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ABSTRACT
We present a method to approximate a simple, regular C2

surface W in IR3 by a (tangent continuous) skin surface
S. The input of our algorithm is a set of approximate W -
maximal balls, where the boundary of the union of these
balls is homeomorphic to W . By generating hyperboloid
and spherical patches over the intersection curves of the
balls the algorithm determines a one-parameter family of
skin-surfaces, where a parameter controls the size of the
patches. The skin surface S is homeomorphic to W , and
the approximate W -maximal balls in the input set are also
S-maximal. The Hausdorff distance between the regions en-
closed by the input surface W and the approximating skin
surface S depends linearly on a parameter related to the
sampling density of the approximate W -maximal balls.

Categories and Subject Descriptors
G.1.2 [Numerical analysis]: Approximation—Approxima-
tion of surfaces and contours; I.3.5 [Computer graphics]:
Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations; I.3.5 [Computer
graphics]: Computational Geometry and Object Model-
ing—Geometric algorithms, languages, and systems

General Terms
Algorithms, Design, Theory

Keywords
Smooth surface approximation, skin surfaces, guaranteed
topology, Voronoi diagram, Power diagram, Regular trian-
gulation, Medial Axis Transform
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1. INTRODUCTION
We consider the problem of approximating a simple, reg-

ular smooth (C2) closed surface in IR3 by a skin surface S.
Skin surfaces, introduced by Edelsbrunner in [7], are mainly
used for modeling large molecules in biological computing in
particular, the Van der Waals surface of a molecule. Each
atom in the molecule is represented by a sphere and atoms
that lie close to each other are connected by patches. These
patches make the transition between the atoms tangent con-
tinuous. A skin surface is parametrized by a set of weighted
points (balls) and a shrink factor. If the shrink factor equals
one, the surface is just the boundary of the union of the
maximal balls. If the shrink factor decreases, the skin sur-
face becomes tangent continuous, due to the appearance of
hyperboloid and spherical patches connecting the balls. An
example in 2D of a curve, reconstructed using this approach,
is drawn in Figure 1c. In Figure 2 some skin surfaces are
drawn for different values of this shrink factor. Other nice
properties of these skin surfaces are fast visualization, tan-
gent continuity and ease of construction and morphing.

The set of weighted points defining the skin surface S
approximating W is a finite sample of the medial axis trans-
form of W , i.e., a finite set of W -maximal balls. Recall that
an empty ball of W is a ball enclosed by W . A W -maximal
ball is an empty ball of W not contained in any other empty
ball of W . The medial axis transform of W is the set of
W -maximal balls. The medial axis M of W is the closure
of the set of centers of the maximal balls of W , and can be
seen as the skeleton of the surface. In fact, the medial axis is
a deformation retract of the region bounded by the surface.

A sufficiently dense finite subset of the medial axis trans-
form, or, rather, the boundary of the union of the corre-
sponding maximal balls, forms a good approximation of the
surface. Figure 1b illustrates this observation for a curve in
the plane. Obviously, this approximation is not tangent con-
tinuous. Our algorithm reconstructs a tangent continuous
surface from a sample of (approximate) maximal balls by
adding smooth patches over the points of intersection. By
controlling the size of these patches, we guarantee that the
approximation is homeomorphic to the union of the maxi-
mal balls. Furthermore, as we increase the sampling density
of the set of (approximate) maximal balls, the maximal dis-
tance between the regions enclosed by W and the approxi-
mating skin surface tends to zero.

In Section 2 we review the theory of skin surfaces as pre-
sented in [7], and describe the method to subdivide these
surfaces into patches of degree two (patches of hyperboloids

86



(a) (b) (c)

Figure 1: The approximation of a curve in the plane. (a) The medial axis and some maximal circles. (b) A
finite set of maximal circles is the input of our algorithm. (c) The output is a skin curve approximating the
input curve in Figure 1a.

and balls). With the language of skin surfaces in place, we
give a more precise specification of the algorithm in Sec-
tion 3, and state the main result on its complexity: the skin
surface can be computed in O(N2 log N) time and O(N2)
space, where N is the number of approximate maximal balls
in the input set. A key ingredient of the algorithm is the
construction of the weighted Voronoi Diagram of a set of
balls with radii growing with the same multiplicative fac-
tor. In Section 4 we present an algorithm that maintains
this diagram as the radii are growing. In Section 5 we show
how the algorithm satisfies the constraint that the balls in
the input set are also S-maximal. Finally, Section 6 derives
a bound on the Hausdorff distance between the regions en-
closed by the input surface W and the skin surface S in
terms of a parameter related to the sampling density of the
set of (approximate) maximal balls.

Related work.. Amenta et al. [1] show that the medial axis
transform can effectively be approximated by a sufficiently
dense sample from the set of maximal balls. If the sample
is sufficiently dense, the boundary of the union of the balls
is homeomorphic to the original surface. Then they use
an approximation of the medial axis transform to compute
the power crust, which approximates the original surface by
piecewise linear patches.

Another method for visualising molecules uses Connolly
surfaces; See, e.g., [3]. For further reading about skin sur-
faces we refer to [7], and to [5, 6] for background on morph-
ing skin surfaces. In [4] a method is described to triangulate
a skin surface with shrink factor 1/2 and to maintain this
triangulation under a specific growth model. In this model
the radius of each input ball is changed by adding a constant
to its square. Our growth model multiplies the squared ra-
dius with a constant and the shrink factor is not restricted
to 1/2, therefore this triangulation can not be used to tri-
angulate our approximating surfaces.

Boissonnat and Cazals [2] also reconstruct a tangent con-
tinuous surface from a sufficiently dense finite sample of
points on a surface. Their method uses a different approach
using natural neighbor interpolation.

2. SKIN SURFACES
The definitions in this section form a summary of [7]. For

further reading on skin surfaces we refer to this article.
A skin surface is defined in terms of a finite set of balls

(weighted points) and a shrink factor s, with 0 < s ≤ 1.

