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Abstract
Resonance tongues and their boundaries are studied for nondegenerate and
(certain) degenerate Hopf bifurcations of maps using singularity theory methods
of equivariant contact equivalence and universal unfoldings. We recover
the standard theory of tongues (the nondegenerate case) in a straightforward
way and we find certain surprises in the tongue boundary structure when
degeneracies are present. For example, the tongue boundaries at degenerate
singularities in weak resonance are much blunter than expected from the
nondegenerate theory. Also at a semi-global level we find ‘pockets’ or ‘flames’
that can be understood in terms of the swallowtail catastrophe.

Mathematics Subject Classification: 37G15, 37G40, 34C25

1. Introduction

This paper focuses on resonance tongues obtained by Hopf bifurcation from a fixed point of a
map. More precisely, Hopf bifurcations of maps occur at parameter values where the Jacobian
of the map has a critical eigenvalue that is a root of unity e2πpi/q , where p and q are coprime
integers with q � 3 and |p| < q. Resonance tongues themselves are regions in parameter space
near the point of Hopf bifurcation where periodic points of period q exist and tongue boundaries
consist of critical points in parameter space where the q-periodic points disappear, typically
in a saddle-node bifurcation. We assume, as is usually done, that the critical eigenvalues are
simple with no other eigenvalues on the unit circle. Moreover, usually just two parameters
are varied; the effect of changing these parameters is to move the eigenvalues about an open
region of the complex plane.
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1.1. Several contexts

Resonance tongues arise in several different contexts, depending, e.g. on whether the dynamics
is dissipative, conservative or reversible. Generally, resonance tongues are domains in
parameter space, with periodic dynamics of a specified type (regarding period of rotation
number, stability, etc). In each case, the tongue boundaries are part of the bifurcation set. We
mention here two standard ways that resonance tongues appear.

1.1.1. Hopf bifurcation from a periodic solution. Let

dX

dt
= F(X)

be an autonomous system of differential equations with a periodic solution Y (t) having its
Poincaré map P centred at Y (0) = Y0. For simplicity we take Y0 = 0, so P(0) = 0. A Hopf
bifurcation occurs when eigenvalues of the Jacobian matrix (dP )0 are on the unit circle and
resonance occurs when these eigenvalues are roots of unity e2πpi/q . Strong resonances occur
when q < 5. Except at strong resonances, Hopf bifurcation leads to the existence of an
invariant circle for the Poincaré map and an invariant torus for the autonomous system. This
is usually called a Naimark–Sacker bifurcation. At weak resonance points the flow on the
torus has very thin regions in parameter space (between the tongue boundaries) where this
flow consists of a phase-locked periodic solution that winds around the torus q times in one
direction (the direction approximated by the original periodic solution) and p times in the other.

1.1.2. Periodic forcing of an equilibrium. Let

dX

dt
= F(X) + G(t)

be a periodically forced system of differential equations with 2π -periodic forcing G(t).
Suppose that the autonomous system has a hyperbolic equilibrium at Y0 = 0; i.e. F(0) = 0.
Then the forced system has a 2π -periodic solution Y (t) with initial condition Y (0) = Y0

near 0. The dynamics of the forced system near the point Y0 is studied using the stroboscopic
map P that maps the point X0 to the point X(2π), where X(t) is the solution to the forced
system with initial condition X(0) = X0. Note that P(0) = 0 in coordinates centred at Y0.
Again resonance can occur as a parameter is varied when the stroboscopic map undergoes Hopf
bifurcation with critical eigenvalues equal to roots of unity. Resonance tongues correspond to
regions in parameter space near the resonance point where the stroboscopic map has q-periodic
trajectories near 0. These q-periodic trajectories are often called subharmonics of order q.

1.2. Background and sketch of results

The types of resonances mentioned here have been much studied; we refer to Takens [37],
Newhouse et al [33], Arnold [2] and references therein. For more recent work on strong
resonance, see Krauskopf [30]. In general, these works study the complete dynamics near
resonance, not just the shape of resonance tongues and their boundaries. Similar remarks can
be made on studies in Hamiltonian or reversible contexts, such as Broer and Vegter [16] or
Vanderbauwhede [39]. As in our paper, in many of these references some form of singularity
theory is used as a tool.

The problem we address is how to find resonance tongues in the general setting,
without being concerned by stability, further bifurcation and similar dynamical issues. It
turns out that contact equivalence in the presence of Zq symmetry is an appropriate tool for
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Figure 1. Resonance tongues with pocket- or flame-like phenonmena near a degenerate Hopf
bifurcation through e2π ip/q in a family depending on two complex parameters. Fixing one of these
parameters at various (three) values yields a family depending on one complex parameter, with
resonance tongues contained in the plane of this second parameter. As the first parameter changes,
these tongue boundaries exhibit cusps (middle picture), and even become disconnected (rightmost
picture). The small triangle in the rightmost picture encloses the region of parameter values for
which the system has four q-periodic orbits. These phenomena are explained in section 5.

this, when first a Liapunov–Schmidt reduction is utilized, see Golubitsky et al [24, 25]. The
main question asks for the number of q-periodic solutions as a function of parameters, and each
tongue boundary marks a change in this number. In the next subsection, we briefly describe
how this reduction process works. The singularity theory and analysis that is needed to study
the reduced equations is developed in sections 2 and 5; the longer singularity theory proofs
are postponed to appendix A.

It turns out that the standard, nondegenerate cases of Hopf bifurcation [2,37] can be easily
recovered by this method. When q � 7 we are able to treat a degenerate case, where the
third-order terms in the reduced equations, the ‘Hopf coefficients’, vanish. We find pocket- or
flame-like regions of four q-periodic orbits in addition to the regions with only zero or two,
compare figure 1. In addition, the tongue boundaries contain new cusp points and in certain
cases the tongue region is blunter than in the nondegenerate case. These results are described
in detail in section 5, also compare figure 2. Section 6 is devoted to concluding remarks and
further questions.

1.3. Related work

The geometric complexity of resonance domains has been the subject of many studies of
various scopes. Some of these, like this paper, deal with quite universal problems while others
restrict themselves to interesting examples. As opposed to this paper, often normal form theory
is used to obtain information about the nonlinear dynamics. In this context the normal forms
automatically are Zq-equivariant.

1.3.1. Chenciner’s degenerate Hopf bifurcation. In [19–21] Chenciner considers a two-
parameter unfolding of a degenerate Hopf bifurcation. Strong resonances to some finite order
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Figure 2. Top: the τ -plane. Frames 1–7: resonance tongues in the σ -plane for various values of
τ = 0.1 e2π iθ . (1) θ = 0.01, (2) θ = 0.10, (3) θ = 0.30, (4) θ = 0.42, (5) θ = 0.44, (6) θ = 0.45,

(7) θ = 0.48.

are excluded in the ‘rotation number’ ω0 at the central fixed point. In [21] for sequences of
‘good’ rationals pn/qn tending to ω0, corresponding periodic points are studied with the help
of Zqn

-equivariant normal form theory. For a further discussion of the codimension k Hopf
bifurcation compare Broer and Roussarie [11].

1.3.2. The geometric program of Peckam et al. The research program reflected in
[31, 32, 35, 36] views resonance ‘tongues’ as projections on a ‘traditional’ parameter plane
of (saddle-node) bifurcation sets in the product of parameter and phase space. This approach
has the same spirit as ours and many interesting geometric properties of ‘resonance tongues’
are discovered and explained in this way. We note that the earlier result [34] on higher-order
degeneracies in a period-doubling uses Z2 equivariant singularity theory.
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Particularly, we would like to mention the results of [36] concerning a class of oscillators
with doubly periodic forcing. It turns out that these systems can have coexistence of periodic
attractors (of the same period), giving rise to ‘secondary’ saddle-node lines, sometimes
enclosing a flame-like shape. In the present, more universal, approach we find similar
complications of traditional resonance tongues, compare figure 2 and its explanation in
section 5.

1.3.3. Related work by Broer et al. In [15], an even smaller universe of annulus maps is
considered, with Arnold’s family of circle maps as a limit. Here ‘secondary’ phenomena are
found that are similar to the ones discussed presently. Indeed, apart from extra saddle-node
curves inside tongues also many other bifurcation curves are detected.

