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2 Method I: Planar reduction

We apply the planar reduction method to a general two degree of freedom
system with optional symmetry, near equilibrium and close to resonance.
As a leading example the spring-pendulum close to 1:2 resonance is used.
The resulting planar model is computed explicitly, and the bifurcation
curves obtained are compared to numerical simulations.

2.1 Introduction

Our goal is to obtain a description of the dynamics and bifurcations of a Hamil-
tonian system near equilibrium. To reach this goal, we use in this chapter the
so-called planar reduction method, which we describe below. The result is a poly-
nomial Hamiltonian model system living on the plane. This system is easy to
analyze, yielding a qualitative description of the original system. In particular,
bifurcation curves are easy to find. What is new in the current approach is that
in each step towards the final polynomial model, the simplifying transformations
are computed explicitly. This allows us to pull back the final bifurcation curves
to the original parameter- and phase-space, so that quantitative results for the
bifurcations of the original system are obtained. These results can subsequently
be checked against numerical simulations of the iso-energetic Poincaré map, of
which the planar model is an integrable approximation (see e.g. [BCKV93]).
The agreement of numerical data and the pulled-back bifurcation curve is good,
especially for small excitations.

The reduction methods, used here and in the next chapter, consist of three
parts: Birkhoff normalization, symmetry reduction, and singularity theory. In
each of these stages the coordinate transformations are explicitly computed, and
especially in the first and final stage this is rather involved. For these calculations
we summon the computer’s help, using algorithms described and developed in
later chapters. Algorithms for Birkhoff normalization are described in Chap. 4,
whereas Chaps. 6 and 7 deal with the computation of the transformations for
the singularity theory stage.

The reduction methods can be applied to systems with an equilibrium at the
origin, that have a nondegenerate quadratic part exhibiting a single resonance
between two of the n degrees of freedom. Optionally, the system may have (e.g.
discrete) symmetries. The system is first subjected to the Birkhoff normalization

H. Broer, I. Hoveijn, G. Lunter, and G. Vegter: LNM 1806, pp. 21–44, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



22 2.1. Introduction

procedure. The result is a formal coordinate transformation, and a normalized
system with a Tn−1 torus symmetry. By Noether’s theorem (which holds for La-
grangian systems; see e.g. [AM78] for the Hamiltonian version), the 1-parameter
continuous symmetries are related to conserved quantities, in this context also
called momenta, see [CS85]. After applying the Birkhoff procedure, n−1 of such
independent conserved quantities can be found explicitly.

The large symmetry group and related conserved quantities imply that the
system is integrable, but generically an n degree of freedom system (n ≥ 2)
is not [BT89]. In fact, the formal transformation lifts to smooth coordinate
transformations by a theorem of Borel and Schwarz [Bro81, Dui84, GSS88],
but these do not form conjugations. However, they do transform the system to a
perturbed version of the normalized system. This perturbation is flat in the phase
variables, so that formally conserved quantities are actually adiabatic invariants,
and solution curves of the integrable system stay close to those of the original
system for a long time.

For two degrees of freedom the situation is even better. By KAM theory,
there exist a fat Cantor set of tori with parallel dynamics. On this part of phase
space, a smooth conjugation with the integrable system does exist. The KAM
tori prevent chaotic solution curves from wandering through phase space, so that
even these solutions stay within a bounded distance from the integrable system’s
tori for ever. This provides a justification for using the integrable approximation
to study the full system; see also [LL92]. From here on, therefore, we shall ignore
the flat perturbation.

Our aim in this chapter is to obtain formulas for bifurcation curves up to a
certain degree. Therefore, we also need the Taylor series of the normalized system
up to certain degree only. By performing the iteration in Birkhoff’s procedure a
finite number of times, we obtain a smooth (in fact, polynomial) transformation
and approximate symmetries, which we make exact by truncating the system.

The second part, symmetric reduction, is well-known and goes back to the
Kepler problem, see e.g. [AM78, Bro79, CS85, CB97, Mee85, Tak74b]. The idea
is to divide out the symmetry, and regard the associated conserved quantities as
parameters (also called integrals), a procedure known as orbit space reduction.
Sometimes this reduction is done on the entire phase space, and sometimes on
each leaf of the foliation defined by the levels of the integrals. Care has to be taken
when the topological type of the leaf depends on the value of these integrals,
and when the symmetry group does not act freely (i.e., when some points have
nontrivial isotropy group); see [AM78, CS85] for details. The result is a reduced
Hamiltonian system with one degree of freedom, and whose dynamics coincides
with the projection of the dynamics of the original system onto the orbit space.