For s = 1, the skin surface is the boundary of the union
of balls. For smaller s, the radii of the balls in the input
set are shrunken, and hyperboloid and spherical patches are
generated between adjacent balls, making the skin surface
tangent continuous.

All definitions are given for skin surfaces in 3D, but can
easily be transformed into the definition of skin curves in
2D. All images show skin curves in the plane.

The space of weighted points. A 3D weighted point p̂ is
a pair p̂ = (p, p) of location p ∈ IR3 and weight p ∈ IR. Balls
correspond to weighted points, with location at the center of
the ball and weight equal to the square of the radius. This
definition is slightly different from [7], in the sense that there
a weighted point is associated with the sphere bounding the
ball. On the set of weighted points we define a ‘distance’
function:

π(p̂, q̂) = ‖ p − q ‖2 − p − q, (1)

for p̂ = (p, p) and q̂ = (q,q). Two points with zero distance
are by definition orthogonal. We will call a point with zero
weight an unweighted point. The distance from a weighted
point p̂ to an unweighted point x, follows from Equation (1),
by taking q = x and q = 0. All unweighted points with non-
positive distance to p̂ form the ball with center p and radius√

p. We will make no distinction between the weighted point
and this ball. An orthosphere of a set of weighted points P
is, by definition, a sphere orthogonal to each of the weighted
points in P .

The space of weighted points inherits a vector space struc-
ture from IR4 via the bijective map Π : IR3 × IR → IR4,
defined by

Π(p̂) = (ξ1, ξ2, ξ3, |p|2 − p), with p = (ξ1, ξ2, ξ3).

The notion of shrinking and growing of weighted points can
be defined in terms of this vector space structure. Given
a shrink factor s ∈ IR, we associate with a weighted point
p̂ the shrunken weighted point p̂s defined as follows. Let
p̂′ = (p, 0). Then

p̂s = s · p̂ + (1 − s) · p̂′

Using simple calculus it follows that:

p̂s = Π−1(s · Π(p̂) + (1 − s) · Π(p̂′))

= (p, s · p)

If P is a set of weighted points, we denote by Ps the set ob-
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Figure 2: The approximating skin surface of a set of balls forming a hand. The patches between the maximal
balls become larger as the shrink factor is decreased. The shrink factors (from left to right) are 0.95, 0.8, 0.5
and 0.2.

Figure 3: The skin curve of two weighted points (the
two larger circles). The smaller circles form a subset
of the shrunken convex hull of the input points. The
boundary of the shrunken convex hull forms the skin
curve.

tained by shrinking every point of P by a factor s. The body
of a skin surface bdysP and skin surface sknsP , associated
with a set P of weighted points, is defined by

bdy
sP =

�
conv(P)s (2)

skn
sP = ∂ bdy

sP . (3)

Here conv(P) ⊂ IR3 × IR is the convex hull – with respect
to the vector space structure inherited under Π – of a set
of weighted points P , whereas ∂ denotes the boundary – in
three space – of the balls. For a skin curve in 2D associated
with two weighted points: see Figure 3.

Two sets are homeomorphic (or: have the same topology)
if there exists a continuous map with a continuous inverse
between the sets, see [8, Ch. 28]. One important feature
of a skin surfaces is that varying the shrink factor does not
change the topology of skin surfaces. For s = 1, the body
of the skin surface is the union of the balls in the input set,
therefore the body of a skin surface is homeomorphic to the
union of the balls in the input set.

Quadratic patches of a skin surface.. One of the main
features of skin surfaces is that they can be effectively subdi-
vided into patches of degree two, more precisely, into parts
of spheres and hyperboloids. In this section we will show
how this is done. For the proof that these patches form the
corresponding skin surface, we refer to [7].

The mixed complex, which subdivides the skin surface
into patches of degree two, is an intermediate structure be-
tween the weighted Delaunay triangulation (or: regular tri-
angulation) and its dual, viz. the weighted Voronoi diagram
(or: the power diagram).

The weighted Voronoi diagram.. The weighted Voronoi
cell , Voronoi cell for short, of a weighted point p̂ ∈ P consists
of all points that are closer to p̂ than to any other point in
P . Formally:

Vp̂ = {x ∈ IR3|π(p̂, x) ≤ π(q̂, x), for all q̂ ∈ P}.
A weighted Voronoi cell is a convex polyhedral region, possi-
bly unbounded, or empty. Furthermore, a weighted Voronoi
cell Vp̂ does not necessarily contain p.

For a subset X ⊆ P we have:

νX =
�

p̂∈X
Vp̂

which we will call a weighted Voronoi �-cell (� = dim νX =
4−|X |), if it is not empty and X is in general position. Then
it also follows that |X | ≤ 4. A set is in general position
if no 5 weighted points are equidistant to some point and
no k + 2 points lie on a common k-flat for k = 0, 1, 2. In
the non-degenerate case, every 0-cell is a point, which is
the intersection of four adjacent cells. A 1-cell is a line
segment, possibly unbounded. And a facet (2-cell) is the
boundary of two 3-cells. The 2-cell is a subset of the set
of unweighted points equidistant to the two weighted points
associated with the 3-cells. A 3-cell is a nonempty Voronoi-
cell of some p̂ ∈ P .

The weighted Voronoi diagram is the subdivision of the
3-space generated by the non-empty Voronoi cells:

VorP = {νX |X ⊆ P ∧ νX 
= ∅}.