We like to mention related results in the reversible and symplectic settings regarding
parametric resonance with periodic and quasi-periodic forcing terms by Afsharnejad [1] and
Broer et al [3,4,7–10,12–14,16]. Here the methods use Floquet theory, obtained by averaging,
as a function of the parameters.

Singularity theory (with left–right equivalences) is used in various ways. First of all, it
helps to understand the complexity of resonance tongues in the stability diagram. It turns
out that crossing tongue boundaries, which may give rise to instability pockets, are related to
Whitney folds as these occur in two-dimensional maps. These problems already occur in the
linearized case of Hill’s equation. The question is whether these phenomena can be recovered
by methods as developed in this paper. Finally, in the nonlinear cases, application of Z2- and
D2-equivariant singularity theory helps to get dynamical information on normal forms.

1.4. Finding resonance tongues

Our method for finding resonance tongues—and tongue boundaries—proceeds as follows.
Find the region in parameter space corresponding to points where the map P has a q-periodic
orbit; i.e. solve the equation P q(x) = x. Using a method due to Vanderbauwhede (see [39,40]),
we can solve for such orbits by Liapunov–Schmidt reduction. More precisely, a q-periodic
orbit consists of q points x1, . . . , xq where

P(x1) = x2, . . . , P (xq−1) = xq, P (xq) = x1.

Such periodic trajectories are just zeros of the map

P̂ (x1, . . . , xq) = (P (x1) − x2, . . . , P (xq) − x1).

Note that P̂ (0) = 0, and that we can find all zeros of P̂ near the resonance point by solving
the equation P̂ (x) = 0 by Liapunov–Schmidt reduction. Note also that the map P̂ has Zq

symmetry. More precisely, define

σ(x1, . . . , xq) = (x2, . . . , xq, x1).

Then observe that

P̂ σ = σ P̂ .

At 0, the Jacobian matrix of P̂ has the block form

J =




A −I 0 0 · · · 0 0
0 A −I 0 · · · 0 0

...

0 0 0 0 · · · A −I

−I 0 0 0 · · · 0 A


 ,



1516 H W Broer et al

where A = (dP )0. The matrix J automatically commutes with the symmetry σ and hence J

can be block diagonalized using the isotypic components of irreducible representations of Zq .
(An isotypic component is the sum of the Zq isomorphic representations. See [25] for details.
In this instance all calculations can be done explicitly and in a straightforward manner.) Over
the complex numbers it is possible to write these irreducible representations explicitly. Let ω

be a qth root of unity. Define Vω to be the subspace consisting of vectors

[x]ω =




x

ωx

...

ωq−1x


 .

A short calculation shows that

J [x]ω = [(A − ωI)x]ω.

Thus, J has zero eigenvalues precisely when A has qth roots of unity as eigenvalues.
By assumption, A has just one such pair of complex conjugate qth roots of unity as eigenvalues.

Since the kernel of J is two-dimensional—the simple eigenvalue assumption in the Hopf
bifurcation—it follows using Liapunov–Schmidt reduction that solving the equation P̂ (x) = 0
near a resonance point is equivalent to finding the zeros of a reduced map from R2 → R2.
We can, however, naturally identify R2 with C, which we do. Thus, we need to find the zeros
of a smooth implicitly defined function

g : C → C,

where g(0) = 0 and (dg)0 = 0. Moreover, assuming that the Liapunov–Schmidt reduction is
done to respect symmetry, the reduced map g commutes with the action of σ on the critical
eigenspace. More precisely, let ω be the critical resonant eigenvalue of (dP )0; then

g(ωz) = ωg(z). (1.1)

Since p and q are coprime, ω generates the group Zq consisting of all qth roots of unity. So g

is Zq-equivariant.
We propose to use Zq-equivariant singularity theory to classify resonance tongues and

tongue boundaries.

2. Zq singularity theory

In this section, we develop normal forms for the simplest singularities of Zq-equivariant maps
g of the form (1.1). To do this, we need to describe the form of Zq-equivariant maps, contact
equivalence, and finally the normal forms.

2.1. The structure of Zq-equivariant maps

We begin by determining a unique form for the general Zq-equivariant polynomial mapping.
By Schwarz’s theorem [25] this representation is also valid for C∞ germs.

Lemma 2.1. Every Zq-equivariant polynomial map g : C → C has the form

g(z) = K(u, v)z + L(u, v)z̄q−1, (2.1)

where u = zz̄, v = zq + z̄q , and K, L are uniquely defined complex-valued function germs.
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Proof. It is known that every real-valued Zq-invariant polynomial h : C → R is a function of
u, v, w where w = i(zq − z̄q ). Since

w2 = 4uq − v2,

it follows that invariant polynomials can be written uniquely in the form

h(z) = A(u, v) + B(u, v)w. (2.2)

Similarly, every Zq-equivariant polynomial mapping g : C → C is well known to have
the form

g(z) = K(z)z + L(z)z̄q−1,

where K and L are complex-valued invariant functions. Since

w = iv − 2iz̄q and w = 2izq − iv

it follows that

wz = ivz − 2iuz̄q−1,

wz̄q−1 = 2iuq−1z − ivz̄q−1.
(2.3)

Thus, we can assume that K and L are complex-valued invariant functions that are
independent of w. �

Let Eu,v be the space of complex-valued map germs depending on u and v. Then (2.1)
implies that we can identify Zq-equivariant germs g with pairs (K, L) ∈ E2

u,v .
When finding period q points, we are led by Liapunov–Schmidt reduction to a map g that

has the form (2.1) and satisfies K(0, 0) = 0. By varying two parameters we can guarantee
that K(0, 0) ∈ C can vary arbitrarily in a neighbourhood of 0.

2.2. Zq contact equivalences

Singularity theory approaches the study of zeros of a mapping near a singularity by
implementing coordinate changes that transform the mapping to a ‘simple’ normal form and
then solving the normal form equation. The kinds of transformations that preserve the zeros
of a mapping are called contact equivalences. More precisely, two Zq-equivariant germs g and
h are Zq-contact equivalent if

h(z) = S(z)g(Z(z)), (2.4)

where Z(z) is a Zq-equivariant change of coordinates and S(z) : C → C is a real linear map
for each z that satisfies

S(γ z)γ = γ S(z) (2.5)

for all γ ∈ Zq . A characterization of the function S is given in lemma A.1

2.3. Normal form theorems

In this paper, we consider two classes of normal forms—the codimension two standard for
resonant Hopf bifurcation and one more degenerate singularity that has a degeneracy at cubic
order. These singularities all satisfy the nondegeneracy condition L(0, 0) �= 0; we explore
this case first.
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Theorem 2.2. Suppose that

h(z) = K(u, v)z + L(u, v)z̄q−1,

where K(0, 0) = 0.

q � 5. If KuL(0, 0) �= 0, then h is Zq contact equivalent to

g(z) = |z|2z + z̄q−1 (2.6)

with universal unfolding

G(z, σ ) = (σ + |z|2)z + z̄q−1. (2.7)

q = 4. Let a = |Ku(0, 0)/L(0, 0)|. If L(0, 0) �= 0 and a �= 0, 1, then h is Z4 contact
equivalent to

g(z) = auz + z̄3,

where 0 < a < 1 or 1 < a is a moduli parameter. The universal unfolding of g is

G(z) = (σ + au)z + z̄3, (2.8)

where σ ≈ 0 is complex.
q = 3. If L(0, 0) �= 0, then the normal form for q = 3 is

g(z) = z̄2,

which has codimension two, and the universal unfolding of g is

G(z) = σz + z̄2. (2.9)

Theorem 2.3. Suppose that

h(z) = K(u, v)z + L(u, v)z̄q−1,

where K(0, 0) = 0 = Ku(0, 0) and q � 7. If Kuu(0, 0)L(0, 0) �= 0, then h is Zq contact
equivalent to

g(z) = |z|4z + z̄q−1 (2.10)

with universal unfolding

G(z, σ, τ ) = (σ + τ |z|2 + |z|4)z + z̄q−1, (2.11)

where σ, τ ∈ C.

