-M( L. We
can factorize &' canomcal]y on € (R, R') as, say, Qg (¢) = |F" (& )£’| — [F_(4 8 |
By defining F, and F_ by F.=F, M" and F. = F' M where M is a polynorma]
left inverse of M, Qa(w) = |F.(§ w[ _ |F wP is then a canonical factoriza-
tion of Qg on B, This hdS been dlscussed in [5]

6.4. Storage and State

Let & € R"*"[(,n] and B & .Q:(,m be ®-dissipative. The existence of a storage
function (¢ has been discussed in Section 4. We now relate Qy to the state of the
behavior. It has been established in [6] that every storage function Qy is a function of
the state of B. In particular, if X € R"* “[€] induces a minimal state map for B, ¥ can
be expressed as ¥((,7) = X7 (¢)KX(n) for a suitable symmetric matrix K € R"" ",
Such a K can be computed as follows. We first obtain a factorization of ¥, such that it
is canonical on B, into ¥((, n) = F7({)K'F(n) with dim(K’) = rank(¥|y) = r (say).

Let w = M( 4 )¢ be an observable image representation of 8. We compute mat(FM)
and mat(XM), the coefficient matrices associated with FM and XM. Since X ()9 is
trim, mat(XM) has full row rank. Let § € R** " be a right inverse of mat(XM). The K
we are looking for can be defined as K := S”mat(FM)" K’ mat(FM)S.

6.5. Storage Function for Lossless Behaviors

Losslessness is a special case of dissipativity. Let ® € R"*"[(,5]. A behavior
B e g, is called ®-lossless if [ Qz(w) = 0 for all w € B D. We explore the
construction of the storage function when the behavior is lossless. The storage

function in this case is essentially unique, i.e. any two storage functions coincide on
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the given behavior. The algorithm to compute the storage function involves
straightforward manipulations of one variable polynomial matrices.

Assume initially B = € (R, R¥). Given ® € R**"[(, 5], we define d® € R" " ¥[£]
by d®(&) := ®(—£&, £). Tt has been shown in [5] that ®-losslessness of B is equivalent
to 9% = 0, and to the existence of a W € R"**[(, 7] such that ¢ 5 Qu(w) = Qu(w) for
all u E B. We now discuss the computatiopn of quuh a \IJ Let the operator
. A [C n] — R* *¥[(, n] be defined as P((,n) = (C+ n)P(¢n). It is easily
seen L}ml ; Qulw) = Q‘p w). Also, it is clear that for a tb € R¥¥[¢, ], there exists a
e R "[g. 1] such that U = difand only if 9 = (). The following algorithm gives
such a . Write ®(C, 1) = do(n) + (o1 (1) + -~ + (" (). Then (¢, ) = toln)+
Ci(n) + -+ + " ", (n) is computed by the following recursion:

o (,i?[;(E) . . f:’k(&} o U’i I{E)

g W= €

fork=1. .. .,n—1l.

Another method to compute W using the associated coefficient matrix mat($) of &
and solving a linear matrix equation will be described in Section 8.

We now consider the case of Y-losslessness of B € L’mm with B represented by
an observable image representation w=M($)f. and ¥ € R**". We define
P e R ¢ n] by ®'(¢n) == M"(Q)EM(1) and find a W' € R *[(, 7] such that
¥’ = @', Next we obtain ¥ from ¥’ by using a polynomial left inverse M' € R *"[¢]
of M as follows: W(C,n) == M (Q)" W' (¢, n)MT ().

7. ORTHOGONALITY

In this section we discuss computational issues related to orthogonality of two
behaviors. We call B, 8B, € ¥ orthogonal (and denote it by B, 1L By)

],H w'{u@d.f =0forallw; € BN Dandwy € Bo N DI B, B, € L are given by
observable image representations w; = Ml(d,)h and wy = M_( ‘)Pg respectively.
then B, L B; if and only if M']r —~&)M,(E) = 0. For such B; and B, there exists an
adapted bilinear form Ly, that is, there exists W e R"“Y[(,n such that
3 Lo(wiowz) = wiw for (wy,wy) € By x By, Ly is again a function of the states
of By and By If Xy € B™ *"[¢] and X; € R"™ " *[£] induce minimal state maps for B,
and ‘B, with McMillan degrees n, and n., respectively. then there exists L € R™ * ™
such that W((, n) = X[ (C)LX; (7). Computation of the L here can be reduced to the
case of losslessness by noting that orthogonality of B, and B, is the same as
0 1

losslessness of By x » with respect 10 ® =1 L 0

]. Here I and 0 are the identity

matrix and the zero matrix of dimension w.
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7.1. Orthogonal Complement and Matched State Maps

