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Absrracr-The problem of asymptotic stabilization of a pro- 
cess via communication channel under control input constraints 
is studied. A solution is proposed which provides encoders, 
decoders and controllers accomplishing global asymptotic sta- 
bilization of the closed-loop system provided that a suitable 
number of bits is used to encode the information generated by 
the process. The proposed solution shows interesting features: 
it employs a number of bits for encoding equal to the relative 
degree of the system and works in the presence of an adaptive 
transmission rate. 

I. INTRODUCTION 

Controlling systems over networks is becoming a problem 
of increasing importance (cf. e.g. [SI). Systems in a network 
are typically interconnected through communication channels 
with finite bandwith. As a consequence several issues arise, 
of both practical and theoretical interest. For instance, in- 
formation can be encoded only through a finite number of 
values (thus yielding quantization errors), delays and erasures 
are likely to happen, etc. In order to deal with these severe 
limitations, ad-hoc control strategies must be devised. Several 
authors have devoted studies to the problem, considering 
systems with linear or nonlinear dynamics in a deterministic 
or stochastic framework (see, to cite a few, [71, 161, [221, [231, 
1161, [31, P I ,  [211, PSI, [261, P I ,  [21, [I21 and references 
therein). Less attention has been paid to the problem of 
controlling a system through communication channels in the 
presence of additional constraints, such as input saturation, 
with some notable exceptions (cf. e.g. [SI, [17]). In this con- 
tribution, the problem is examined for a chain of integrators 
cascaded to a zero dynamics, and a solution is provided (that 
is encoders, decoders and controllers are designed so as to 
stabilize the system through a communication channel with 
finite data rate while fulfilling the constraints on the control 
input) without relying on numerical algorithms and compu- 
tational effort, but rather exploiting a robustness property of 
saturated feedback systems and adopting a suitable family 
of devices to encode and decode information generated by 
the process. The robustness property which is particularly 
convenient to tackle the problem under study is an Lz to 
L,  stability property of saturated feedback systems ([24]) 
in the presence of encoding errors (see proof of Proposition 
1 below). Using a number of bits to encode information 
that is larger than that used in [SI to achieve practical 
convergence (via input quantization), our approach allows to 

accomplish asymptotic convergence of the state to the origin. 
The encodingtdecoding methods employed in this paper are 
mainly inspired by the results of [22], [Ill.  Namely, we 
borrow from [ 111 the idea to encode the state of continuous- 
time systems and transmit the encoded information at fixed 
(discrete) sampling times and, upon reception and decoding 
by the decoder, reconstruct the “inter-sampling” behavior 
of the process to control, before a new encoded piece of 
information is received. On the other hand, we adopt the 
idea of [22] - where control of discrete-time systems under 
communication constraints is considered - to explicitly take 
into account the Jordan form of the linear subsystem of the 
process (the chain of integrators) in order to conveniently 
assess the number of bits needed to encode information. The 
result can be proven for a variety of cases which include state 
and output feedback, ISS ([ 181, [ 191) and integral ISS (1201) 
zero dynamics, and taking into account a communication 
channel with finite bandwidth, delay and adaptive (i.e. time- 
varying) transmission rate. 

Section 11 introduce the class of systems we consider and 
a technical result on robust stabilization of saturated systems. 
Encoders and decoders are introduced in III. The main result 
of the paper is stated and proved in Section IV. Conclusions 
are drawn in Section V. 

11. PRELIMINARIES 
Consider a system of the form 

t = f ( z , x ~ , . .  .,x,,sat(u)) 
X I  = 2 2  

(1) 
x,-1 = XT 

2,. = sa t (u) ,  

where z E Rn-‘, U E R, f(z,x1, ..., s,.,sat(u)) is a 
smooth mapping, and sat(.) is a saturation function, i.e. a 
globally Lipschitz function satisfying Isat(u+v) - sat(u) I 5 
min{alvl,b} and Isat(u) - U I  5 auTsat(u) for some a > 0 
and b > 0 and for all U, v E R”. 
For the z-subsystem in (1) the following property is assumed 