The proofs of theorems 2.2 and 2.3 are given in appendix A.

3. Resonance domains

In this section, we compute boundaries of resonance domains corresponding to universal
unfoldings of the form

G(z) = b(u)z + z̄q−1. (3.1)

By definition, the tongue boundary is the set of parameter values where local bifurcations in
the number of period q points take place; and, typically, such bifurcations will be saddle-
node bifurcations. For universal unfoldings of the simplest singularities the boundaries of
these parameter domains have been called tongues, since the domains have the shape of a
tongue, with its tip at the resonance point. Below we show that our method easily recovers
resonance tongues in the standard least degenerate cases. Then, we study a more degenerate
singularity and show that the usual description of tongues needs to be broadened.
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Tongue boundaries of a p : q resonance are determined by the following system:

z̄G = 0,

det(dG) = 0.
(3.2)

This follows from the fact that local bifurcations of the period q orbits occur at parameter
values where the system G = 0 has a singularity, i.e. where the rank of dG is less than two.
Recalling that

u = zz̄, v = zq + z̄q , w = i(zq − z̄q ), (3.3)

we prove the following theorem, which is independent of the form of b(u).

Theorem 3.1. For universal unfoldings (3.1), equations (3.2) have the form

|b|2 = uq−2,

bb̄′ + b̄b′ = (q − 2)uq−3.
(3.4)

Proof. Begin by noting that G(z) = 0 implies that

z̄G(z) = bu + z̄q = 0.

Therefore,

z̄q = −bu and zq = −b̄u.

It follows that

v = −(b + b̄)u and w = −i(b − b̄)u.

Hence, the identity v2 + w2 = 4uq implies

|b|2 = uq−2,

which is the first result to be shown.
Next we compute det(dG) = 0 by recalling that in complex coordinates

det(dG) = |Gz|2 − |Gz̄|2.
Observe that

|Gz|2 = (b + b′u)(b̄ + b̄′u)

= |b|2 + (bb̄′ + b̄b′)u + |b′|2u2

and

|Gz̄|2 = (b′z2 + (q − 1)z̄q−2)(b̄′z̄2 + (q − 1)zq−2)

= |b′|2u2 − (q − 1)(bb̄′ + b̄b′)u + (q − 1)2uq−2.

Therefore,

0 = det(dG) = |b|2 + q(bb̄′ + b̄b′)u − (q − 1)2uq−2. (3.5)

The second equation in (3.4) now follows from (3.5) by applying the first equation in (3.4),
which has already been proved. �

We now use (3.4) to determine tongue boundaries for the universal unfoldings classified
in theorems 2.2 and 2.3.
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4. Nondegenerate cases: resonance tongues

Here we recover several classical results on the geometry of resonance tongues, in this context
of Hopf bifurcation. To begin, we discuss weak resonances q � 5, where a (q/2) − 1 cusp
forms the tongue-tip and where the concept of resonance tongue remains unchallenged. Note
that similar tongues are found in the Arnold family of circle maps [2], also compare Broer
et al [15]. Then, we consider the strong resonances q = 3 and 4, where we again recover
known results on the shape of the resonance domain. For a more complete discussion of the
dynamics near these resonance points see [2, 37].

4.1. The nondegenerate singularity when q � 5

We first investigate the nondegenerate case q � 5 given in (2.7). Here

b(u) = σ + u,

where σ = µ+iν. We shall compute the tongue boundaries in the (µ, ν)-plane in the parametric
form µ = µ(u), ν = ν(u), where u � 0 is a local real parameter.

Short computations show that

|b|2 = (µ + u)2 + ν2,

bb̄′ + b̄b′ = 2(µ + u).

Then theorem 3.1 gives us the following parametric representation of the tongue boundaries:

µ = −u +
q − 2

2
uq−3,

ν2 = uq−2 − (q − 2)2

4
u2(q−3).

In this case the tongue boundaries at (µ, ν) = (0, 0) meet in the familiar (q − 2)/2 cusp

ν2 ≈ (−µ)q−2. (4.1)

It is to this and similar situations that the usual notion of resonance tongue applies: inside
the sharp tongue a pair of period q orbits exists and these orbits disappear in a saddle-node
bifurcation at the boundary.

4.2. The nondegenerate singularity when q = 4

In this case by (2.8) we have that

b(u) = σ + au,

where with a a modulus parameter such that a > 0 and a �= 1. Short computations show that

|b|2 = (µ + au)2 + ν2,

bb̄′ + b̄b′ = 2a(µ + au).

From (3.4) we obtain

µ = 1 − a2

a
u,

ν2 = a2 − 1

a2
u2.
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These equations again give a parametric description of the resonance domain in the (µ, ν)

plane. When a > 1 we find tongue boundaries formed by the lines

µ = ±
√

a2 − 1ν.

So the tongues bound a wedge approaching a half line as a approaches 1. When 0 < a < 1
there are no tongue boundaries—period 4 points exist for all values of (µ, ν).

4.3. The nondegenerate singularity when q = 3

In this case we have

b = σ.

Again we recover the familiar result that no tongues exist, but that period 3 points exist for all
values of (µ, ν).

More precisely, there is a period 3 trajectory, corresponding to a solution of (2.9), for
every σ �= 0. To verify this point, set σ = reiθ . Then, set z = e−iθ/3y in (2.9) obtaining:

ry + ȳ2 = 0,

where r is real and positive. It follows that y = −r is a nonzero solution.

5. Degenerate singularities when q � 7

5.1. Tongue boundaries in the degenerate case

The next step is to analyse a more degenerate case, namely, the singularity

g(z) = u2z + z̄q−1,

when q � 7. We recall from (2.11) that a universal unfolding of g is given by
G(z) = b(u)z + z̄q−1, where

b(u) = σ + τu + u2. (5.1)

Here σ and τ are complex parameters, which leads to a real four-dimensional parameter space.
As before, we set σ = µ + iν and consider how the tongue boundaries in the (µ, ν)-plane
depend on the complex parameter τ . In this discussion, we calculate the tongue boundaries with
computer assistance, using the parametric forms of µ and ν given by theorem 5.2. We will see
that a new complication occurs in the tongue boundaries for certain τ , namely, cusp bifurcations
occur at isolated points of the fold (saddle-node) lines. The interplay of these cusps is quite
interesting and challenges some of the traditional descriptions of resonance tongues when
q = 7 and presumably for q � 7.

We recall that the tongue boundaries are determined by equations (3.2). For the specific
choice (5.1) for b it follows that the solution of these equations is the discriminant set

DP =
{
(σ, τ ) ∈ C × C | P(u, σ, τ ) = ∂P

∂u
(u, σ, τ ) = 0, for some u ∈ R

}
of the polynomial P , defined by

P(u, σ, τ ) = (u2 + τu + σ)(u2 + τ̄ u + σ) − uq−2.

Putting τ = α + iβ and σ = µ + iν, with α, β, µ, ν ∈ R, we obtain the following expression
for the family P :

P(u, α, β, µ, ν) = u4 − uq−2 + 2αu3 + (α2 + β2 + 2µ)u2 + 2(αµ + βν)u + (µ2 + ν2). (5.2)
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We try to obtain a parametrization of DP by solving the system of equations

P(u, α, β, µ, ν) = ∂P

∂u
(u, α, β, µ, ν) = 0, (5.3)

for µ and ν. This gives us a solution of the form

(µ, ν) = (µ(u, α, β), ν(u, α, β)),

which defines a curve in the (µ, ν)-plane, for fixed (α, β).
To this end we consider the solution set of (5.3) as a perturbation of the solution set of the

system

P0(u, α, β, µ, ν) = ∂P0

∂u
(u, α, β, µ, ν) = 0,

where

P0(u, σ, τ ) = (u2 + τu + σ)(u2 + τ̄ u + σ) = P(u) + uq−2.