At this point the planar reduction method, and the energy-momentum
method of Chap. 3 start to diverge: Both the reduced system, as well as its sub-
sequent treatment with singularity theory, are different. The reduction method
of this chapter now applies a symplectic transformation that reduces the system
to the plane, which gives the method its name.
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The last stage consists of normalizing the planar system by arbitrary right-
transformations. Such transformations are not symplectic, and therefore do not
yield conjugations. However for 1 degree of freedom systems they do yield equiva-
lences, i.e., conjugations modulo smooth time-reparametrizations. In particular,
bifurcations are preserved, as they involve equilibria in the reduced system. The
result is a polynomial model with parameters, together with transformations
and reparametrizations that connect it with the original system.

In the first part of this chapter we describe the method in general terms,
after which it is applied to the leading example of the spring-pendulum, a two
degree-of-freedom system with a Z2 × Z2 spatial and reversing symmetry.

Large parts of this chapter have been published in [BHLV98, BLV98]. The
planar reduction method as used here was introduced in [BCKV95, BCKV93].
It stands in a long tradition, see e.g. [Mee85] for a historical overview. We here
also mention the method described in [Dui84] which will receive full treatment
in Chap. 3; see also [VvdM95].

2.1.1 BCKV-restricted morphisms

An important aspect of the equivalence transformations used to simplify the
planar system, is their treatment of the distinguished parameter λ, the conserved
quantity resulting from Birkhoff normalization. It is a parameter to the planar
system, but a special one since it depends on the original phase variables, hence
the adjective distinguished. This special nature of λ is reflected in the class of
reparametrizations allowed on the planar system: It is required that the zero-
level of λ is preserved, and that reparametrizations of ordinary parameters do
not depend on λ; see remark 2.6 and [BCKV95, BCKV93] for more details.
Theorem 5.16 implements these restrictions, yielding for the case of the 1 : 2
resonance a normal form

x(x2 + y2) + (λ1 + u1)x+ (λ2 + u2)y2.

Here λi and ui are distinguished and ordinary parameters, respectively. One
consequence of the theorem is that a versal deformation requires at least two
distinguished parameters. For our application we have only one at our disposal,
a problem which is resolved by the path formulation, see [BCKV93, FSS98,
Mon94]. The resulting normal form is given in Proposition 2.16, where one of
the distinguished parameters depends explicitly on the other parameters, so that
it traces out a path through the parameter space of the versal deformation.

2.2 Details of the planar reduction method

In this section we give a detailed outline of the planar reduction method. The
method is applied to the spring-pendulum around the 1 : 2 resonance in Sect.
2.3.
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Table 2.1 Overview of the planar reduction of the spring-pendulum in 1 : 2 resonance

Section: 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7

Context: Original
Birkhoff
normal
form

Planar
reduc-
tion

Central
normal
form

Versal
defor-
mation

BCKV
normal
form

System: H0 Hn Hr Hc Hu HB

Phase space: R
4

R
4

D
2

R
2

R
2

R
2

Coefficients: ai, i ≥ 1 bi, i ≥ 2 bi, i ≥ 2 di — ai

Parameters: — b1 b1, λ ci, λ u1, u2 λ, b1
Symmetry: Z2 × Z2 Z2 × S1 Z2 Z2 Z2 Z2

During the reduction, the system, the parameters it depends on, the phase
space on which it lives, and its symmetry change several times. A summary is
given in table 2.1. Using this as a guide, we start this section by outlining the
reduction procedure leading to the BCKV normal form. In 2.2.2 we give some
notation that will be used in the sequel, after which we begin discussing the
reduction method proper.

2.2.1 Overview

The starting point is a Hamiltonian H0 with an equilibrium at the origin. It is
supposed to be close to some resonance of the form p : q, and to depend on several
coefficients ai. Optionally, the system may be invariant (or reversing) under some
symmetry group Γ , which is supposed to respect the symplectic structure. (Table
2.1 shows the symmetry group relevant for the spring-pendulum example in the
various stages during reduction.)