Assumption I: The z-subsystem in (1) is input-to-state 
stable (ISS) with respect to the input vector = 
col(x1,. . . , z,, sat(u)), i.e. there exist a classXL function 
p(., .) and a class-K: function y(.) such that, for any input 
U(.) E Lm and any initial condition zo E Rn-‘, the response 
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z ( . )  of the system from z (0 )  = zo and under the action of 
U(.) satisfies 

I4t)l L m ~ ~ ~ ( l z o l 7 ~ ) , ~ ( l l ~ ( . ) I l ~ ~  .a (2) 

For the chain of T integrators in (l), several stabilization 
results with saturated inputs exist. We exploit in what follows 
the following statement, which points out the existence of a 
controller which renders the closed-loop system robust with 
respect to a class of disturbances. We state the result for 
systems of the form 

il = 2 2 + P l d  

(3) 
&--l = x,-1 +p,-ld 
xr = sat(u)+p,d, 

with d E lR and p1 , .  . . 7 p T  real numbers. For this class of 
system, the following result is well known (cf. [24], Theorem 
2.2). 

Theorem I: ([24]) For system (3) there exists a feedback 
law of the form 

U = y(z) = sat(K1z + sat(K2z + sat(. . . + sat(K,z)))) 
(4) 

with I(, suitable RI " matrices, class-IC, functions $(.), 
?&(.), &(.), such that, for each z o  E E%" and each 

d( . )  E C2, the response of the closed-loop from the initial 
condition z(0) = 50 exists for all t 2 0 and satisfies ' 

( 5 )  
11~(.>112 I m=+{r20(l..oI), r2d(lldll2)} 

114.)11m I m ~ ~ . u ~ ( l ~ o l > ~ r ~ ( l l ~ l l 2 ~ ~  . 
When sensors and controllers are separated by means of 

a communication channel with finite bandwidth, then the 
controller can not access to the exact value of the state to 
be used in the feedback law. This happens because at each 
given time only a limited number of bits are available to 
encode the value of the state at that time. This inevitably 
introduces quantization errors. The effect of this quantization 
effect can be contained by suitably encoding the information. 
The description of the encoding (and decoding) procedure 
adopted in our scheme can be found in the remaining part 
of tlus section and at the beginning of the next one. The 
following ideas have been inspired mainly by [22] and [9]. 

Assume that the process is allowed to send a package of 
B bits over the network every T units of time, where T is a 
given positive real number. For instance, if the transmission 
is using a digital network sampling data at 8 kHz, with 8 
bitskample, then we have B = 8 and T = 1/8000. At 
each time kT at which the process is allowed to send data 
through the channel, the vector z (kT)  can be represented 
using only 2B possible values ( M " ~ . s  or sj~nzbols). The set 
of these symbols will be denoted by C and - to fix the 

I [ )  I 112 and, respectively, I/ . / I m  denote the Lz-norni and, respectively, 
the L,-norm. 

ideas - taken equal to the set of binary representations of the 
first 2B natural numbers. The device which at each time kT 
maps z(kT)  into one of the symbols in C is called encoder 
and denoted by E .  The symbol generated by the encoder 
is then transmitted through the channel to the receiver. At 
the reception, a value l i ( kT )  is generated starting from 
symbol s ( k T )  by a device called the decoder, which utilizes 
?(ST) also to generate the estimate of x(.) over the interval 
[kT,  ( k  + 1)T) (cf. (12) below). The estimate i(.) produced 
by the decoder is then used by the controller to achieve the 
desired control objective. 

111. ENCODERS A N D  DECODERS FOR A CHAIN OF 
INTEGRATORS 

In this section, we introduce devices to encode (and 
decode) information generated by the continuous-time chain 
of integrators 

f 1  = 2 2  

(6)  
X r - l  = XT 

X T  = sat(w), 

which, in order to be as concise as possible, will be referred 
to as 

f = Fx + Gsat(u) (7) 

with obvious significance of the symbols. 