The weighted Delaunay triangulation.. The weighted
Delaunay triangulation, or regular triangulation, is dual to
the weighted Voronoi diagram, and is defined in terms of
weighted Delaunay cells. A weighted Delaunay 3 − �-cell
exists for every weighted Voronoi �-cell νX ∈ Vor P and
is the convex hull of the centers of the points in X , δX =
conv({p|p̂ ∈ X}). The weighted Delaunay triangulation is
the set of all these cells:

DelP = {δX |νX ∈ Vor P}.
Note that δX and νX for νX 
= ∅ can be disjoint, but their
affine hulls always intersect in one point. We will call this
point the focus f of X . Since the focus lies on the affine hull
of the weighted Voronoi cell, it follows that π(p̂, f) = π(q̂, f)
for all p̂, q̂ ∈ X .
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Figure 4: The skin curve of four weighted points
(the dotted circles). Each mixed cell contains parts
of an hyperbola or a circle

The mixed complex.. The mixed complex , associated with
a scalar s, with 0 ≤ s ≤ 1, is obtained by taking affine
combinations of cells of the weighted Delaunay triangulation
and the weighted Voronoi diagram. More precisely, for every
X ⊆ P with νX 
= ∅ a mixed cell is defined by

µs
X = s · νX + (1 − s) · δX .

For s = 0, the mixed cell is the Delaunay cell. When s
increases, it deforms affinely into the Voronoi cell for s = 1.
We will call a mixed cell corresponding to a Delaunay �-cell
a mixed �-cell. Since both a weighted Voronoi �-cell and
a weighted Delaunay 3 − �-cell are convex polyhedrons, it
follows that a mixed �-cell is also a convex polyhedron.

For |X | = 1, the corresponding mixed cell (a mixed 0-cell)
consists of all points on the corresponding Voronoi 3-cell,
shrunken towards the Delaunay vertex with a factor s. A
mixed 1-cell is a prism with the shrunken Voronoi facet as its
base. Similarly, a mixed 2-cell is a prism with the shrunken
Delaunay triangle as its base. A mixed 3-cell corresponds
to a Delaunay tetrahedron shrunken towards the Voronoi
vertex.

The mixed complex, associated with a shrink factor s,
consists of the set of all mixed cells:

MixsP = {µs
X |νX ∈ Vor P}.

The mixed complex is a partition of 3-space into convex
polyhedral cells.

Skin surfaces. The body of a skin surface is by definition
the union of the shrunken convex hull of its weighted points
P , see Equation (2). We can extend this definition in the
following way:

bdy
sP =

�
{conv(X )s|X ⊆ P}

In [7] Edelsbrunner shows that only the subsets X for which
νX 
= ∅ can touch the boundary of the skin surface. All
other sets X with νX = ∅, are contained inside these sub-
sets. As a result it follows that each part of the skin surface
is generated by the shrunken convex hull of at most 4 points.
Furthermore, he shows that a subset X with νX 
= ∅ gener-
ates exactly the part of the skin surface that lies inside the
mixed cell µs

X .

A two dimensional example is given in Figure 4. The
points denote the centers of the weighted points. All rect-
angles (mixed cells corresponding to the Delaunay edges)
contain hyperbolic patches. These hyperbolic patches bound
the union of the shrunken convex hull of the two weighted
points corresponding to the vertices. All other cells con-
tain circular arcs. Depending on whether the mixed cell
corresponds to a Delaunay vertex or a Delaunay face, the
interior of the skin curve lies in- or outside the circle. For
mixed 0-cells, the skin curve lies inside the corresponding
weighted point shrunken with an factor s. On the other
hand, for a mixed 2-cell, the skin curve lies outside the
weighted point shrunken with a factor 1 − s, that is or-
thogonal to every weighted point corresponding to a vertex
of the Delaunay triangle. This is the shrunken convex hull
of the three weighted points corresponding to the vertices.

In 3D, the mixed complex divides the skin surface into
parts of degree two in a similar way. Assume that the affine
hull through a weighted Delaunay k-cell δX is aligned along
the first k axes and its dual weighted Voronoi 3 − k-cell is
aligned along the other axes. Then the focus lies at the
origin and δX ∩ sknsP = δX ∩ S, where S is the implicit
surface given by:

− 1

1 − s

k�
i=1

x2
i +

1

s

3�
j=k+1

x2
j − R2 = 0.

Here R2 is the distance between the focus and a weighted
point in the Delaunay cell.

For k = 0 and k = 3, the mixed cell clips a sphere, with
this difference that, for k = 0, the sphere is convex (it con-
tains the body), whereas for k = 3, it is concave. For k = 0,
the mixed cell corresponds to a weighted Delaunay vertex.
These mixed cells clip a shrunken weighted point from the
input set. For k = 1 and k = 2 the mixed cell clips a hyper-
boloid connecting the spherical caps.

3. APPROXIMATION ALGORITHM
In this section we present the conditions imposed on the

surface computed by the approximation algorithm.
The Hausdorff distance between two subsets X and Y

of a Euclidean space is denoted by d(X, Y ). For a formal
definition of the Hausdorff distance see [8].

Definition 1. Let W be a C2-surface embedded in three
space. For r > 0 a finite set P of balls with union M is
r-admissible if(i) the boundary ∂M of M is homeomorphic to W ;
(ii) every ball in P is M-maximal;
(iii) for each B ∈ P there is a W -maximal ball B′ such that

d(B,B′) ≤ r.
(iv) for each W -maximal ball p̂ there is a p̂′ ∈ P such that

d(p̂, p̂′) < r

For a given C2-surface W the approximation algorithm
takes an r-admissible set P of balls, and computes a C1

skin surface S associated with P satisfying the following
conditions:

C1(S): W and S are homeomorphic;

C2(S): Every ball in P is S-maximal;

C3(S): The Hausdorff distance d(BW , BS) between the bod-
ies of W and S does not exceed c r, for some positive
constant c.
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t < τ t = τ t > τ

x

x

Figure 5: Change of topology at (x, τ ) of a union
of two (top row) and three (bottom row) weigthed
points.