The first step is to apply the Birkhoff procedure around the resonance, re-
sulting in a system Hn which has acquired a (formal) S1-symmetry. This step
singles out a detuning parameter denoted by b1, which measures the deviation
from the resonance around which the Birkhoff procedure is performed. For con-
venience, the other coefficients are now denoted by b2, b3, . . ., and depend on the
ai.

The system Hn has two independent conserved quantities: Hn itself, and the
formal integral λ conjugate to the cyclic variable associated to the S1 symmetry.
In the cases we consider, this integral is equal to the quadratic part of Hn. Since
λ is conserved, trajectories of the system lie in level sets of λ. In the case that H0

has an elliptic equilibrium at the origin, these level sets foliate the phase space,
close to the origin, by compact sets that are homeomorphic to 3-spheres in R4.
After dividing out the S1 symmetry, on a leaf with λ nonzero and fixed, we get
an S2 (see 2.3.3). We go to a planar system by flattening out this S2 to a disk
with boundary D2. The boundary is the image of an S1-orbit which is singular
with respect to the reduction, and is called the singular circle. It coincides with
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a singularity in the coordinate transformation to the plane. The reduced system
so obtained is denoted by Hr.

The diameter of the singular circle depends on λ, and vanishes when λ does.
If the planar coordinates are denoted x, y, then in x, y, λ-space the singular
circles form a cone. From here on we ignore these singular circles, and consider
the system in a full neighborhood of the origin in R2 × R. The system is most
singular when λ = 0; this is called the central singularity, or organizing center
[Mon94]. It is subjected to a transformation in order to bring it into a simple
form. For the case of the spring-pendulum considered in Sect. 2.3, this is the
Z2-symmetric hyperbolic umbilic. We are left with a deformation Hc of this
singularity, in terms of the parameters b1 and λ.

There exists a versal deformation of the hyperbolic umbilic with only two
parameters. (In the non-equivariant case one finds three.) This deformation is
denoted by Hu. In Sect. 2.2.6 we find the reparametrizations that induce Hc

from Hu. This step is computationally involved, and is dealt with in the last
two chapters. In this step we employ a standard basis and the corresponding
division algorithm to compute the required morphisms efficiently.

Finally, we use the reparametrizations of Sect. 2.2.6 to compute the BCKV-
restricted normal form HB of our system.

2.2.2 Some notation

Symmetries and coordinate systems In the sequel, we use Cartesian canon-
ical coordinates xi, yi as well as complex variables zi, z̄i and Hamiltonian polar
coordinates Li, φi, because certain transformations take a simple form in one of
these coordinates. Two Z2-symmetries will also play a role: a mirror symmetry S
which acts on the coordinates x2, y2 only, and a time-reversal symmetry T that
acts on the momentum coordinates yi. The relations between the coordinates
and symmetries are as follows:

zi = xi + iyi =
√

2Lieiφi , z̄i = xi − iyi =
√

2Lie−iφi

φi = 1
2i log zi

z̄i
= arctan yi

xi
, Li = 1

2ziz̄i = 1
2

(
x2
i + y2

i

)
xi =

√
2Li cosφi = 1

2 (zi + z̄i), yi =
√

2Li sinφi = 1
2i (zi − z̄i)

(2.1)

T : S :
(x1, x2, y1, y2) �→ (x1, x2,−y1,−y2) (x1, x2, y1, y2) �→ (x1,−x2, y1,−y2)
(z1, z̄1, z2, z̄2) �→ (z̄1, z1, z̄2, z2) (z1, z̄1, z2, z̄2) �→ (z1, z̄1,−z2,−z̄2)
(L1, φ1, L2, φ2) �→ (L1,−φ1, L2,−φ2) (L1, φ1, L2, φ2) �→ (L1, φ1, L2, φ2 + π)

Parameters and coefficients The dynamical systems we investigate depend
on a number of variables. Certain variables are supposed to be constant during
the evolution of the system, for example the mass of a pendulum. Throughout,
we reserve the name coefficient for ‘constant variables’ that can take on arbi-
trary values, except possibly a few isolated ones excluded by non-degeneracy
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conditions. The name parameter is reserved for ‘constant variables’ which are
small. Asymptotic expansions are done in terms of phase space variables and
parameters.