Encoder At each time step kT the encoder constructs the 
hyper-rectangle R(kT) c R' with centroid C(kT)  E R' and 
edges whose lengths are given by the entries of the range 
vector L(lcT) E Wl;. Each edge of the hyper-rectangle is 
divided into 2 parts, so that the hyper-rectangle is uniformly 
partitioned into 2' parts. Assume that at each time step, 
z (kT)  E R(kT) (we shall see in Lemma 1 that this results 
in no loss of generality). Then a sub-region in R(kT) will 
exists to which the state z(kT)  belongs and the centroid of 
this subregion will be denoted by l i(kT).  It is simple to give 
an expression to this centroid. As a matter of fact, there exist 
numbers b l ,  . . . , bT, with bi E {-l7 +1} for all i = 1,. . . T ,  

such that 

The symbol s (kT)  to be sent through the channel is taken 
equal to the following sequence of 0's and 1's: 

s ( k T )  = ( 61 . . .  6' ) 

We therefore conclude that, in this case, B = T .  The values 
of C(. )  and L ( - )  used by the encoder to construct R(kT) are 



specified by the following equations: 
d 
- Z ( t )  = FZ( t )  + Gsat(u(t)) , 
dt 

t E [kT, ( k  + 1)T) , k 2 0 ,  (9) 

Z ( k T )  = ? ( k T ) ,  k 2 0 ,  

where2 C(0) := Z(O-) = 0 and vector ? ( k T )  is defined as 
in (S), having set 

C ( k T )  = z (kT-)  . 
The range vector satisfies the following equation: 

d 
dt - L( t )  = 0 ,  t E [kT, ( k  + l )T) ,  k 2 0 ,  

L ( ( k  + 1)") = AL(kT) , k 2 0 ,  
(10) 

with 
1/2 T/2 ... Tr-'/(2(r- l)!) ) (11) 
0 1/2 ... T7--2/(2(?--2)!) 

0 0 ... 1/2 

A = (  

and initial value given by Li(0) 2 21zz(0)l for i = 1,. . . , T .  
Equations (9), (10) are well-posed. In fact, at each time kT, 
the encoder first receives s ( k T )  from a sample-and-hold 
device, then acquires vectors C(kT) = Z ( k T - )  (obtained 
from the solution of (9) integrated over the interval [(k - 
l )T ,kT)  and extended to time t = kT) and L(kT) .  These 
are used to compute the quantization region R(kT)  and to 
calculate 2(kT).  The latter is used to reinitialize (9) and 
compute Z ( ( k  + 1)T-) by integrating (9) over the sampling 
interval [kT,  ( k  + 1)T). The procedure is then repeated. 
Decodel: In order to decode the symbol s(kT)  transmitted by 
the encoder, the decoder needs to know the hyper-rectangle 
Q(kT) ,  that is the values of the centroid C(kT) and dynamic 
range L(kT) .  To this purpose the following is assumed: 

Assumption 2: Vector L(0)  is available to the decoder. a 

Furthermore, the decoder implements the following equa- 
tions: 

d 
- &(t) = Fe Z d ( t )  f Gsat(u(t)) , 
dt 

t E [kT, ( k  + 1)T) , k  2 0 ,  (12) 

Z d ( k T )  = 2 ( k T ) ,  k 2 0 ,  

with ?d(O-)  = 0, and 

d 
dt - Ld(t) = 0 ,  t E [kT,  (k + 1)T) , k 2 0 ,  

Ld((k  + 1)") = ALd(kT) , k 2 0 ,  
(13) 

with Ld,z(0) = L,(O), and matrix A as in (11). We claim 
that equations (12), (13) are well-posed because j . (kT)  can 

2Henceforth, symbol a ( a - )  succinctly denotes the limit limt+o- a(t). 

be determined by the decoder. In fact, by definition, C(0) = 
Z d ( O - )  and L(0)  = Ld(0). Therefore, by (8), 2(0) can be 
determined from the knowledge of s(0). We proceed now 
by induction. Suppose now that for some k 2 0, 2(jT),  
for all 0 5 j 5 k ,  has been determined by the decoder. 
Then one can solve (12) over the interval [kT, ( k  + 1)T). 
Clearly, ~ ( t )  = ~ d ( t )  for all t E [kT, ( k + I ) T ) .  In particular, 
Z d ( ( k + l ) T - )  = C((k+l)T). On the other hand, Ld(kT)  = 
L(kT) for all k 2 0 trivially. Therefore, 2( ( k  + 1)T) can be 
determined by the decoder from the knowledge of s(k+l)T) .  
We conclude that the claim is true. Note also that, Z ( t )  = 
? d ( t )  for all t 2 0 and L(kT)  = &(kT)  for all k 2 0. 