We realise that the conditions for an r-admissible set are
rather strong, but not all restrictions are needed for the
conditions to hold. In fact, we only need requirement (i) for
C1(S), and (ii) for C2(S). For condition C3(S), both (iii)
and (iv) are needed. Although this last condition is hard
to validate, it is reasonable, since it guarantees that every
ball in the Medial Axis Transform is close to a ball in the
r-admissible set.

Remark 2. The construction of the admissible set P of
W -maximal balls is difficult, and to the best of our know-
ledge there is no general method yet. However, we conjec-
ture that the power crust algorithm [1] can be adapted to
construct a set of r-admissible balls from a suitable sample
of the surface W . The latter algorithm constructs a poly-
hedral surface with the same topology as the surface W ,
provided the sample is sufficiently dense. More precisely,
recall that the local feature size (LFS) at a point x ∈ W is
the distance of x to the medial axis of W . A set of sam-
ple points is a �-sample if for every point x ∈ W there is a
sample point at distance at most � · LFS(x) from x. For a
�-sample with � ≤ 0.1, the power crust algorithm yields a
set of approximate maximal balls for which the union of the
boundary is homeomorphic to W .

Definition 3. For a set of balls P the surface Ss(P),
0 < s ≤ 1, is the skin surface with shrink factor s associated
with the set of balls P1/s defined by

P1/s = {p̂1/s|p̂ ∈ P}.

If P is an r-admissible set of balls then conditions C1(S1)
and C2(S1) are satisfied. Indeed, P1 = P , so S1 is the
boundary of the union of these balls. Therefore, condi-
tions C1(S1) and C2(S1) are trivially satisfied. In Section 6,
we show that for the region BW enclosed by W we have
d(BW ,∪P) ≤ r, and it follows that C3(Ss) is also satisfied
for s = 1.

Obviously, S1 is not smooth. However, for values of s
slightly smaller than 1 conditions C1(Ss) and C2(Ss) are still
satisfied, and Ss is a C1-surface. Indeed, for s near 1, the
surface Ss is homeomorphic to S1, and hence to W . Since
(p̂1/s)s = p̂, it follows that P is a collection of Ss-maximal
balls, for s slightly smaller than 1.

One or more of these conditions may be violated for smaller
values of s. See Figure 6 for a sequence of skin curves corre-
sponding to decreasing values of s. Figure 6a shows the skin

curve for s = 1. As we decrease the shrink factor, the skin
curve becomes tangent continuous, due to the appearance
of hyperbolic patches connecting the circles, see Figure 6b.

As these patches grow further, they eventually cause a change
in the topology of the skin curve, see Figure 6d, i.e., a viola-
tion of condition C1(Ss). Finally, as we decrease the shrink
factor even further, the balls are no longer maximal, as de-
picted in Figure 6e. In Section 5 we derive, how far the
shrink factor can be decreased without occurrence of this
phenomenon.

Therefore, our goal is to determine the interval of s-values
for which conditions C1(Ss)–C3(Ss) are satisfied. One of the
main results of this paper is

Theorem 1. The value

si(P) = inf{s | 0 ≤ s < 1 and condition Ci(Ss) is satisfied}
can be computed in O(N2 log N) time and O(N2) space,
where N is the number of balls in P.

The algorithm presented in Section 4 computes s1(P ) by
maintaining the weighted Voronoi diagram of a set of balls
with growing radius; This algorithm is of some independent
interest. In Section 5 this method is slightly adapted to
compute an interval of s-values for which condition C2(Ss)
holds. Finally, in Section 6, we determine the error with
respect to the Hausdorff distance between the input surface
and the computed skin surface. This error analysis gives us
a value for s3(P).

4. MAINTAINING THE TOPOLOGY OF
THE UNION OF GROWING BALLS

In this section we discuss an algorithm to compute the
smallest τ such that the boundary of the union of the balls
Pτ is not homeomorphic to ∂

�P . Since the skin surface
Ss(P) is homeomorphic to the boundary of the union of the

set of balls P1/s, cf Section 2, this is equivalent to computing
the value s1(P), defined in Section 3. Figure 5 illustrates
this equivalence in 2D, where the change of topology of the
skin curve coincides with the change of topology of the balls
defining the skin curve.

Let Q be a set of balls in IR3, and, for t ∈ IR, let ∂(∪Qt)
denote the boundary of the union ∪Qt.

Definition 4. ∂(∪Qt) changes topology at (x, τ ) ∈ IR3×
IR if for every neighborhood U of x in IR3 there is an ε > 0
such that, for τ − ε < t1 < τ < t2 < τ + ε, the sets
U ∩ ∂(∪Qt1) and U ∩ ∂(∪Qt2) are not homeomorphic.
A ball q̂ ∈ Q is involved in the change of topology at (x, τ )
if x is a point of the ball q̂τ .

Obviously, if ∂(∪Qt) changes topology at (x, τ ), then x ∈
∂(∪Qτ ). Occasionally, we just say that ∂(∪Qt) changes
topology for t = τ if the location x is irrelevant.

Lemma 2. Suppose all weighted points of Q are involved
in a change of topology of ∂(∪Qt) at (x, τ ). Then

∩Qt =

�
∅, for t < τ,

{x}, for t = τ,

and ∩Qt 
= ∅, for t ≥ τ .
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(a) (b) (c) (d) (e)

Figure 6: The set of maximal circles and the approximating skin curve for different shrink factors (decreasing
from left to right).

Proof. Suppose the interiors of the balls in Qτ intersect

in a point y. Then y belongs to all balls in Qt′ , for some
t′ < τ . Since the weights of all weighted points in Qt are
increasing with t, whereas the centers are independent of t,
it follows that, for t > t′, ∪Qt is starshaped with respect
to y. In particular, for t > t′, the set ∂(∪Qt) is non-empty,
and does not change topology. This contradiction shows
that the interiors of the balls in Qτ are disjoint, and hence
∩Qτ consists of a single point, which, by definition, is equal
to x. For t < τ the ball q̂t is contained in the interior of q̂τ ,
so ∩Qt = ∅. Since x is contained in the interior of all balls
q̂t for t > τ , it finally follows that ∩Qt 
= ∅, for t ≥ τ .