Hamiltonian contexts The Hamiltonian system H we consider appears in
several versions, in the corresponding stages of the normalization process. The
current ‘stage’ or context is denoted by a superscript, e.g. H0 for the original
Hamiltonian, Hn for the Birkhoff normal form.

Big-oh notation For brevity, we use the notation O(|x, y|k) to denote terms
of total order k and higher in x and y. In standard notation, this would be
O((|x|+ |y|)k). Also, e.g. O(|ci, λ|k) stands for O((|c1|+ |c2|+ · · ·+ |λ|)k), when
c = (c1, c2, . . .) is a vector of coefficients. This will be clear from the context.

Formal power series and functions In this work we often use formal power
series. In order not to make the text unreadable, we shall all the same refer to
them simply as functions or maps or vector fields. This is no problem since all
operations on functions (maps, vector fields) are also allowed on formal power
series, with the exception of conjugations with coordinate transformations that
do not leave the origin fixed.

2.2.3 Birkhoff normalization

The first step in the reduction procedure is the application of the Birkhoff normal
form. The quadratic part of the system’s Hamiltonian H0 determines the normal
form. In particular, when the quadratic part is nondegenerate and nonresonant,
the normal form system is integrable, and exhibits only trivial dynamics. On the
other hand, if more than two harmonic oscillators are in resonance, reduction to
1 degree of freedom is not possible, and the planar reduction method cannot be
used. We restrict our attention to the case of one resonance; for more remarks
on this see the introduction to this chapter.

In Chap. 4 a description of the Birkhoff normal form procedure is given,
together with algorithms that implement it. Here we give the results of the
computation. The Birkhoff normal form of a Hamiltonian H0 with an elliptic
equilibrium at the origin, is determined chiefly by the kernel of adH2 , where H2
is the quadratic part of H0. Since the Birkhoff normal form procedure generally
yields a divergent power series, we work in the ring R = R[[zi, z̄i]] of formal
power series (see Sect. 2.1 for remarks). Here zi, z̄i are complex coordinates that
make adH2 act diagonally with respect to a monomial basis on R.

When H0 is invariant under some symmetry group Γ (that respects the
symplectic structure), the normal form procedure may be carried out within the
ring of Γ -invariant power series RΓ ; see Chap. 4 remark 4.4. For the case of
the symmetry groups considered above, we have the following result. (In general
the problem of finding basic invariant polynomials for a given group action is
difficult; see e.g. [Stu93].)



2. Method I: Planar reduction 27

Proposition 2.1. Let H2 = iz1z̄1 + iωz2z̄2, where ω �= 0, and assume Γ is
either {Id}, {Id, T} or {Id, S, T, ST}. If ω /∈ Q, a Hilbert basis for the algebra
ker adH2 in RΓ is {z1z̄1, z2z̄2}. In the case that ω = p/q = P/Q, where p, P �= 0,
q,Q > 0, Q even and gcd(p, q) = gcd(P,Q/2) = 1, the Hilbert basis for ker adH2

additionally contains

a) Γ = {Id}: zp1 z̄
q
2 , z̄p1z

q
2 (p ≥ 0) or z̄−p

1 z̄q2 , z−p
1 zq2 (p ≤ 0)

b) Γ = {Id, T}: zp1 z̄
q
2 + z̄p1z

q
2 (p ≥ 0) or z̄−p

1 z̄q2 + z−p
1 zq2 (p ≤ 0)

c) Γ = {Id, S, T, ST}: zP1 z̄
Q
2 + z̄P1 z

Q
2 (p ≥ 0) or z̄−P

1 z̄q2 + z−P
1 zq2 (p ≤ 0)

A finite set of invariants generating the invariant ring of a Lie group is called a
Hilbert basis; the terminology above is justified since ker adH2 is the invariant
ring of the Lie group consisting of exponentials of the vector field associated to
H2; see [Gat00, Hil93].

Note that since S2 = T 2 = Id, the group Γ is isomorphic to Z2 in case (b),
and isomorphic to Z2 × Z2 in case (c).