Remark. Formulas (9) and (12) show that both the encoder 
and the decoder must have access to the input U ( . )  over the 
interval [kT, ( k  + 1)T) for all k 2 0. This may not be a too 
demanding requirement when the input U(-) is the control law 
used to stabilize the process. As a matter of fact, we shall see 
in the next section that U ( - )  is a globally Lipschitz function of 
the variable ! i d ( - ) ,  i.e. U = ~(5 .d ) .  As a consequence, both 
encoder and decoder can exactly reconstruct U (  .) provided 
that the control function x(.) is known to both the encoder 
and the decoder (Zd(-) is known to the encoder because 
Z(.) = Zd(-)). For a thorough discussion on how the type of 
knowledge the encoder possesses of the process and of the 
signals acting on it affects the performance of the encoder, 
we refer the reader to [22] and [23]. a 

The next result proves that the decoder and encoder thus 
designed allow to estimate the state of the plant. 

Lemma I :  Consider system (7). The estimate Z(-), gen- 
erated by the decoder (12), (13) starting from state x(-) 
encoded by the encoder (9), (lo), is such that: 

(i) V& > 0, 3 6 ( ~ )  2 0 such that 

lZ(0)I 5 IW)1/2  5 a(&) * 
Iz(t) - 2(t)l I E vt 2 0; 

Iz(t) - ?@)I 5 & vt 2 t (&) . 

(ii) VE > 0, It(&) 2 0 such that 

Furthermore, signal lz(.) - ?(.)I satisfies 

II.(-> - ?(*)I12 I rllU0)I 7 (14) 

for some positive constant Q. 
Prooj As a first step, we will prove that z (kT)  belongs 

to the region Cld(kT) for all k 2 0 '. At time t = 0, as 
x(0)  lies in the quantization region by construction, we have 

this proof, proving that the state lies within the hyper-rectangle R(kT) 
determined by the encoder or within the hyper-rectangle Rd(kT) determined 
by the decoder (the latter is the hyper-rectangle with centroid ? d ( k T - )  and 
edges whose lengths are given by the entries of L d ( k T ) )  does not make 
any difference since the two regions are exactly the same. To fix ideas, 
however, in what follows we shall refer to the the hyper-rectangle Rd(h.7') 
determined by the decoder. 
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I ~ j ( 0 )  - ij(0)l I Ld,j(0)/4, for each j = 1,. .. ,T .  We 
proceed now by induction and prove that 

for all k 2 0 and for each j = 1,. . . , T .  Suppose that (15) 
holds true for some IC and for each j = 1,. . . , T .  For t E 
[U, ( k  + 1)T), we have4 

( x 3 ( t )  - ~ d . ~ ( t ) l  = I(eF(t-kT))-3(z(kT) - ~ d ( k ~ ) ) (  = 

1 c ( e F ( ' - " ' )  )3.J+e(xJ+e(kT) - % , j + e ( W ) l  I 

C 2 ~ , , - 3 + r 1 x , + c ( ~  - fd,,+e(kT)I . 

T--3 

C=O 
T--3 

E=O 
(16) 

Using the inductive hypothesis (15), and recalling that 
Z d ( k T )  = 2 d ( k T )  = 2(kT),  we obtain 

with x = I In XI/T, from which (ii) is immediately derived. 
As far as the last part of the thesis is concerned, it is enough 
to notice that 

(20) . ,  

This concludes the proof. 

Remark. The proof of the lemma, namely formula (19), also 
shows that 

114.) - %d.)llcc I jiI~d(0)1/2 . Q 

T-3 Ld.,+!(W - Remark. In the proof it is the component-wise analysis of 
1% ( t )  - 3 6 3  ( f ) l  I 2A,,,+e 4 - (17) the evolution of x(-) - Zd(-) (cf. e.g. formula (16)) which 

allows to achieve less conservative results on the number of 
bits used to encode the state information and also to show (ALd(kT) /2 ) ,  = L:Iy(k + 1)T) /2 ,  

that such a number of bits is independent of the length of 
the sample period T.  Q 

where the inequality in particular holds for t = ( k  + 1)T- 
by continuity, i.e. 