We now discuss more about the orthogonal complement of a behavior. Let 8 € £7 .
Let B be its orthogonal complement as defined in Equation (3) with ¥ = 1. If
Be ., is represented by minimal kernel and obscrvable image representations
R(4)w=0and w=M(L)¢ respectively, then B" is represented by the minimal
kernel representation M (—4)w=0 and the observable image representation
w=R"( — £)¢,. Of course, B and B are orthogonal behaviors, and hence we can
construct the adapted bilinear differential form Ly for B and B, We can also express
this Ly as a function of the states of B and B, It is easy to verify that B and B have
the same McMillan degree. Further, in this case the constant matrix L happens to be
invertible and we can modify one of the two minimal state maps to obtain a matched
pair of state maps (X,Z) is said to be a matched pair of minimal state maps for
(B,BY)if S (x(4 )w|)TZ(i,)Ww = wlw, for all (wy,w2) € B x B, The fact that
Ly is a slate funcnon can also be used to compute a matched pair of minimal state
maps forfBand B as follows. Dehne (¢ n) by[ (g ) = RT(—¢)M(n) and compute

T(¢n) ="M Then  Srp(y,6) = (RT( - 4)6)" (M(£)6) for all

C+n

by € €°(R,R*™®)) and ¢, € E"“‘([R, R"®). Factor T' as T'(,n) = Z7({)X(n) with
the rows of X and Z linearly independent over R. Such a factorization is done using the
coefficient matrix of I'((, ). We first factor mat(T") into Z”X with Z and X surjective,
and then define X € R"®*"®)[¢] and Z € R **®)[¢] by mat(X) =X and
mat(Z) = Z. We have then obtained a matched pair of minimal state maps (X, Z) that
act on the latent variables ¢, and ¢, of B and 8", respectively. In terms of the original
variables, this yields matched minimal state maps X($)M'($)w, and
Z(S)(RNT( — & )ws for (B,B"), where M' is a polynomial left inverse of M, and
R' is a polynomial right inverse of R. More on this can be found in [5] (Section 10).
Given X € R**" nonsingular and symmetric, the S-orthogonal complement B"* of
B can be computed from B by noting that B** = (LB)" = '8+,

7.2. Latent Variable Representations for A" and P**

In this subsection we address the following problem: given the full plant behavior
Prun € £9'°, represented by a latent variable representation R, (£ )w -+ R.(4)+
R;( d,)é’ =0 (with latent variable ¢), and a symmetric nonsingular we:ghtmg
matrix ¥, compute a representation for N (where AV is the hidden behavior associ-
ated with Pjy;) and P*¥ (where P is the manifest plant behavior associated with Pg).
In order to solve this problem, we first formulate and prove a general result on the
orthogonal complements of behaviors in relation with elimination of variables.

Let B e "™ be a system behavior with manifest variable (w),ws). Let
Py, (B) € € be defined as the behavior obtained from B by eliminating w»:

Pu (B) := {w; | Iwa such that (wy,w;) € B}.
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Let Ny, (B) € ¥ be the behavior ‘hidden from wa': Ny, (B) := {w, | (w,0) € B},
Lemma 6 Ler B € €97 Then the following statements hold:

L. -Pw| (?Bcnnl) = pn'l (%)u(ml‘
3- 'P\l'l (?Bcnnl) ! = 'N’Wl (‘B‘;\nt qunl‘

We remark here that when we have an image representation w = M($)¢ of a

behavior B € €7 . we need to ensure that M()) has constant rank for all A € C,
before we deduce that M" (— & )w = 0 is a kernel representation of B". But this is
not necessary when starting from a kernel representation. More precisely, if B € ¢
has a kernel representation R( § )w = 0, then we directly obtain w = R” (— 4 )/ as an
image representation of Q‘j‘.m,. We use this remark in addition to the above lemma to
compute representations for the behaviors A" and P~* from Pgy and .