Lemma 3. Suppose ∂(∪Pt) changes topology at (x, τ ) ∈
IR3 × IR. Then the subset Q of P of weighted points in-
volved in this change of topology defines a cell in the weighted
Voronoi diagram of Pτ . This cell contains the point x.

Proof. It follows from Lemma 2 that x belongs to the
boundary of the weighted points in Q, so π(q̂τ , x) = 0, for
q̂ ∈ Q. By definition, π(p̂τ , x) > 0, for p̂ ∈ P \ Q, so x
belongs to the cell νQτ of the weighted Voronoi Diagram of
Pτ .

Consider a set Q of balls, with boundaries intersecting at
x. Generically, the tangent planes at x intersect transver-
sally, i.e., the intersection is an affine space of codimension
|Q|. The balls Qt form a one-parameter family, so at iso-
lated values of t we expect intersections with non-transversal
tangent planes, i.e., the codimension of this intersection is
less than |Q|. We impose the following generic condition on
the family P .
Generic change of topology. Suppose ∂(∪Pt) changes
topology at (x, τ ), and the subset Q of P consists of the
balls involved in this change of topology. Then the tangent
planes at x of the balls in Q intersect in an affine space of
codimension |Q| − 1.
In the plane, at most three weighted points are involved in a
generic change of topology, see Figure 5. When two weighted
points are involved, the change in topology corresponds to
the creation of a bridge between two parts of the boundary.
A change of topology in which three weighted points are
involved corresponds to the filling of a void.

Let Q be the set of balls involved in a generic change
of topology in three-space, then |Q| ≤ 4. These changes
of topology correspond to the creation of a bridge, when
|Q| = 2, the filling of a tunnel, when |Q| = 3, or the filling
of a void, when |Q| = 4.

Lifting the weighted Voronoi Diagram. In view of Lemma 3
changes of topology of ∂(Pt) are related to the cells of the

weighted Voronoi Diagram. To incorporate t-dependence,
we lift the weighted Voronoi Diagram to IR3 × IR. To this
end consider, for p̂, q̂ ∈ P , the half space H∗

p̂,q̂ ⊂ IR3 × IR
defined by

H∗
p̂,q̂ = {(x, t) ∈ IR3 × IR | πp̂t(x) ≤ πq̂t(x)}

= {(x, t) ∈ IR3 × IR |
〈x, q − p〉 + 1

2
t(q − p) ≤ 1

2
‖ q ‖2 − 1

2
‖ p ‖2}.

The boundary of this half space is called the extended bi-
sector of the weighted points p̂ and q̂. With a weighted
point p̂ ∈ P we associate the extended Voronoi cell V ∗(p̂) in
IR3 × IR defined by

V ∗(p̂) =
�

q̂ : q̂ �=p̂

H∗
p̂,q̂ .

For p̂ = (p,p) ∈ P , the point (p, 0) belongs to V ∗(p̂), so no
extended Voronoi cell is empty. The extended Voronoi cells
determine a subdivision of IR3 × IR into convex polyhedra.
This subdivision is called the extended Voronoi Diagram of
P , and is denoted by VD∗(P). The weighted Voronoi cell
of p̂τ with respect to Pτ is the intersection of the extended
Voronoi cell V ∗(p̂) and the hyperplane t = τ .

General position. We assume that the weighted points in
P are in general position in the sense that
(i) no k + 2 weighted points lie on a common k-flat, for
0 ≤ k < 3 (this is equivalent to the centers of the weighted
points being in general position);
(ii) no 6-tuple of weighted points has a common ortosphere;
(iii) a 5-tuple of weighted points has a common ortosphere
for a finite set of values of t.

If P is in general position, then, for 0 ≤ k ≤ 4, a k-
face of the extended Voronoi Diagram is defined by 5 − k
weighted points, in other words, it is incident to 5 − k
extended Voronoi cells (a cell is a 4-face of the extended
Voronoi Diagram). Since a vertex is defined by 5 weighted
points, it is incident upon

�
5
4

�
= 5 edges. If the number of

edges incident upon a vertex (x, τ ) of the extended Voronoi
Diagram, and contained in the half space below the hyper-
plane t = τ , is k + 1, 0 ≤ k ≤ 3, then this vertex is of type
k. Since the radius of the balls in Pt is increasing with t
starting at t = 0, we do not encounter vertices of type 0.

Lemma 4. The extended Voronoi Diagram of a set of N
weighted points in IR3 has O(N2) faces.

Proof. Obviously, the number of 4-faces is O(N), since
there is a one-one correspondence between the set of 4-faces
and the set of weighted points. Similarly, the number of
3-faces is O(N2), since each 3-face corresponds to a pair of
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weighted points, and distinct 3-faces correspond to distinct
pairs.

Vertices of type 0 (type 3) are t-minimal (t-maximal)
points of a 4-face, so there are O(N) vertices of type 0 and of
type 3. Vertices of type 1 (type 2) are t-minimal (t-maximal)
points of a 3-face, so there are O(N2) vertices of type 1 and
of type 2.

Since generically there is a constant number of 1-faces and
2-faces incident upon a vertex, the total number of faces of
the extended Voronoi Diagram is O(N2).

To see that the quadratic complexity is worst case opti-
mal, we construct a set of weighted points in 2D for which
the structure of the weighted Voronoi diagram changes a
quadratic number of times as we grow the weighted points.
More specifically, O(N) cells get an empty Voronoi cell (cor-
responding to vertices of type 3 in the extended 3D Voronoi
diagram), and O(N2) edge flips (these are vertices of type 1
or 2) occur.