Lemma 5.1. The discriminant set of P0 is the hypersurface in R4 parametrized by
�0 : R × R2 → R4, with �0(u, α, β) = (α, β, µ0(u, α, β), ν0(u, α, β)) defined by

µ0(u) = −u(α + u),

ν0(u) = −βu.
(5.4)

Proof. First, we observe that every root of P0(u, σ, τ ) = 0 has multiplicity at least
two, so P0(u, σ, τ ) = 0 implies (∂P0/∂u)(u, σ, τ ) = 0. Now P0(u, τ, σ ) = 0 implies
µ = µ0(u, α, β) and ν = ν0(u, α, β), with µ0 and ν0 as in (5.4). This completes the proof.

�
Theorem 5.2. The discriminant set of P is the union of the two hypersurfaces D±

P in R4

parametrized by �± : R × R2 → R4, with �± of the form

�±(u, α, β) = (α, β, µ0(u, α, β) + M±(u, α, β), ν0(u, α, β) + N±(u, α, β))

with

M±(u, α, β) = (q − 2)uq−3(α + 2u) ± βu(q−2)/2
√

4D(u, α, β) − (q − 2)2uq−4

2D(u, α, β)
,

N±(u, α, β) = (q − 2)βuq−3 ∓ (α + 2u)u(q−2)/2
√

4D(u, α, β) − (q − 2)2uq−4

2D(u, α, β)
,

(5.5)

where

D(u, α, β) = (α + 2u)2 + β2.

Proof. We try to obtain a solution of (5.3) by perturbing the parametrization (5.4) by putting

µ = µ0(u, α, β) + M,

ν = ν0(u, α, β) + N.

Plugging this into (5.3) yields the following system of equations for M and N :

M2 + N2 − uq−2 = 0,

2αM + 2βN + 4Mu − (q − 2)uq−3 = 0.

This system has two pairs of real solutions (M±(u, α, β), N±(u, α, β)) defined by (5.5). �
In the next subsection this parametrization is used to obtain pictures of the resonance

regions for various values of τ = α + iβ.
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5.2. Degenerate tongue boundaries when q = 7

Below we explore the tongue boundaries numerically for fixed τ . Note that the discriminant
set DP is invariant under the transformation (σ, τ ) �→ (σ̄ , τ̄ ). Thus, we may assume that
Im(τ ) � 0. To perform these calculations, we set τ = ρe2π iθ , where 0 � θ � 0.5.

We use Mathematica to plot the curves given by theorem 5.2 for various values of τ .
Fixing ρ = 0.1 we choose several representative values of θ ∈ (0, 0.5). In figure 2, left
column, we consider θ = 0.01, 0.10 and 0.30, thereby traversing the first quadrant, and see
a resonance tongue that begins to rotate and bend. Inside the cusped region there are two
(locally defined) period 7 trajectories that annihilate each other in a saddle-node bifurcation as
the tongue boundary is crossed. This description is consistent with the description of resonance
tongues in the least degenerate case. However, this description changes as τ nears the negative
real axis.

In figure 2, middle column, we consider θ = 0.42 and 0.44. The left branch of the tongue
folds over on itself forming a singularity as θ is varied. As that singularity unfolds a small
triangular ‘pocket’ or ‘flame’ emerges before θ = 0.44. This pocket is defined by two cusps
and a crossing of the boundary curve. Inside the pocket region, there are four trajectories of
period 7 points. The bending continues at θ = 0.45 where the two cusps approach the tongue
boundary, (see figure 2) right column. Moreover, the tongue boundary emanating from the
right cusp sweeps past the origin and opens the ‘pocket’. Figure 3 depicts the sequence of
bifurcations in more detail, and gives approximate θ -values of the corresponding bifurcations.
Moreover, it contains an additional frame, labelled 5a, corresponding to the situation just after
the tongue boundary emanating from the right cusp has swept past the origin.

Finally, we see in figure 2 that by θ = 0.48, the two cusps and the tongue tip have
formed a triangle that has detached from the rest of the boundary. In the four-dimensional
(σ, τ ) parameter space, this geometry is reminiscent of catastrophes like the swallowtail or
elliptic umbilic—but in a Zq-equivariant setting. In the two-dimensional parameter space, two
intersecting tongue branches switch when the right cusp touches the boundary; namely, the
upper tongue branch from the cusp at zero and the upper tongue branch from the right cusp.

For τ near the negative real axis this analysis refers to the boundary of the pocket region
shown in figure 2 (right column) that surrounds the region of the four period 7 trajectories.
For this part of the boundary we find the expected thin resonance ‘tongue’—but that ‘tongue’
does not refer to the boundary between regions where period 7 points exist and regions where
they do not. In the next section we show that the four period 7 points occur for α arbitrarily
close to 0.

5.3. Four q-periodic orbits

Our pictures of the resonance regions for various values of τ suggest the existence of a small
‘triangle’ in the σ -plane with interior points corresponding to the occurrence of four real roots
near 0 of the equation P(u, σ, τ ) = 0. This triangle emerges for τ -values near the negative
real axis. In this section we show that this region exists for τ -values arbitrarily near the origin.
We do so by constructing a smooth curve in parameter space, emerging from the origin, such
that the equation P(u, σ, τ ) = 0 has four real roots near u = 0 for parameter values (σ, τ ) on
this curve.

To this end we observe that the ‘spine’ of the resonance region is the curve parametrized by
(5.4). This spine corresponds to parameter values (σ, τ ) for which the polynomial P0(u, σ, τ )

has two double zeros. Indeed, a simple computation shows that

P0(u, −αt − t2, −βt, α, β) = (u − t)2((u + t + α)2 + β2). (5.6)
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Figure 3. Birth and detachment of a triangular pocket corresponding to four period 7 points via a
sequence of four bifurcations (right column). The pocket emerges due to a swallowtail bifurcation
at θ ≈ 0.429. Its upper branch sweeps past the origin, at θ ≈ 0.446, after which the pocket is
opened up at θ ≈ 0.449 via a tangency of two of its sides. Finally, the pocket is detached due to a
branch switch at θ ≈ 0.453.
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We now define a curve in parameter space by making t and β dependent on α, in such a way
that four real zeros occur for parameters on this curve. Since our experiments indicate that four
small real roots occur for τ near the negative real axis we put β = 0, and expect four real roots
(where we have to restrict to α < 0 if q is odd). Furthermore, the triangle enclosing σ -values
for which four small real roots are observed shrinks to size 0 as τ tends to 0. Therefore, our
second guess is t = α2. (In fact, we first tried t = α, but the corresponding curve tends to 0
via the region of two small real roots.)

Summarizing, we consider the one-parameter family p(u, α) of polynomials in u,
defined by

p(u, α) = P(u, −α3 − α4, −α4, α, 0). (5.7)

In view of (5.6), this polynomial satisfies

p(u, α) = ( u − α2 )2( u + α + α2 )2 − uq−2.

Theorem 5.3.

1. For sufficiently small α the polynomial p(·, α) has a pair u±(α) of distinct real zeros near
0 ∈ R, satisfying

u±(α) = α2 ± αq−3 + O(αq−2), (5.8)

2. Moreover, for sufficiently small α there is an other pair U±(α) of distinct real zeros near
0 ∈ R, satisfying

U±(α) = −α − α2 ± |α|(q−4)/2 + O(|α|(q−3)/2) (5.9)

for q odd, and α � 0, and

U±(α) = −α − α2 ± α(q−4)/2 + O(α(q−2)/2) (5.10)

for q even.

The proof is contained in appendix B.

Corollary 5.4. There are parameter values (σ, τ ) arbitrarily near (0, 0) ∈ C × C for which
four period q trajectories exist.

5.4. Four-dimensional geometric structure

We derived the parametrization (5.5) of the discriminant set DP of the family P , given by
(5.2). Using this parametrization, we obtained cross-sections of this singular surface DP ; see
figure 2. In this section, we show that DP is the pull-back (under a singular map) of the product
of the swallowtail and the real line.