IZJ ( (k  + 1)T-) - ZdJ((IC + 1)T-)l = 

I X J ( ( k  + 1)T) - Zd , , ( ( k  + 11T-11 I + 1)T)/2 . 
This implies that x( ( k  + l ) T )  lies in the quantization region 
O( (k + 1)T) and therefore 

l q ( ( I C  + 1)T) - ? J ( ( k  + 1)T)I L Ld,J( (k  + 1)T)/4 * 

The latter proves that (15) holds for all k 2: 0 and for 
each j = 1, . . . , T .  Moreover, (17) also shows that, for 
t E [kT: ( I C  + 1)T) and IC 2 0, 

I4t) - ?d(f)l I IA-&(kT)II2 . 
Noting that Ld(kT)  converges exponentially to zero as k 
diverges to infinity, one can immediately realize that the 
thesis holds. In particular, denoted by fi  and X < 1 two 
positive constants for which ILd(kT)I I jiXklLd(0)I, we 
have, for t E [kT ,  ( k  + 1)T) and k 2 0, 

(18) Ix(t )  - Z d ( t ) l  5 / a " + I I L d ( O ) l / 2  . 
Hence, for all t L 0, Ix(t) - Z d ( t ) (  I jiXILd(0)1/2. 
From the last two inequalities, (i) and (ii) are promptly 
shown. As a matter of fact, the latter inequality implies (i) 
by setting b(&) = &/(PA). On the other hand, the former 
inequality implies that for all f 2 0 

Remark. Encoders (decoders) analogous to (9), (10) (( 12), 
(13)) can be designed for any linear continuous-time systems 
so that results similar to the one above hold (see e.g. [13]). 
Q 

Iv. MAIN RESULT 

Upon introducing encoders and decoders, we are now in 
the position to state and prove the main result of the paper: 

Proposition 1: Consider system (1) 

X I  = 2 2  
i =  f (z ,  .. ' l x T ?  sat(u)) 

Xr-1 = Xr 
Xr = sat(u) , 

and let Assumption 1 hold. Then, there exists suitable ma- 
trices ICi E W l x n  for which the response of system (1) in 
closed-loop with the control law 

U = x(z~) := K1Z.d + sat(IC23d + s a t ( .  . . + s a t ( K T Z d ) ) )  , 
(21) 

where Zd(-) is the estimate generated by decoder (12), 
(13) starting from state x(.) encoded by encoder (9), (lo), 
satisfies: 
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(ii) VE > 0, 3 t ( ~ )  > 0 such that: 

Icol(z(t), 5(t))J I E ,  vt 2 t(&) . 

t =  . f (~,21, .  . ?Xr,sat(x(ad))) 

Proofi Closed-loop system (l), (21) has the form 

51 = 2 2  

(22) 
xr-l  = Xr  

1, = sat(x(z)) + d > 

where 
d = sat(X(3d)) - sat(x(z)) . 

Note that by definition of sat(-), there exists a constant p > 0 
for which 

Id1 5 el2 - % I  9 

and hence, by (14), 

lld(.>112 5 fiILd(0)l 7 (23) 

with 6 a suitable positive constant. In view of (i) in Lemma 
1, for any E I  > 0 there exists b(e1) > 0 such that 1x01 5 
ILd(O)1/2 5 b ( ~ 1 )  implies 

11~d(.)11w I E1 + ll~(*)l lKl . 
Hence, keeping in mind Assumption 1 and the easily proven 
inequality 

11~(*)11w 5 11x(*~11w + ;IIICN~d(.>llw 9 

with ;I some positive constant, if 1201 5 ILd(0)(/2 5 ~ ( E I )  

then 

ll4.)llw 5 m.x{P(Izol,O),r((l + ?>ll.(.>IlKl + ; I d )  . 
(24) 

Let ~2 > 0 and b ( ~ 2 )  > 0 be such that 1 . ~ 0 1  5 ~ ( E z )  implies 
P(lzol, 0) 5 ~ p .  From Theorem 1 it is known that 