To construct this set, align the first N/2 points along
the vertical axis with a constant weight p. Align the other
weighted points along the horizontal axis such that p′, with
p′ < p. Further ensure that the Voronoi cells of two of these
weighted points touch the Voronoi cells of all weighted points
aligned along the vertical axis. As a result the Voronoi cells
of all other weighted points touch only the two Voronoi cells
of the outer weighted points that are aligned vertically. This
set of weighted points is depicted in Figure 7(a), and its
Voronoi diagram in Figure 7(b).

Since the weights of the vertically aligned weighted points
are equal, a common Voronoi edge between two of these
points does not change as we grow the weighted points. The
same holds for an edge generated by two weighted points
on the horizonal axis. Because of the difference in weight
of points on the horizontal and vertical axis, the Voronoi
cells of the weighted points on the vertical axis encroach
upon the the Voronoi cells of the weighted points on the
horizontal axis. As a result for each weighted point on the
horizontal axis, we have O(N) edge flips before the Voronoi
cell becomes empty. The two outmost weighted points form
an exception, since their Voronoi cells do not become empty.
This process is depicted in Figure 7(b) to (d).

Proposition 5. The extended Voronoi Diagram of a set
of N weighted points in IR3 can be constructed in O(N2 log N)
time.

Proof. We maintain the weighted Voronoi Diagram of
Pt using a sweep-hyperplane algorithm, starting at t = 0.
The weighted Voronoi Diagram for t = 0 can be computed
in O(N2) time, using the algorithm from [9]. The combi-
natorial structure of VD(Pt) changes at the t-coordinates
of the vertices of the extended Voronoi Diagram. There are
several types of events, depending on the type of the vertex:
the type of the event is the type of the vertex. At an event
of type k, 0 < k ≤ 3, a k-face f (and its incident j-faces,
0 ≤ j < k) is destroyed, and a 3 − k-face f ′ is created.

Since the weighted points are in general position, face f
is a k-simplex just before its destruction. Therefore, the al-
gorithm maintains a priority queue storing the destruction
times of all k-simplices in the current weighted Voronoi Dia-
gram. A Voronoi vertex corresponds to a line segment in the
extended Voronoi diagram. By definition of the extended
Voronoi diagram, a Voronoi vertex parametrized in terms of

p̂

Figure 8: Three weighted points in an r-admissible
set P. The radius of the maximal circle p̂ in the
middle is shrunken with a factor r. The result is
that p̂ only touches

�P in one small circular arc.

t, moves along a line in IR3 at constant speed. At an event,
at least two Voronoi vertices coincide. It follows that com-
puting the destruction time of a Voronoi cell is equivalent
to computing the time at which two of its vertices coincide.

Processing an event of type k now boils down to the fol-
lowing update operations:
(i) Update the weighted Voronoi Diagram, i.e., remove the
destroyed k-simplex and insert the created 3 − k-simplex,
thereby updating all incidence relations;
(ii) Update the priority queue by adjusting the destruction
times of all j-simplices, j > 0, incident with the newly cre-
ated simplex.

The destruction time of a k-simplex is equal to the de-
struction time of its edges. Therefore, it is sufficient to
compute the destruction time of each new or updated edge.
Since only a constant number of faces is involved in a sin-
gle event, step (i) takes O(1) time, and of step (ii) takes
O(log N) time.

Since multiple faces are incident upon the destroyed and
created simplices, time stamps in the priority queue corre-
spond to multiple simplices. However, in view of Lemma 4
the total number of time stamps is O(N2). Therefore the
time complexity of the algorithm is O(N2 log N).

Corollary 6. Let P be a set of N weighted points in
IR3. Then τ0, defined by

τ0 = min{τ | ∂(Pτ ) changes topology for t = τ},
can be computed in O(N2 log N) time.

Proof. Consider a face of the extended Voronoi Dia-
gram, defined by a subset Q of P . There is a unique value
t for which ∩Qt consists of a single point, x say: solve (x, t)
from the equation π(q̂t, x) = 0, for some, and hence all,
q̂ ∈ Q. In this way we associate a unique time stamp τQ
with each face of the extended Voronoi Diagram. The value
τ0 is the minimal time stamp greater than 1. Since there are
O(N2) faces, it can be computed from the extended Voronoi
Diagram in O(N2) additional time.

5. PRESERVING MAXIMALITY OF THE
BALLS

The medial axis transform forms a good shape descriptor
for surfaces. From a surface W we obtained an r-admissible
set P of approximate maximal balls of W . In this section,
we consider this set to be a shape descriptor for W . We
approximate W with a surface that is a good approximation
in the sense that each maximal ball in P is also maximal in
the approximating surface.
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(a) (b) (c) (d)

Figure 7: A set of weighted points for which the Voronoi diagram changes topology a quadratic number of
times. Figure (a) shows the set of weighted points and (b) its Voronoi diagram. Figure (c) and (d) show the
Voronoi diagram for increasing t.

Before we construct such a surface, first we give a formal
definition of a T -maximal ball w.r.t. some surface T .

Definition 7. A ball is T -maximal if it is enclosed in the
surface T and it is not contained in any other ball enclosed
in T .

Consider an r-admissible set P . The surface M =
�P

is composed of spherical patches. Each spherical patch γ is
part of the boundary of some maximal ball in P .

Requirement (ii) of an r-admissible set ensures that each
weighted point generates at least one spherical patch on

�P .
In Figure 8, we show that for any r > 0, we can construct
an r-admissible set that contains a weighted point p̂ such
that p̂ generates only one circular arc and this arc is arbi-
trary small. This example can be extended in any dimen-
sion. Therefore to guarantee that each weighted point in P
is also maximal in the approximating skin surface, we have
to guarantee that for every spherical patch γ, the approxi-
mating skin surface contains a subset of γ. As long as this
subset exists, it ensures that its generating weighted point
is maximal.