To this end, consider the discriminant set of the model family Q : R4 → R, defined by

Q(u, κ, λ, �, α) = u4 − uq−2 + 2αu3 + �u2 + λu + κ. (5.11)

In fact, DP is the pull-back of DQ under the singular map ψ : R4 → R4, defined by

ψ(α, β, µ, ν) = (µ2 + ν2, αµ + βν, α2 + β2 + 2µ, α). (5.12)

We note in passing that the map ψ : R4 → R4, given by (5.12), has rank 2 at 0 ∈ R4. Its
singular set is given by

S(ψ) = {(α, β, µ, ν) | β2µ − αβν + ν2 = 0}
and is diffeomorphic to the product of the real line and the Whitney umbrella W = {(β, µ, ν) |
β2µ + ν2 = 0} (see also figure 4).
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Figure 4. The Whitney umbrella β2µ + ν2 = 0.

The discriminant set DQ is the product of the real line and a swallowtail, locally near
0 ∈ R4. This follows from the fact that Q is a versal unfolding of the function u �→ u4 −uq−2,
which is right-equivalent to the function u4, locally near 0 ∈ R. A universal unfolding of the
latter function is Q̄ : R × R3 → R, defined by

Q̄(u, κ, λ, �) = u4 + �u2 + λu + κ.

Since the discriminant set of Q̄ is a (standard) swallowtail-surface, it follows from
singularity theory that DQ is diffeomorphic to the product of the real line and this
swallowtail-surface.

To visualize DQ̄, we solve κ and λ from the equations

Q̄(u, κ, λ, �, α) = ∂Q̄

∂u
(u, κ, λ, �, α) = 0.

Thus we see that DQ̄ is the singular surface in R4 parametrized by

(u, �, α) �→ (κ, λ, �, α) = (−2�u − 6au2 − 4u3 + 5u4, �u2 + 4au3 + 3u4 − 4u5, �, α),

(5.13)

with (u, �, α) near (0, 0, 0) ∈ R3. In figure 5, we depict this surface, and recognize the
swallowtail geometry.

5.5. Concluding remarks for the case q � 7

First, from the above description it is clear that the resonance domain generally is more
complicated than the familiar tongue. Globally speaking the resonance domain is bounded by
a saddle-node curve: ‘inside’ at least two q-periodic solutions exist that annihilate each other
at the outer boundary. The inner boundary again consists of saddle-node curves, that meet at
a cusp or at the ‘tongue tip’. Inside the pocket- or flame-like triangular region four q-periodic
orbits exist.
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Figure 5. The discriminant set of the family Q̄(u, κ, λ, �, α) = u4 − u5 + 2αu3 + �u2 + λu + κ

parametrized by (5.13), locally near 0 ∈ R4. This surface is the product of the real line and a
swallowtail, near 0 ∈ R4. Top row: cross-sections of DQ̄ with planes (w, α) = (w0, α0). Bottom
row: cross-sections of DQ̄ with hyperplanes α = α0.

Second, the sharpness of the ‘tongue’ at the resonance (µ, ν) = (0, 0) in the central
singularity τ = 0 can be computed directly from equations (5.5); it is

ν ≈ (−µ)(q−2)/4, (5.14)

which is a (q − 2)/4 cusp. Note that the degenerate cusp is blunter than the (q − 2)/2 cusp
we found in the standard nondegenerate case q � 5, see (4.1). In this unfolding, for τ �= 0 the
‘tongue’ tip will be a nondegenerate (q − 2)/2 cusp, where the leading coefficient depends on
the value of τ.

Third, we comment on the scale of the present phenomena. From the numerical
experiments, we see that for θ near 0.5, the description of the local geometry covers two
scales—both of which are local. The secondary cusps and pockets or flames occur on a small
scale. On a larger scale the resonance domain looks like a rather blunt cusp. These conclusions
challenge the standard view of a sharp resonance tongue when q � 5. Compare this behaviour
to the case where τ is in the first quadrant, i.e. where 0 < θ < 0.25. In this case, the tongues
near the degeneracy τ = 0 behave very much like tongues in the nondegenerate case.

6. Conclusions

We have developed a method, based on Liapunov–Schmidt reduction and Zq-equivariant
singularity theory, to find period q resonance tongues in a Hopf bifurcation for dissipative
maps. We recovered the standard nondegenerate results [2,37], but also illustrated the method
on the degenerate case q � 7. We now address various issues related to these methods and
results that we aim to pursue in future research.

First, we would like to get a better understanding of the way in which the four-dimensional
geometry, in particular the swallowtail catastrophe and the Whitney umbrella, determine the
possible pockets or flames in the resonance tongues. Related to this, we would like to address
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the question of strong resonances q � 6 in the degenerate case; this method can be adapted
to these cases. To compute and visualize higher dimensional resonance domains we envision
applying a combination of analytic and experimental techniques.

Second, our methods can be extended to other contexts, in particular, to cases where extra
symmetries, including time reversibility, are present. This holds both for Liapunov–Schmidt
reduction and Zq equivariant singularity theory. In this respect Golubitsky et al [23], Knobloch
and Vanderbauwhede [27, 29], and Vanderbauwhede [38] are helpful.

Third, there is the issue of how to apply our results to a concrete family of dynamical
systems. Golubitsky and Schaeffer [24] describe methods for obtaining the Taylor expansion
of the reduced function g(z) in terms of the Poincaré map P and its derivatives. These methods
may be easier to apply if the system is a periodically forced second-order differential equation,
in which case the computations again may utilize parameter-dependent Floquet theory.

For numerical experiments our results may be helpful in the following way. If the third
order ‘Hopf coefficients’ vanish at a specific parameter value, then, for nearby parameter
values, we expect resonance tongues as described in section 5.

Finally, in this paper, we have studied only degeneracies in tongue boundaries. It would
also be interesting to study low codimension degeneracies in the dynamics associated to
the resonance tongues. Such a study will require tools that are more sophisticated than the
singularity theory ones that we have considered here.
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Appendix A. Proofs of the singularity theory theorems

This section divides into three parts. In the short first part we complete our description of
Zq-equivariant contact equivalence by describing the structure of the mappings S satisfying
the equivariance condition (2.5). The second part is devoted to deriving explicit generators
for the tangent space of a Zq-equivariant mapping under contact equivalence. The last part
uses the general ‘tangent space constant’ and ‘universal unfolding theorems’ of equivariant
singularity theory [22, 24, 25] to derive the normal form theorems in section 2.

Lemma A.1. Every map germ S(z) : C → C that satisfies (2.5) has the form

S(z)y = α(u, v, w)y + (ϕ(u, v, w)z2 + ψ(u, v, w)z̄q−2)ȳ,

where α, ϕ, ψ are complex-valued and have the form (2.2).

Proof. A real linear map from C to C can be written as y �→ αy + βȳ where α, β ∈ C. It
follows that the linear map S(z) has the form

S(z)(y) = α(z)y + β(z)ȳ.

The equivariance condition (2.5) implies that

α(γ z) = α(z) and β(γ z) = γ 2β(z).

The equivariance condition on β(z) implies that

β(z) = ϕ(z)z2 + ψ(z)z̄q−2,
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where ϕ and ψ are complex Zq-invariant functions. We may assume that α, ϕ, ψ are functions
of u, v, w that are affine linear in w (see (2.2)). �

Of course, since Z(z) is Zq-equivariant, it has the form

Z(z) = ζ(z)z + ξ(z)z̄q−1,

where ζ and ξ are complex Zq-invariant functions. Thus Zq contact equivalences are
determined by five complex-valued Zq-invariant functions α, ϕ, ψ , ζ , ξ .

The Zq tangent space. Equivariant singularity theory has two main theorems that are used
to determine Zq-equivariant normal forms. Let T (g) be the ‘tangent space’ of g, which we
define formally in definition A.2. The tangent space constant theorem states that if p : C → C
is Zq-equivariant and

T (g + tp) = T (g)

for all t ∈ R, then g + p is contact equivalent to g. The universal unfolding theorem states
that if V = R{p1(z), . . . , pk(z)} is a complementary subspace to T (g) in the space of germs
of Zq-equivariant mappings, then

G(z, α1, . . . , αk) ≡ g(z) + α1p1(z) + · · · + αkpk(z)

is a universal unfolding of g.
The tangent space to a Zq-equivariant germ g is generated by infinitesimal versions of S

and Z in (2.4), as follows.

Definition A.2. The tangent space of g(z) consists of all germs of the form

d

dt
gt (z)

∣∣∣∣
t=0

,

where gt (z) is a one-parameter family of germs that are contact equivalent to g(z) and g0 = g.