Applying Proposition 2.1 to the spring-pendulum system, which has 2 degrees
of freedom, we get the following:

Proposition 2.2. (Birkhoff normal form) Let H0 be a Hamiltonian on R4 with
vanishing linear part, invariant under T as defined in (2.1). Let H0

2 = iz1z̄1 +
iωz2z̄2 be its quadratic part, and assume that ω = P

Q = p
q with Q even, Q, q > 0

and gcd(P,Q/2) = gcd(p, q) = 1. Let

ψ = zp1 z̄
q
2 + z̄p1z

q
2 if p > 0,

ψ = z−p
1 zq2 + z̄−p

1 z̄q2 if p < 0,
ψ = zP1 z̄

Q
2 + z̄P1 z

Q
2 if H0 is S-invariant and p > 0,

ψ = z−P
1 zQ2 + z̄−P

1 z̄Q2 if H0 is S-invariant and p < 0,

then there exists a formal symplectic T -equivariant coordinate transformation φ
such that

Hn := H0 ◦ φ = H0
2 + f0(z1z̄1, z2z̄2, ψ),

where f0(ζ1, ζ2, ζ3) = iαζ3+ quadratic and higher order terms, for some α ∈ R.
If H0 is S-invariant, φ can be chosen to commute with S too. The quadratic
part H0

2 is conserved under the flow of Hn, i.e., Hn is invariant under the S1-
action Aξ : (z1, z2) �→ (eqiξz1, epiξz2), where ξ ∈ S1 ≡ R/2πZ. This action is
nondegenerate except on the axes z1 = 0 and z2 = 0 on which points have
isotropy subgroup (stabilizer) Zp ⊆ S1 and Zq ⊆ S1 respectively.

Remark 2.3. (Complex coordinates) Both in Proposition 2.1 as in Proposi-
tion 2.2 we use complex coordinates zi, z̄i, connected to Cartesian coordinates
through (2.1). Whenever we use complex coordinates, we shall assume that the
symplectic form is dz∧dz̄. The transformation from xi, yi to complex coordinates
(with this symplectic form) is symplectic with multiplier 2i. Hence, real Hamil-
tonians in Cartesian (or Hamiltonian polar) coordinates correspond to purely
imaginary Hamiltonians in complex coordinates. This explains why H0

2 is purely
imaginary in the propositions above.
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2.2.4 Reduction to planar 1 degree-of-freedom system

We now discuss the reduction to the plane, for a system in p : q resonance.
The normalized system Hn has an additional (formal) S1 symmetry, with ac-
tion (z1, z2) �→ (eiqξz1, eipξz2) for ξ ∈ S1 = R/2πZ, and corresponding conserved
quantity H0

2 = z1z̄1 + ωz2z̄2. This symmetry enables us to formally reduce to a
one degree-of-freedom system. We first express the normalized system in Hamil-
tonian polar coordinates Li, φi (see (2.1)):

(2.2) Hn(L, φ) = L1 + ωL2 + f1

(
L1, L2, L

P/2
1 L

Q/2
2 cos(Pφ1 −Qφ2)

)
.

Here, and elsewhere in this section, the functions fi are of the same form as
f0 in Proposition 2.2, differing only by innocent linear changes of variables. Let
p = P/ gcd(P,Q), q = Q/ gcd(P,Q), and let r, s be integers such that pr−qs = 1.
Consider the following symplectic coordinate change:

(2.3)

(
L̃1

L̃2

)
=
(
r s
q p

)(
L1

L2

)
,

(
φ̃1

φ̃2

)
=
(

p −q
−s r

)(
φ1

φ2

)
.

The action of a symmetry group Γ will also have to be transformed to the new
variables. In these variables, the system, the acquired S1-action and the action
of the symmetry group generators S and T that will be used in the sequel, take
the following form:

Hn(L̃, φ̃) =
1
q
L̃2 + f2(L̃1, L̃2, (pL̃1 − sL̃2)P/2(−qL̃1 + rL̃2)Q/2 cos(gcd(P,Q)φ̃1)),

T : (φ̃1, φ̃2) �→ (−φ̃1,−φ̃2),

S : (φ̃1, φ̃2) �→ (φ̃1 + qπ, φ̃2 + rπ),

S1-action : (φ̃1, φ̃2) �→ (φ̃1, φ̃2 + ξ),

from which it is manifest that L̃2 is conserved (since the conjugate variable φ̃2
is cyclic), indeed, L̃2 = qH0