Conceptually, we start with the skin surface for s = 1.
For this approximation, we know that γ ∩ S1 = γ. As we
decrease s, patches between spheres arise and γ∩Ss becomes
a proper subset of γ. While doing so, the intersection of γ
and the skin surface can become disconnected. When this
happens, we consider each of these components seperately.
We stop decreasing s just before some γ touches Ss only in
one point.

To determine when a patch γ only touches the skin surface
Ss in a point, we use the mixed complex. Recall that the
mixed complex decomposes the skin surface into quadratic
patches. In particular, a mixed 0-cell clips its corresponding
maximal ball. A mixed 0-cell corresponds to a weighted
point p̂ ∈ P . Its shape is the Voronoi 3-cell corresponding
to p̂ shrunken with a factor s towards the weighted Delaunay
0-cell δ{p̂}.

Lemma 5. Let γ be a spherical patch on
�P generated by

a weighted point p̂ ∈ P. Then there is a weighted Delaunay
3-cell δX adjacent to δ{p̂} for which the segment between p
and νX intersects γ. Further, the skin surface Ss contains a
spherical patch of γ iff

s · |p − νX | > p

Proof. First, we analyse the shape of a mixed 0-cell
more carefully. A Voronoi 3-cell is a convex polyhedron
with its Voronoi 0-cells at its vertices. Since a mixed 0-
cell is a Voronoi 3-cell shrunken towards the center of its

corresponding weighted point, a mixed 0-cell is a convex
polyhedron with its vertices on the line from the weighted
Delaunay 0-cell to each Voronoi 0-cell.

To be more precise, for every weighted Delaunay 3-cell δX
adjacent to δ{p̂}, the mixed 0-cell has a vertex at the point:

s · νX + (1 − s) · δ{p}.

The intersection of the spherical cap γ with Ss is non-empty
if some part of γ lies inside the mixed 0-cell. Since a mixed
0-cell is a convex polyhedron, this is the case if a vertex of
the polyhedron lies outside p̂. Therefore the intersection of
γ with the skin surface is non-empty if the inequality in the
lemma holds. Note that in this equation νX also depends
on the shrink factor.

The algorithm to obtain the lowest shrink factor is similar
to the algorithm used to compute the minimal shrink factor
for which the skin surface is homeomorphic to the original
surface W . Instead of testing when a set of weighted points
in a weighted Delaunay cell causes a topological change, we
test for each weighted Delaunay vertex when a spherical
patch degenerates into a point. Just before this happens,
we have obtained the lowest shrink factor for which we can
guarantee that the maximal balls in P are also maximal in
the skin surface.

6. ERROR ESTIMATES
In this section we construct a minimal shrink factor s3

such that, given an r-admissible sample of a surface W , the
Hausdorff distance between the body BW bounding W and
the body BS(s) of the approximating skin surface Ss is at
most 2r for s3 ≤ s ≤ 1. We do this in the following way:
first, we show that under the conditions in Definition 1 (in
particular condition (iv)), the distance between BW and ∪P
is at most r. Then we construct a skin surface Ss for which
we guarantee that the distance from each patch to

�P is
at most r. It follows from these results that the distance
between BW and the body of the approximated skin surface
is at most 2r.

Lemma 6. Let W be a closed surface bounding a body
BW . For an r-admissible sample P of W , we have that:

d(BW ,
�

P) ≤ r,

Proof. Let x ∈ BW , and p̂ be an W -maximal ball con-
taining x. Using restriction (iv), we know that there is a
ball p̂′ in P with d(p̂, p̂′) ≤ r. It immediately follows that
d(x, p̂′) ≤ r and therefore d(x,

�P) ≤ r.
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Figure 9: The vector space obtained under the lift-
ing operator Π on 1-dimensional weighted points. It
shows how the convex hull of the set X = {p̂1, p̂2}
deforms as we decrease the shrink factor.

Using condition (iii) and a similar reasoning, it follows that
a point x ∈ �P lies at most at a distance r from BW .

It follows from this lemma that S1 satisfies C3(S). In the rest
of this section we determine the minimal shrink factor s3 for
which we can show that the maximal distance between the
body BS(s) of Ss and

�P is at most r. Since
�P ⊆ BS(s),

it follows that d(x,BS(s)) = 0 for all x ∈ �P . To show the
converse, that d(x,

�P) ≤ r for all x ∈ BS(s), we use the
decomposition of Ss by the mixed complex.

The mixed complex decomposes a skin surface into quadratic
patches. Each mixed cell µs

X contains the quadratic patch
that is the intersection of µs

X with
�
conv(X )s. A set X

can only generate a part of the skin surface if it generates a
non-empty weighted Voronoi Cell.

Instead of taking the convex hull of a set of weighted
points X , consider the affine hull of X . Let f̂ be the weighted
point in the affine hull with minimal weight. The weight of
f̂ is positive if and only if its center is contained in

�X .
Simple calculations show that f is the focus of X .

We devide the sets X that can generate parts of the skin
surface in two classes. First, we consider the sets for which
f̂ has positive weight. For these sets we bound the distance
from the part of the skin surface generated by X 1/s to

�X
by r. We can not do this if the weight of f̂ is negative.
Therefore we make sure that these cells do not contribute
to any part of the skin surface.

Bounding the distance of a patch to
�P. Let X ⊆ P form

a non-empty weighted Voronoi cell, and let f̂ ∈ aff(X ) be
the weighted point with its center at the focus of X . Assume
that f̂ has positive weight. It follows that each point in the
affine hull, and therefore also in the convex hull, of X has
positive weight.

Now let X = {p | p̂ ∈ X} and let m ∈ aff(X) be the
point equidistant to each x ∈ X.

Lemma 7. If the weight of f̂ is positive, then for each
shrink factor sX ≤ s ≤ 1 with

sX = 1 − r2

|m − x|2 , (4)

for some x ∈ X, we have that

d(
�

X , Ss(X )) ≤ r.