The assumption that gt is a one-parameter family of germs that are contact equivalent to
g means that

gt (z) = S(z, t)g(Z(z, t)),

where S and Z satisfy the appropriate equivariance conditions. The assumption that g0 = g

allows us to assume that S(z, 0) = 1 and Z(z, 0) = z. When computing the tangent space of
g, linearity implies that we need consider only the deformations defined by the five invariant
functions in the general equivalence—three coming from S(z) and two from Z(z). Thus

Lemma A.3. The tangent space T (g) is generated by 16 generators with coefficients that
are real-valued Zq-invariant functions of u and v. The first 12 generators are obtained by
multiplying each of the following three generators by 1, w, i, and iw:

g(z) z2g(z) z̄q−2g(z). (A.1)

The remaining four generators are:

(dg)z(z) (dg)z(iz) (dg)z(z̄
q−1) (dg)z(iz̄

q−1). (A.2)

Proof. Lemma A.1, coupled with (2.2), states that the function S is generated by six generators
with coefficients that are functions of u and v. Lemma 2.1 states that Z is generated by two
generators. Using the chain rule in the differentiation required by definition A.2 leads to the
last four generators. �

Our next task is to compute the generators of T (g) using the identification of a Zq

equivariant g(z) with the pair of complex-valued functions (K(u, v), L(u, v)) ∈ E2
u,v .
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Proposition A.4. Let g be identified with the pair (K, L) ∈ E2
u,v where K, L are complex-

valued functions. Then, in terms of (K, L), there are 12 generators of T (g). The first eight
generators are obtained by multiplying the four generators

(K, L) (uK̄ + vL̄, −uL̄) (uq−2L̄, K̄) (uq−1L, −uK − vL)

by 1 and i. The last four generators are

(2uKu + qvKv, qL + 2uLu + qvLv)

(i(2uq−1Lv + vKv), −i(2uKv + L + vLv))

(2quq−1Kv + vKu + (q − 1)uq−2L, K + 2quq−1Lv + vLu)

(−i(vKu + 2uq−1Lu + (q − 1)uq−2L), i(K + 2uKu + vLu)).

Proof. The generators associated to multiplication by S are easiest to determine. Just compute

g(z) = Kz + Lz̄q−1, z2g(z) = uK̄z + L̄zqz, z̄q−2g(z) = K̄z̄q−1 + uq−2L̄z.

Using zqz = vz − uz̄q−1, we see that these generators correspond to:

(K, L) (uK̄ + vL̄, −uL̄) (uq−2L̄, K̄). (A.3)

To determine the generators with a w factor, use (2.3) to compute

w(K, L) = i(vK + 2uq−1L, −2uK − vL). (A.4)

Using (A.4), it follows that

w(uK̄ + vL̄, −uL̄) = i(uvK̄ + (v2 − 2uq)L̄, −2u2K̄ − uvL̄),

w(uq−2L̄, K̄) = i(2uq−1K̄ + uq−2vL̄, −vK̄ − 2uq−1L̄).

Note that

w(uK̄ + vL̄, −uL̄) = iv(uK̄ + vL̄, −uL̄) − 2iu2(uq−2L̄, K̄).

Thus, using (A.3), we see that this generator is redundant. Similarly,

w(uq−2L̄, K̄) = 2iuq−2(uK̄ + vL̄, −uL̄) − iv(uq−2L̄, K̄).

So, this generator is also redundant.
To find the tangent space generators (A.2) corresponding to Z(z), we first compute

Kz = Kuz̄ + qKvz
q−1,

Kz̄ = Kuz + qKvz̄
q−1,

where K = K(u, v) is Zq-invariant. Similar formulae hold for L. The tangent space generators
from domain coordinate changes are

(dg)z(ζ(z)z) and (dg)z(ξ(z)z̄q−1), (A.5)

where

(dg)z(y) = gz(z)y + gz̄(z)ȳ.

So we compute

gz = K + Kzz + Lzz̄
q−1

= K + (Kuz̄ + qKvz
q−1)z + (Luz̄ + qLvz

q−1)z̄q−1

= K + uKu + quq−1Lv + qKvz
q + Luz̄

q .
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Also

gz̄ = Kz̄z + (q − 1)Lz̄q−2 + Lz̄z̄
q−1

= (Kuz + qKvz̄
q−1)z + (q − 1)Lz̄q−2 + (Luz + qLvz̄

q−1)z̄q−1

= Kuz
2 + (quKv + (q − 1)L + uLu + qLvz̄

q)z̄q−2.

The first generator from (A.5) is

(dg)z(ζ z) = gzζz + gz̄ζ̄ z̄

= ζ(K + uKu + quq−1Lv + qKvz
q + Luz̄

q)z

+ζ̄ (Kuz
2 + (quKv + (q − 1)L + uLu + qLvz̄

q)z̄q−2)z̄

= ζ(K + uKu + quq−1Lv + qKvz
q)z + ζuLuz̄

q−1

+ζ̄ uKuz + ζ̄ (quKv + (q − 1)L + uLu + qLvz̄
q)z̄q−1

= ζ(K + uKu + quq−1Lv + qvKv)z + ζu(Lu − qKv)z̄
q−1

+ζ̄ u(Ku − qLvu
q−2)z + ζ̄ (quKv + (q − 1)L + uLu + qvLv)z̄

q−1, (A.6)

using z̄q = v−zq and zq = v− z̄q . Evaluating (A.6) with ζ = 1 and i yields the two generators

(K + 2uKu + qvKv, (q − 1)L + 2uLu + qvLv)

(i(K + 2quq−1Lv + qvKv), −i(2quKv + (q − 1)L + qvLv)).

Note that the form of these generators can be simplified by subtracting the generator (K, L)

from the first and (iK, iL) from the second (and then dividing by q).
The second generator from (A.5) is

(dg)z(ξ z̄q−1) = gzξ z̄q−1 + gz̄ξ̄ zq−1

= ξ(K + uKu + quq−1Lv + qKvz
q + Luz̄

q)z̄q−1

+ξ̄ (Kuz
2 + (quKv + (q − 1)L + uLu + qLvz̄

q)z̄q−2)zq−1

= ξqKvu
q−1z + ξ(K + uKu + quq−1Lv + Luz̄

q)z̄q−1

+ξ̄ ((quKv + (q − 1)L + uLu)u
q−2 + Kuz

q)z + ξ̄ quq−1Lvz̄
q−1

= ξ(qKv − Lu)u
q−1z + ξ(K + uKu + quq−1Lv + vLu)z̄

q−1

+ξ̄ ((quKv + (q − 1)L + uLu)u
q−2 + vKu)z + ξ̄u(quq−2Lv − Ku)z̄

q−1.

(A.7)

Evaluating (A.7) with ξ = 1 and ξ = i yields the last two generators:

(2quq−1Kv + vKu + (q − 1)uq−2L, K + 2quq−1Lv + vLu)

(−i(vKu + 2uq−1Lu + (q − 1)uq−2L), i(K + 2uKu + vLu)). �

A.1. Derivations of the normal forms

We now present the proofs of theorems 2.2 and 2.3.

Proof of theorem 2.2. Suppose that L(0, 0) �= 0. This case simplifies substantially because
we can divide g by L obtaining a new g, namely

g(z) = K(u, v)z + z̄q−1. (A.8)

For the g in (A.8), the 12 generators for the tangent space T (g) with real-valued Zq-invariant
coefficients of the form ϕ(u, v) are:
(K, 1) (iK, i) (K + 2uKu + qvKv, q − 1)

(uK̄ + v, −u) (iuK̄ + iv, −iu) (i(K + qvKv), −i(2quKv + q − 1))

(uq−2, K̄) (iuq−2, iK̄) (2quq−1Kv + (q − 1)uq−2 + vKu, K)

(uq−1, −uK − v) (iuq−1, −i(uK + v)) (−i((q − 1)uq−2 + vKu), i(K + 2uKu)).