2 . Note that the transformation (2.3) is invertible;
in particular, the S1-action is nondegenerate (except at certain points). This
may be contrasted to the q-sheeted cover used in [BV92]. We now reduce to a
planar system by dividing out the S1-symmetry generated by L̃2, viewing L̃2
as a distinguished parameter We denote the planar reduction of Hn we get in
this way by Hr. Calling L̃2 a parameter is justified if we consider only small
deviations from the system’s lower equilibrium 1 for then the system has little
energy, so Hn, and therefore L̃2, is small. (See also remark 2.6.) To emphasize
the role of L̃2 as parameter, we write

λ := L̃2 = qL1 + pL2

1 i.e., the pendulum not moving and hanging straight down, with gravity balancing
the spring force.
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from now on. Next, we apply the translation L̄1 = L̃1 − s
pλ, φ̄1 = φ̃1,

which in the context of planar Hamiltonian systems is a symplectic trans-
formation. The Hamiltonian then becomes Hr = λ

q + f3(L̄1, λ, L̄
P/2
1 (L̄1 −

λ
pq )

Q/2 cos(gcd(P,Q)φ̄1)). Finally, we return to Cartesian coordinates. Dropping
the constant and hence dynamically irrelevant term λ/q, we get the following:

Proposition 2.4. Under the assumptions of Proposition 2.2, letHn be a Hamil-
tonian in Birkhoff normal form. There exist coordinates x, y, λ, φ on R4 such
that λ is constant on orbits of Hn, and the projections of those orbits onto the
(x, y)-plane coincide with those of a planar Hamiltonian system Hr(x, y), with
parameter λ and independent of φ, of the form

P even: Hr = f4

(
x2 + y2 , λ , (x2 + y2)

P
2 −1(x2 − y2)

(
x2 + y2 − 2λ

pq

)Q/2)
;

P odd: Hr = f4

(
x2 + y2 , λ , (x2 + y2)

P −1
2 x

(
x2 + y2 − 2λ

pq

)Q/2)
,

where f4(ζ1, ζ2, ζ3) = b1ζ3 + h.o.t.

Remark 2.5. (Singular circle) The coordinate transformation to Hamilto-
nian polar coordinates used in (2.2) is singular at the coordinate axes L1 = 0
and L2 = 0. These axes become pL̃1 − sL̃2 = 0 and −qL̃1 + rL̃2 = 0 in the
transformed coordinates, and after translation L̄1 = 0 and L̄1 = λ/pq. The
first singularity is removed by returning to Cartesian coordinates in the plane.
The second singularity is called the singular circle (see Sect. 2.3.3). At this circle
L2 = 0 so that the coordinate φ2 is ill-defined, and therefore so is φ̄1 = pφ1−qφ2.
In particular this implies that Hr is constant on the circle; see also Sect. 2.3.3.

Remark 2.6. (The parameter λ) The adjective distinguished refers to the
fact that λ stems from the phase space of Hn, and is a parameter only for the
reduced system, not for the original one. If we are interested in the geometry
of the local level sets of Hn on the full 4-dimensional phase space, we may
not let reparametrizations of ordinary parameters depend on the distinguished
parameter, see Sect. 2.2.7. This should be contrasted to the point of view taken
in Sect. 2.2.6, where we classify the geometry of level sets in R2, and where it is
permissible to treat λ as an ordinary parameter. Note that in either setting we
do not allow reparametrizations of λ to depend on phase variables.

Remark 2.7. (Symmetries) When q is even, the acquired S1 normal form
symmetry group contains the reflection Z2 symmetry S as a subgroup. Before
reduction the symmetry group is therefore S1 × Z2 × Z2 or S1 × Z2, depending
on the parity of q, leading to a symmetry group Z2 or Z2 × Z2 for the reduced
system. See also Proposition 2.1.
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2.2.5 Reduction to the central singularity

At this point the system is reduced to a planar Hamiltonian Hr depending on a
distinguished parameter λ and several ordinary parameters. Recall that param-
eters are supposed to be small. We now look at the ‘degenerate’ Hamiltonian
that results when λ and the other parameters vanish. This is called the central
singularity, also known as the organizing center [FSS98, Mon94] and is denoted
by Hr

0 .
In the cases we consider Hr

0 is finitely determined, i.e., a finite piece of the jet
of Hr

0 is equivalent to Hr
0 itself, via a smooth planar coordinate transformation

φ. This transformation is independent of the parameters of Hr. Existence of this
transformation is guaranteed by singularity theory. Since Hr is invariant under
the action of a symmetry group, this has to be taken into account by singularity
theory; see section 5.3 for details. The result is a polynomial normal form Hr

0 ◦φ
of Hr

0 .
The central singularity reduced normal form is defined as Hc := Hr ◦ φ. At

the origin of parameter space this is equal to the polynomial normal form, i.e.,
Hc is in fact a deformation of this polynomial normal form. The final step in the
reduction process is to find a versal deformation of this normal form which can
serve as a model for Hc. This versal deformation is denoted by Hu and forms
the final model of the planar system.