Let Py be given by the latent variable representation (latent variable £):
Ro(§)w+R-(%)c+Ri(4)f=0. Then the hidden behavior A has latent variable
representation R, (5 )w + Re( 5 )¢ = 0. Assume \ is controllable. Let B be the full
(w.l) behavior of this latent variable representation. Then, B has image

cont
representation
w] _ R4,
S

(with latent variable k). Application of the lemma yields that A”" is the controllable
part of N € € represented by the latent variable representation: w = R/ (~ § )k and

0 = R} (— % )k, with latent variable k. We use A™" = X 'A"" {0 obtain a latent
variable representation for A € ¥ (with latent variable k)

p
which yields N = N

w] _|E'RLE=E) |,
M‘[ RI(- ) J" i

Next, we compute a representation of P**. This time, for B take the full (w, ¢, ¢)
behavior of the kernel representation: Ry (% )w+R.(4)c+Ri(L)¢=0. Then

dr

clearly P = P (3B). Also, ‘B;.‘“m is represented in image representation by
" Ru(=3)
c| = R4 |+
: Ri (=)

(with latent variable k). Again assuming P is controllable, we gel
Pr = N8B ome Where N (B.) has latent variable representation:

w=RI(-$)k, O=R'(—%)k and 0=R](- %)k Consequently, P =P
" dt « dr £ di q

cont
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with P’ the behavior defined in latent variable representation (latent variable &) by

TR §)

RE(-4) |k (10)
Ri(-§)

c o=
|

8. LMI'S AND STORAGE FUNCTIONS

We now turn to the important problem of computing a storage function when a
behavior is dissipative. We first consider the case B = €™ (R, R"). We wish to find,
for a given ® € R"*"[(, 7], a solution ¥ € R "[(, 7] to Q‘i’(w) < QOg(w) _for all
w € €F(R, R"). In this section we shall write this inequality of QDF’s as ¥ < .
This inequality of QDF’s can be made into a matrix inequality problem involving real
constant matrices as follows. Let n degole the degree of @ (i.e., the highest power of {

or 7in ®, as explained in Section 3). ¥ < @ implies that the degree of ¥ must be less
than n. Let % ** denote the (k(k -+ 1)/2)-dimensional real vector space consisting of
the real symmetric k x k matrices. Let mat(®)_, & "< denote the
truncation of the coefficient matrix of ® to its first (n + 1)w x (n + 1)w rows and
columns, and similarly let mat(‘¥) . ;) € M """ denote the corresponding
truncation to the first nw % nw rows and columns of . Now, the operator * acting on
symmetric elements of R**¥|( 11] of degree less than n corresponds to a linear
mapping from X o I|EFHH LY and we denote this operator by L.. We
describe the precise way in which L, acts. Let I, be the identity matrix of dimension
nw and let X € ™™, We have

Lo(X) = [law]x[o L]+ [10 ]x[;m. 0]. (11)

The first term corresponds to a right shifted version of X and the second corresponds
to a down shifted vers‘ion, and the rest of the matrix gets padded with zeros of suitable

size. The inequality ¥ < & is equivalent to the matrix inequality

Ly(mat(¥)(,_ 1y (p—1)) < mat(P) (12)

nxn'
The problem of computing ¥ hence reduces to solving an LMI. It is possible to use
standard routines in the LMI toolbox to look for the maximum or the minimum of all
the solutions. This maximum or minimum is useful for checking half-line
dissipativity on R_ or [, respectively. Alternatively, one can add X <0or X > 0
to the inequality, Equation (12).
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Given ® € R"“"[(. ], the problem of computing storage functions for an arbitrary
Bin¥"  can be reduced to the case B = € (R, R') by using an observable image
representation W= M(4)¢ and proceeding with @' € RL * Y[¢.m) defined by
¥’ (C.n) = M(C)" (¢ m)M(n).

When a controllable behavior is represented by a kernel representation, it is
possible to use LMI's to determine dissipativity and we explore this issue now. The
following lemma is stated here for easy reference and is an easy consequence of
proposition 3.2 of [5] and the dissipation inequality on a behavior.

Lemma7 Let® e R"" “[C.n] and let B € € be given by the kernel representa-
tion R (d%)w =0. B is D-dissipative if and only if there exist ¥ € R**¥[¢ 7],

F € R***[¢,n) and D € R**"[€] such that
(C+m)¥(Cn) = P(Cn) + FICnRM) + RT(QF (n,¢) — D'(Q)D(n)

We note that it is possible to estimate the degrees of W and F in the equation above.
(As mentioned in Section 3, the degree of a symmetric two-variable polynomial
matrix is the highest power of  and/or 7 having a nonzero coefficient.) Let na be the
degree of ®((,n) and let n; be the degree of R(£). Then, there exists a ¥({, n) with
degree at most ng + ng — 1. For such a U, there exists an F((.»n) that has at most
degree ng + ng in ¢ and at most degree ng in 1. We use the above lemma and this
estimate of degrees in the following algorithm. We first describe how the operation of
multiplication by a polynomial matrix can be written in terms of the associated
coefficient matrix. Given a polynomial matrix R € R”“¥[¢], and a two variable
polynomial matrix F € R** [, )] we shall relate the coefficient matrices associated
with F({,n)R(n) and F(C 7). Let R(§) = Ry + &Ry + -+ £ R, for R; € RV ™Y,
Define R € R 1Y < mtantlle g foljows:

Ry Ri ~ Roy @ o 0
R= 0 R Ri - Ry . 0 (ng + 1)v rows .
0 0 -« Rg R -+ Ry

- -

(ng+ng+1)w cOlumns

Let F denote the truncation of mat(F) to its first (ng +ng + 1)w m\y_shand first
(g + 1)v columns. By mere multiplication of F((, 1)R(n) we obtain that FR is equal
to the truncation of mat(F(¢, 7)R(n)) to its first (ng + ng + 1)w rows and columns.
Define the linear mapping Ly : RIPe*#e st nat v plnatmet ) tneckng £106 gy
Le(Y) = YR. Tt follows that Lg(F)=mat(F(C.n)RM)) nyine) (neine): AlSO:
mat(R”(O)F"(n,¢)) = (mat(F({.mR(n)))" and their truncations to their first



426 M.N. BELUR AND H.L. TRENTELMAN

(g +ng + 1)w rows and columns are equal to Lg(mat(F))". We use this in the
following algorithm.

Algorithm 8 Data: ® € R"*"[(,n| and B € £, described by a minimal kernel
representation: R(3)w = 0.
Output: Whether B is ®-dissipative, and if it is, a storage function.

o Given B = ker(R($)), the existence of a storage function Qy for B as a &-
dissipative system is equivalent to the existence of F' € R" “*[Cyand D € R**¥[¢]
such that:

(C+ (&) = B(Cn) + F(Gm)R(n) + R (QF (n.¢) — D" (O)D(m)-

e In terms of the associated constant matrices,

mat(\i’) = mat(®) + mat(F((,n)R(n)) + mat(RT(C)FT(n, Q)
— mat(D" (¢)D(n)).

e Solving the above nonlinear equation can be done by computing an X and a ¥ that
solve the following linear inequality:

L.(X)— Lg(Y) — LR(y)T < mat((b)(,,\b_H,R}w -

We can use the LMI toolbox to check the existence of solutions, and a storage
function can be found from X as discussed before. Half-line dissipativity is studied
by further imposing sign-definiteness on X as was done for the case
B = EC°(R, R").

The above algorithm has two important extensions. Firstly, the case of B e L
being given by a latent variable representation R(&)w=M($) is easily
reformulated so that the above algorithm can be used. Let ® € R” *¥[¢, n) be given.

We define @ ¢ RWH)* WL vl by @ = [((I; g] We consider By € 297" given

by the kernel representation: R( & )w — M(§;)¢ = 0 and note that &-dissipativity of
% and ®'-dissipativity of B are equivalent. We then use the previous algorithm to
check @'-dissipativity of Byy.

A second extension is the case of strict dissipativity. This extension of the above
algorithm has been used in Subsection 5.2. We have defined strict dissipativity for the
case that ®(C, 7) is constant, that is, ®(¢, ) =  for some ¥ € R* *¥_Givensucha X,
we replace ®(, 77) in the above algorithm by ¥ — e/ with € as an additional variable.
We also add the constraint € > 0 and then compute solutions to the modified LML
This modified problem has solutions if and only if B is strictly dissipative with respect
to Qx(w) = w!'Sw. Moreover, if this LMI has solutions, one can maximize ¢ and thus

find the maximum ¢ such that % is dissipative with respect to ¥ — el.
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The use of LMI's in order to find storage functions for systems in state space
representation has been studied in the context of ‘H control by many authors, for
example, [10-12].

9. SPECTRAL FACTORIZATION

In this final section we remark very briefly that there is a close relation between
spectral factorization and storage functions. This relation was discussed in detail in
Section 5 of [5]. Let ® € R**"[(,y] and let B € £ have an observable
image representation w = M($)¢. Define @ € R ™[] by ¥'(¢,n) :=M"(¢)
B(C, )M (7). Then, B being P-dissipative is equivalent to 9P’ (iw) > 0 forall w € R.
This is equivalent to spectral factorizability of 99’ (&) into FT(—£)F(£). F € R* ']
is said to be a spectral factor of 9®’. Among all the spectral factors, particular choices
of F results in the extremal storage tunctions. Further, under additional assumptions, it
is possible to determine half-line dissipativity by checking the sign definiteness of a
certain Pick matrix. This has been studied in [5] and in [13]. The use of spectral
factorization methods in H .. control has also been pursued in [14-17].
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