(A.9)
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Next we compute the generators for the tangent space modulo (M2, M) where M is the
maximal ideal in Eu,v . Using K(0, 0) = 0 and q � 3, these generators are:

(K, 1) (iK, i) (K + 2uKu + qvKv, q − 1)

(v, 0) (iv, 0) (i(K + qvKv), −i(q − 1))

(uq−2, 0) (iuq−2, 0) ((q − 1)uq−2 + vKu, 0)

(0, 0) (0, 0) (−i((q − 1)uq−2 + vKu), 0).

(A.10)

The case q � 5. Let K = au + bv + · · · where a, b ∈ C. On substituting K into (A.10), we
obtain

(au + bv, 1) (i(au + bv), i) (3au + (q + 1)bv, q − 1)

(v, 0) (iv, 0) (i(au + (q + 1)bv), −i(q − 1))

(0, 0) (0, 0) (av, 0)

(0, 0) (0, 0) (−iav, 0)

(A.11)

for the generators of T (g) modulo (M2, M).
We claim that (M, E) is contained in the tangent space. Using Nakayama’s lemma, we

need only show that (M, E) is contained in the tangent space modulo (M2, M). Modulo
(M2, M), (M, E) is generated as a real vector space by the six vectors: (u, 0), (iu, 0),
(v, 0), (iv, 0), (0, 1), (0, i). Note that the generators in (A.10) give us (v, 0), (iv, 0) directly.
We now show that when a �= 0, the four generators that do not have a uq−2 term in them
already generate the remaining four vectors.

(u, 0) (iu, 0) (0, 1) (0, i)

aR aI 1
−aI aR 1
3aR 3aI q − 1
−aI aR −q + 1

(A.12)

The determinant of the 4 × 4 matrix in (A.12) is −q(q − 4)|a|2. Thus, when a �= 0 and q �= 4,
T (g) = (M, E). It follows from the tangent space constant theorem that g is Zq-equivalent to
(2.6) and from the universal unfolding theorem that (2.7) is a universal unfolding of (2.6).

The case q = 4. We compute the tangent space generators for this case. They are

(K, 1) (iK, i) (K + 2uKu + 4vKv, 3)

(uK̄ + v, −u) (iuK̄ + iv, −iu) (i(K + 4vKv), −i(8uKv + 3))

(u2, K̄) (iu2, iK̄) (8u3Kv + 3u2 + vKu, K)

(u3, −uK − v) (iu3, −i(uK + v)) (−i(3u2 + vKu), i(K + 2uKu)).

(A.13)

We claim that (M2, M) ⊂ T (g) whenever |a| �= 0, 1. To verify this claim, we show that

(M2, M) ⊂ T (g) + (M3, M2)

and apply Nakayama’s lemma. To verify the claim, set K = au + bv + · · · and observe that
modulo (M3, M2)

(u3, −uK − v) = (0, −v),

(iu3, −i(uK + v)) = (0, −iv),

u(8u3Kv + 3u2 + vKu, K) ≡ (auv, 0),

v(8u3Kv + 3u2 + vKu, K) ≡ (av2, 0),

u(−i(3u2 + vKu), i(K + 2uKu)) ≡ (−iauv, 0),

v(−i(3u2 + vKu), i(K + 2uKu)) ≡ (−iav2, 0).
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Therefore, as long as a �= 0, we have six of the ten vector space generators of (M2, M)

modulo (M3, M2) contained in T (g), namely,

(uv, 0) (iuv, 0) (v2, 0) (iv2, 0) (0, v) (0, iv).

Next note that modulo these six generators and (M3, M2), we have

(u2, 0) (iu2, 0) (0, u) (0, iu)

u(K, 1) aR aI 1
u(iK, i) −aI aR 1
(u2, K̄) 1 aR −aI

(iu2, iK̄) 1 aI aR

The determinant of this 4 × 4 matrix is (|a|2 − 1)2). Thus, as long as |a| �= 1, we have verified
the claim.

We can now compute the tangent space of g. Modulo (M2, M) there are six generators
of (M, E):

(u, 0) (iu, 0) (v, 0) (iv, 0) (0, 1) (0, i).

Modulo (M, E) we compute (A.13) obtaining:

(au + bv, 1) (i(au + bv), i) (3au + 5bv, 3)

(v, 0) (iv, 0) (i(au + 5bv), −3i)

(0, 0) (0, 0) (av, 0)

(0, 0) (0, 0) (0, 0).

Note that (v, 0) and (iv, 0) are always in T (g) and by taking appropriate multiples of these
vectors we can eliminate any term involving a v in the first component. Thus T (g) = (M, E)

plus linear combinations of the following vectors:

(u, 0) (iu, 0) (0, 1) (0, i)

(au + bv, 1) aR aI 1
(i(au + bv), i) −aI aR 1

(3au + 5bv, 3)/3 aR aI 1
(i(au + 5bv), −3i) −aI aR −3

It follows that when |a| �= 0, 1, the tangent space

T (g) = (M2, M) ⊕ R{(v, 0), (iv, 0), (0, i), (au, 1), (iau, 0)}.
Note that this tangent space does not change as long as a is fixed. It follows from the tangent
space constant theorem that g is Z4 contact equivalent to

g(z) = auz + z̄3,

where |a| �= 0, 1. Note that the codimension of T (g) is three.
Next we make an explicit change of coordinates so that a > 0. Compute

αg(βz) = αa|β|2βuz + αβ̄3z̄3.

By choosing α = β̄−3 we can preserve L = 1 and obtain

αg(βz) = |β|2
β̄2

auz + z̄3 = âuz + z̄3,

where â > 0 and â �= 1. Suppose a = reiθ ; then choose β = e−iθ/2 so that â = r . The
universal unfolding of g is given by (2.8).
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The case q = 3. The case q = 3 is the simplest case of all. We begin by computing the
generators when q = 3. They are:

(K, 1) (iK, i) (K + 2uKu + 3vKv, 2)

(uK̄ + v, −u) (iuK̄ + iv, −iu) (i(K + 3vKv), −i(6uKv + 2))

(u, K̄) (iu, iK̄) (6u2Kv + 3u + vKu, K)

(u2, −uK − v) (iu2, −i(uK + v)) (−i(2u + vKu), i(K + 2uKu)).

(A.14)

We claim that (M, E) is always contained in the tangent space of g. To verify the claim,
compute the generators in (A.14) modulo (M2, M), obtaining:

(K, 1) (iK, i) (K + 2uKu + 3vKv, 2)

(v, 0) (iv, 0) (i(K + 3vKv), −2i)

(u, 0) (iu, 0) (3u + vKu, 0)

(0, 0) (0, 0) (−i(2u + vKu), 0).

(A.15)

It is transparent that we obtain all of the generators of (M, E) modulo (M2, M). It follows
that T (g) = (M, E)—independent of K .

Proof of theorem 2.3. We assume that K(0, 0) = Ku(0, 0) = 0 and that K = cu2 + bv + · · ·.
We claim that (M3 + M〈v〉, M) ⊂ T (g). We begin by computing the generators in (A.9)
modulo (M4 + M2〈v〉, M2). Need q � 6 here.

(K, 1) (iK, i) (K + 2uKu + qvKv, q − 1)

(uK̄ + v, −u) (iuK̄ + iv, −iu) (i(K + qvKv), −i(2quKv + q − 1))

(0, K̄vv) (0, iK̄vv) (vKu, Kvv)

(0, −v) (0, −iv) (−ivKu, iKvv).

(A.16)

We can transform the generators in (A.16) to a new set of generators modulo (M4+M2〈v〉, M2)

by using the fact that (0, v), (0, iv), (K, 1), (iK, i) are in T (g). We obtain:

(K, 1) (iK, i) ((2 − q)K + 2uKu + qvKv, 0)

(u(K + K̄) + v, 0) (iu(K + K̄) + iv, 0) q(i(K + vKv), −2iuKv)

(0, 0) (0, 0) (vKu, 0)

(0, v) (0, iv) (−ivKu, 0).

(A.17)

Note that modulo (M4 + M2〈v〉, M2)

u(u(K + K̄) + v, 0) = (uv, 0)

v(u(K + K̄) + v, 0) = (v2, 0)

u(iuK̄ + iv, −iu) = (iuv, 0)

v(iuK̄ + iv, −iu) = (iv2, 0).