Proof. We define the function ps(p) as the weight of the

weighted point in conv(X 1/s)
s

centered at p.
The set Π(conv(X )) forms a hyperplane in IR4. Since

the weight is defined as the distance along the last coordi-
nate axis to the unit paraboloid, p1(p) is a paraboloid with
leading coefficient 1. For the analogue of the vector space
obtained under Π of weighted points with an 1-dimensional
center, see Figure 9. The top parabola denotes the set of
weighted points with zero weight.

From a similar reasoning it follows that Π(conv(X 1/s))
also a hyperplane forms in IR4. By the definition of shrink-
ing, ps(p) is a paraboloid with leading coefficient s.

Knowing the leading coefficient of ps(p), the paraboloid is
fixed upto translation. Therefore consider a weighted point
p̂′ ∈ X . It is first shrunken with a factor 1/s and then with a
factor s, therefore ps(p

′) = p′, as is also depicted in Figure 9.
Using these points the parabola is uniquely defined, and it
follows that

ps(p) = p1(p) − (1 − s)(|x − m|2 − |p − m|2),
for some x ∈ X, since |x, m| = |x′, m| for x, x′ ∈ X. Indeed,
ps(p) is a paraboloid with leading coefficient s, since p1(p)
has leading coefficient 1. Further, the weight of the points
in X is independent of the shrink factor.

Using the fact that for s = 1, p̂(1) ∈ conv(X ) is contained
in
�X and that each weighted point corresponds to a ball

with real radius, we bound the patch in terms of the distance
between p̂(s) ∈ conv(X 1/s)

s
and p̂(1).

d(p̂(s),
�

P) ≤ d(p̂(s), p̂(1))

=
�

p(s) −
�

p(1)

≤
	

(1 − s)(|x − m|2 − |p − m|2)
The equation in the lemma follows if we take p = m to
obtain the maximal difference in weight, and then solve
d(p̂(s),

�P) = r for s. Note that this bound can be too
pessimistic since m can lie outside the convex hull of X,
and therefore |p − m|2 > 0 for all p ∈ conv(X)

Avoiding caps in a skin surface. In the case that we have a

set X ∈ P for which the weight of f̂ is negative, the previous
lemma does not hold. To see this, consider a weighted points
p̂ in the convex hull of X with negative weight. The center
of his point lies outside

�X . As we decrease the shrink
factor the weight may become real, but we can not bound
the distance from this maximal ball to

�X in a similar way.
In order to avoid this situation to happen we assure that

the mixed cell corresponding to X does not contain any part
of the skin surface. For a mixed 0-cell corresponding to a
weighted point p̂, the focus is located at the center of p̂ and
has therefore always a positive weight.

Consider a mixed 1-cell corresponding to a set X . The
patch generated by this cell is a two sheeted hyperboloid.
Its symmetry axis is the line through the centers of the two
weighted points in X . For s = 1, we know that the mixed
1-cell does not contain any part of the skin surface, since no
patches are generated. As we decrease the shrink factor, the
first point where the skin surface intersects the mixed 1-cell
is on the symmetry axis.

A similar analysis of the mixed 2-cells and 3-cells, shows
that the first point where the skin surface will intersect the
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mixed cell lies on the segment between the focus f of the
corresponding set of weighted points X and the center of a
weighted point in X . Moreover, the skin surface intersects
the mixed cell if

s · |p − f | ≤ p, (5)

for some p̂ ∈ X . This can be shown in a similar way as done
in the proof of Lemma 5 and is left as an exercise to the
reader.

Summarising, in Lemma 6 we showed that the distance
between an arbitrary surface W and the union of an r-
admissible sample P smaller is than r. In the rest of the
section we obtained two equations.
The first equation, Equation (4), holds if f̂ has positive
weight and gives us a minimal shrink factor for which we
can prove that the distance from the body of Ss(X ) to

�X
is at most r. The second equation, Equation (5), gives us
the minimal shrink factor for which X does not generate any
part of Ss(P), if the weight of f̂ is negative.

Combining these two results, we obtain a value s3 for
which the Hausdorff distance between the body bounded by
W and the body of the skin surface Ss, with s3 ≤ s ≤ 1, is
at most 2r.

7. CONCLUSION AND FUTURE WORK
We presented an algorithm to effectively compute a C1-

approximation S of a surface W represented by a set of
approximate W -maximal balls. The approximation S is a
skin surface, which is homeomorphic to the boundary of the
union of the approximate W -maximal balls. Furthermore,
the Hausdorff distance between the regions enclosed by W
and S converges to zero as we increase the density of the
sample of maximal balls.

A disadvantage of our method is that the surface is usually
bumpy, i.e., the error of the tangent vector (the C1-error)
is not bounded, since we will always have concave patches
inbetween two balls. Another drawback of our algorithm
is that it determines the shrink factor globally: if a high
shrink factor is needed at one part of the skin surface, this
influences the approximation of the whole surface.

For s close to 1, the skin surface and the boundary of the
union of the input balls is almost the same. This would im-
ply that our approach does not improve on the union of the
balls. We assume that the shrink factor will be significant
smaller than 1. In fact, we conjecture:

Conjecture 8. For a C2-surface W there is a sW < 1
such that the shrink factor sS corresponding to a sample
of the Medial Axis Transform of W converges to sW if the
sampling density goes to 1.

We think that the value sW depends upon the maximal
ratio between the radius of the maximal ball touching a
point x ∈ W and the local feature size in x. The larger this
ratio, the higher sW . We are currently trying to prove this
conjecture.

We are currently investigating adaptations of the meth-
ods presented in this paper, yielding C1-surfaces that are
less bumpy. We further plan to improve our algorithm such
that it chooses the shrink factor adaptively, i.e., based on
local constraints. Another topic of future research is the
construction of an r-admissible set of (approximate) W -
maximal balls.
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