Inequality (23) then yields 

Il4.>llw I max{r3lzol>,  r L ( G l ~ d ( o ) I ) l  
Then for any €3 > 0 there exists ~ ( E Q )  > 0 such that (Q( 5 
ILd(O)l/2 I b ( ~ 3 )  implies 1 1 ~ ( . ) 1 1 ~  5' ~ 3 .  Fix now E > 0. 
Correspondingly fix 

where we are assuming without loss of generality y(.) to be 
a class-K, function. Take now 

d ( E )  = min{b(El), 6(&2), b ( E 3 ) )  . 

Then, Icol(z0,zO)l 5 ILd(0)1/2 5 S ( E )  yields 
Icol(t(t),x(t))l I E for all t 2 0 . 

As far as attractivity is concerned, note that, by Lemma 1, 
d(.) E L2 n Lw. By Theorem (l), z(.) E L2 fl L,. Hence, 
x(.) E Lm as well and by Barbalat's lemma x(.) asymptot- 
ically converges to the origin. This in turn implies the same 
convergence property for = col(z1,. . . .IC,., sat(x(Zd)), 
since P d ( . )  is asymptotically converging to %(e) which is 
converging to zero. As a consequence, by the well-known 
convergent-input convergent-state property of ISS systems, 
Assumption 1 guarantees the state z(.) to converge to zero 
as well. 

V. CONCLUSIONS 
It has been shown how to design encoders, decoders and 

controllers which allow to stabilize a class of systems when 
sensors and actuators are separated by a communication 
channel with finite bandwidth and control input constraints 
must be fulfilled. The class of systems which has been 
considered have a well-defined uniform relative degree and 
an ISS (or iISS) zero dynamics. Note that requiring the zero 
dynamics to be ISS can be a restrictive condition. Recent 
advances in stability of cascaded systems ([ 11) have pointed 
out the possibility of relaxing such assumption by requiring 
iISS for the zero dynamics (iISS is a weaker assumption than 
ISS - cf. [20]). The same program of [ l ]  can be pursued 
for the problem at hand. Namely, it is possible to consider 
the case in which system (1) has an integral input-to-state 
stable dynamics with a suitable gain function (see [15] for 
details) and study whether or not the control law developed 
in this paper is still able to achieve asymptotic stability for 
the closed-loop system. The study rests on proving a local 
exponential decay for the solutions of the Zd-subsystem (12) 
in closed-loop with controller (21). As a consequence, it can 
be proven ([15]) that the closed-loop cascade (l), (21) does 
retain asymptotic stability as it was the case for the system 
with an ISS zero dynamics. The basic result can be extended 
to deal with various additional scenarios, such as those in 
which only output measurement is available and the channel 
exhibits transmission delay and adaptive transmission rate 
([ 151). Additional realistic features of the communication 
channel can be taken into account. Asymptotic stabilization 
using encoded saturated feedback can also be shown for the 
class of nonlinear feed-forward systems of the form: 

AI:, + " f 1 ( Z 2 , z 3 % . . . , Z U , ~ )  
A2Z2+f2(Z3,...,ZV,U) 

A,-1 Eu-l + fv-l(Zu, U )  

AU E" + !U(.) 

i=[ i 1 ,  
with gp E Rn7, 2 := (gl,. . . , gu) E R" and A, critically 
stable. Interestingly, even in this case, the number of bits 
needed to decode the information equals the dimension of the 
system and hence it is independent of the length of the sample 
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period. See [14]. The results can be extended to stabilize - 
using bounded control - systems which are exponentially 
unstable, although local or semi-global results are likely to 
emerge. 
The procedure adopted here to estimate the state of a chain of 
integrators from encoded information can be adapted to deal 
with any linear system and used to synthesize observers and 
controllers for problems such as fault detection and output 
regulation (cf. e.g. [13]). Further study must be pursued to 
understand to what extent the approach in [8] can lead to 
a smaller number of bits for information encoding and can 
be used to address the case in which also input undergoes 
encoding (papers [9], [ 101 are especially relevant to the latter 
regard). 
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