The remaining vector space generators of (M3 + M〈v〉, M) modulo (M4 + M2〈v〉, M2) are
(u3, 0), (iu3, 0), (0, u), (0, iu). We can rewrite multiples of our 12 tangent space generators
in terms of these four basis vectors as:

(u3, 0) (iu3, 0) (0, u) (0, iu)

u(K, 1) cR cI 1
u(iK, i) −cI cR 1

((2 − q)K + 2uKu + qvKv, 0) (6 − q)cR (6 − q)cI

u(i(K + vKv), −2iuKv) −cI cR

Assuming that q � 7 and c �= 0, we have verified our claim.
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Next, we compute the T (g). To do this, we compute the generators of T (g) modulo
(M3 + M〈v〉, M) obtaining

(cu2 + bv, 1) (i(cu2 + bv), i) ((2 − q)K + 2uKu + qvKv, 0)

(v, 0) (iv, 0) (i(K + vKv), 0)

(0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0).

(A.18)

Since (v, 0) and (iv, 0) are always in the tangent space we can simplify the generators to

(cu2, 1) (icu2, i) ((6 − q)cu2, 0)

(v, 0) (iv, 0) (icu2, 0).
(A.19)

Since q � 7 and c �= 0, it follows that T (g) = (M2 + 〈v〉, E). Since T (g) is independent of
all terms in g, we can use the tangent space constant theorem to prove the existence of a Zq

contact equivalence of g to the normal form cu2z + zq−1, as long as c �= 0. We can now rescale
this equation so that c = 1. The universal unfolding theorem gives us the desired universal
unfolding. �

Appendix B. Proof of theorem 5.3

The proof proceeds in several steps, each giving an approximation improving the one from the
preceding step.

Claim 1. There is a neighbourhood V of (u, α) = (0, 0) and positive constant c such that, for
(u, α) ∈ V and p(u, α) = 0 we have |u| � c|α|.

Suppose this claim does not hold, then there is a sequence (un, αn) tending to (0, 0),
such that (i) |un/αn| tends to infinity, and (ii) p(un, αn) = 0. Observe that p(un, αn) =
u4

nQ(un, αn), with

Q(un, αn) = ( 1 − t2
n )(1 + tn + αntn)

2 − uq−6,

where we put tn = αn/un. Since tn tends to 0, we see that Q(un, αn) tends to 1, and hence we
conclude that p(un, αn) �= 0. This contradiction proves claim 1.

Putting p(αu, α) = α4p1(u, α), with

p1(u, α) = (u − α)2(1 + u + α)2 − αq−6uq−2,

the first claim allows us to conclude that we find all zeros of p(·, α) near 0 by considering the
bounded zeros of p1(·, α). Since p1(u, 0) = u2(u + 1)2, we see that the bounded zeros of
p1(·, α) are near 0 or 1, for α near 0. We look for zeros near 0 in claims 2 and 3, and for zeros
near 1 in claim 4.

Claim 2. There is a neighbourhood V of (u, α) = (0, 0) and a constant c > 0 such that, for
(u, α) ∈ V and p1(u, α) = 0, we have |u| � c|α|.

The proof is similar to that of claim 1. So suppose this claim does not hold, then
there is a sequence (un, αn) tending to (0, 0), such that (i) |un/αn| tends to infinity, and (ii)
p1(un, αn) = 0. Observe that p1(un, αn) = u2

nQ1(un, αn), with

Q1(un, αn) = (1 − t2
n)(1 + un + αn)

2 − αq−6
n uq−4

n .

Again tn = αn/un, so tn tends to 0. Since Q1(un, αn) tends to 1, we see that p1(un, αn) �= 0.
This contradiction proves claim 2.
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In view of claim 2 we put p1(αu, α) = α2p2(u, α), where

p2(u, α) = (u − 1)2(1 + α + αu)2 − α2q−10uq−2.

As before claim 2 allows us to conclude that the zeros of p1(·, α) near 0 can be found by looking
for the bounded zeros of p2(·, α). Since p2(u, 0) = (u− 1)2, we see that these bounded zeros
are near 1.

Claim 3. There is a neighbourhood V of (u, α) = (1, 0) and a constant c > 0 such that, for
(u, α) ∈ V and p2(u, α) = 0, we have |u − 1| � cαq−5.

Again suppose the claim is false, then there is a sequence (un, αn) tending to (1, 0),
such that (i) |un − 1|/αq−5

n tends to infinity, and (ii) p2(un, αn) = 0. Observe that
p2(un, αn) = (un − 1)2Q2(un, αn), with

Q2(un, αn) = (1 + αn + αnun)
2 − tq−5

n uq−2
n ,

where tn = α
q−5
n /(un − 1), so tn tends to zero. Therefore Q2(un, αn) tends to 1, and hence

p2(un, αn) �= 0. This contradiction proves the claim.

In view of claim 3, we observe that p2(1 + αq−5u, α) = α4p3(u, α), where

p3(u, α) = u2(1 + 2α + αq−4u)2 − (1 + αq−5u)q−2.

Since p3(u, 0) = u2 − 1, we see that for α near 0, the bounded solutions of p3(u, α) are near
u = ±1.

Claim 4. There is a neighbourhood V± of (u, α) = (±1, 0) such that, for (u, α) ∈ V±, the
equation p3(u, α) = 0 has a unique solution u = ±1+O(α). Outside V± there are no bounded
real solutions.

Indeed, since

p3(±1, 0) = 0,

∂p3

∂u
(±1, 0) = ±2 �= 0,

the implicit function theorem allows us to conclude that, for (u, α) near (±1, 0), the equation
p3(u, α) = 0 has a unique real solution u = ±1 + O(α).

The existence of a pair of zeros of the form (5.8) follows from claims 2, 3 and 4.
Now we derive the existence of the second pair of real zeros, and derive its asymptotic

expansion for small negative α.

Claim 5. There is a neighbourhood V of (u, α) = (−1, 0) and positive constant c such that,
for (u, α) ∈ V and p1(u, α) = 0 we have |u + 1 + α| � c|α|q/2−3.

Suppose this claim does not hold, then there is a sequence (un, αn) tending to (−1, 0),
such that

|un + 1 + αn|
|αn|q/2−3

tends to infinity

and

p1(un, αn) = 0.

Observe that 0 = p1(un, αn) = |αn|q−6Q(un, αn), with

Q(un, αn) = (un + 1 + αn)
2

|αn|q−6
(un − αn)

2 + σuq−2
n ,
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with

σ =
{

+1, if q is odd and α � 0,
−1, otherwise.

Since Q(un, αn) tends to infinity, we have derived a contradiction, which proves the claim.

To apply the result of claim 5, we distinguish the cases in which q is odd and q is even,
respectively.

If q is odd, we see that αq−6uq−6 = (u − α)2(u + 1 + α)2 � 0, so α � 0 if u ≈ −1.
Therefore we put α = −γ 2, and observe that

p1(−1 + γ 2 + γ q−6u, −γ 2) = γ 2q−12Q(u, γ ),

where

Q(u, γ ) = u2(−1 + 2γ 2 + γ q−6u)2 + (−1 + γ 2 + γ q−6u)q−2.

In particular, Q(u, 0) = u2 − 1, so, according to the implicit function theorem, the equation
Q(u, γ ) = 0 has two real solutions u = Ū±(γ ) for small γ , satisfying Ū±(γ ) = ±1 + O(γ ).

In view of claims 1 and 5 these zeros correspond to the zeros U±(α) satisfying (5.9). If q

is even, we again apply claim 5 and observe that

p1(−1 − α + αq/2−3u, α) = αq−6Q(u, α),

where

Q(u, α) = u2(−1 − 2α + αq/2−3u)2 − (−1 − α + αq/2−3)q−2.

Again, Q(u, 0) = u2 − 1, so the implicit function theorem gives us two unique solutions
u = Ū±(α) = −1 − α ± αq/2−2 + O(αq/2−1).

In view of claims 1 and 5 these zeros correspond to the zeros U±(α) satisfying (5.10).
�
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