2.2.6 Inducing the system from a versal deformation

With the versal deformation Hu in hand, we can find bifurcation curves in terms
of the model’s parameters. In order to pull-back these curves to the original
parameter space, we need the explicit transformations that induce Hc from the
versal deformation Hu. These transformations are used in the final step where
we find the BCKV normal form, which incorporates the distinguished nature of
the parameter λ.

Let us denote the small parameters in Hc by λ and c1, c2, . . ., and the co-
efficients by d1, d2, . . .. For the moment we disregard the distinguished nature
of λ, treating it, like the ci, as an ordinary parameter (see remark 2.6), and for
notational convenience we write λ = c0.

We want to find transformations that induce Hc from the versal deforma-
tion Hu. Assume that Hu(x, y, u1, . . . , uk) is a versal deformation of the central
singularity; see [BL75, Mon91]. It follows that there exists a pair of transforma-
tions (φ, ρ), where φ : R2 × Rc × Rd → R2 is a parameter-dependent coordinate
transformation, and ρ : Rc × Rd → Rk is a reparametrization from (ci, dj) to
(u1, . . . , uk), such that

Hu(φ(x, y, ci, di), ρ(ci, di)) = Hc(x, y, ci, di).

These transformations obey the following additional constraints: φ is equivariant
under the symmetry group, and both φ and ρ are trivial at the central singularity,
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i.e., φ(x, y, 0, di) = (x, y) and ρ(0, di) = 0. In Sect. 5.3.1 we give a necessary and
sufficient condition for a deformation to be versal. It amounts to solvability of the
well-known infinitesimal stability equation2 adapted to our equivariant context.

In the case of the 1 : 2 resonance, the central singularity is isomorphic to
x(x2 + y2), with a symmetry group Z2 acting on R2 via (x, y) �→ (x,−y). A
versal unfolding is Hu = x(x2 + y2) + u1x+ u2y

2, and the condition boils down
to: For every Z2-invariant germ g vanishing at the origin there should exist
Z2-invariant germs αi(x, y), i = 1, 2, 3 and real numbers u1, u2 such that

(2.4) g(x, y) = α1(x, y)x
∂f

∂x
+ α2(x, y)y2 ∂f

∂x
+ α3(x, y)y

∂f

∂y
+ u1x+ u2y

2.

Here f = x(x2 + y2) is the central singularity. For this f the condition is indeed
satisfied; see Sect. 5.3.2.

Starting from the infinitesimal stability condition, versality is proved by in-
voking the Mather-Malgrange preparation theorem [Mar82, Poè76]. Our interest
is not so much in proving existence, as in explicitly computing the transforma-
tions φ and ρ, up to a certain degree. An algorithm due to Kas and Schlessinger
[KS72] accomplishes this; see Sect. 7.2.2. By using the fact that equations of the
form (2.4) can be solved, it uses the solutions αi and ui to iteratively build the
transformations φ and ρ. This algorithm can be regarded as a constructive proof
of the existence of a formal solution for φ and ρ.

Our ability to compute φ and ρ now rests on our ability to compute solutions
to (2.4). This can be done efficiently using standard bases; see Chap. 6 and Sect.
7.2.3.

2.2.7 BCKV normal form

BCKV theory classifies the family of systems Hr as 2 degree-of-freedom systems.
For a given member of the family (i.e., for certain values of the coefficients) it
provides a normal form system, which is itself a 2 degree-of-freedom system. This
should be contrasted to the deformation Hu, which classifies Hr as a family of
planar systems; see remark 2.6. The parameter λ is a phase-space variable that
is constant under flows of the system. In the BCKV normal form, reparametri-
zations are not allowed to depend on λ.

It turns out to be possible to use Hu for constructing a suitable unfolding
HB (see theorem 5.16), corresponding to a generic path (surface) in a more gen-
eral parameter space. (See also [Mon94].) In this setting many more parameters
are needed for versality. The path arises when the coefficients of such a versal
normal form are expressed as functions of the available parameters. Moreover,
these parameters will be expressed in the original (physical) constants of the sys-
tem. This gives the natural set-up for the aforementioned perturbation problem.
2 See [GG73]. Necessity of this condition is immediate by considering deformations

of the form Hu(x, y, 0) + c1g(x, y) for arbitrary (symmetric) g; see [Mar82, Prop.
IV.3.2].
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�
x1

x2

m2

m1

Fig. 2.1 The spring-pendulum with its axis of symmetry

See [BCKV93] for a general discussion. For the definition of BCKV-restricted
unfoldings, see section 5.3.3.

2.3 Spring-pendulum in 1:2-resonance

This chapter ends with the application of the planar reduction method to the
spring-pendulum system. We start by introducing the system, followed by the
reduction to the polynomial normal form. At the end of this section we discuss
the 1 : 2-resonant dynamics of the spring-pendulum, and give bifurcation dia-
grams, numeric Poincaré sections and a comparisons of the predicted pulled-back
bifurcation curves with numerical data.

2.3.1 The system

The spring-pendulum is a planar pendulum suspended by a spring constrained
to move along the vertical axis. It is a typical two degree-of-freedom Hamiltonian
system with a Z2 × Z2 (time-reversal and reflection) symmetry.

We now describe the system. Masses are attached to both ends of the
rod, while both rod and spring are massless. The configuration is given by
the displacement of the suspension point and the angle of the pendulum with
the vertical axis, denoted by x1 and x2. The potential energy is U(x1, x2) =
−m2gl cosx2 + 1

2a
2x2

1 when the origin is suitably chosen. The mi denote masses,
M2 = m1 + m2, g the gravitational acceleration, l the length of the pendu-
lum and a2 the spring coefficient. The Hamiltonian of the system, expressed in
configuration coordinates xi and their conjugates yi reads

(2.5) H(x, y) = 1
2a

2x2
1 −m2gl cosx2 + l2m2y

2
1+M2y2

2−2lm2y1y2 sin x2
m2l2(2M2+m2[cos(2x2)−1]) .

This Hamiltonian exhibits two Z2-symmetries, i.e., we have a symmetry group
Γ := Z2 × Z2. Generators are a time-reversible symmetry denoted by T , and
reflection symmetry in the vertical axis, denoted by S; here
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T : (x1, x2, y1, y2) �→ (x1, x2,−y1,−y2),
S : (x1, x2, y1, y2) �→ (x1,−x2, y1,−y2).

(2.6)

Writing H as a Taylor series in the xi and yi variables, and applying a rescaling
of variables and time to tidy up the quadratic terms, we get:

Proposition 2.8. Provided that m2 �= 0 and a �= 0, by a rescaling of variables
and time we can bring the Hamiltonian (2.5) into the form

(2.7)

H0(x, y) :=
x2

1 + y2
1

2
+a1

x2
2 + y2

2

2
−8a2x2y1y2−16a3x

4
2+16a4x

2
2y

2
1+16a5x

2
2y

2
2+

+ 32a6x
3
2y1y2 + 64a7x

6
2 + 64a8x

4
2y

2
1 + 64a9x

4
2y

2
2 + h.o.t.,

where the h.o.t. are O(|x, y|7) terms, and the symplectic form is dx ∧ dy. Here
a1 =

√
gM

a
√
l

and a2 = 1
8al , and H0 is invariant under S and T .

We use (2.7) as starting-point, with no conditions on the coefficients ai.
That is, we forget about the algebraic relations between the ai that exist for
this particular system. The system (2.7) has the same qualitative form as the
spring-pendulum system. In fact, for a proper choice of the coefficients ai, and
modulo a rescaling, the latter is a high order perturbation of (2.7).

The physical origin of the system imposes some constraints on the coefficients,
for example a1 > 0 and a2 > 0. We will not use these. Instead, we keep an eye on
the non-degeneracy conditions encountered during the calculations, allowing the
ai to otherwise take arbitrary values. It turns out that some of these conditions
are implied by the physical constraints.

2.3.2 Reduction

Birkhoff normalization, reduction to a planar system Let us denote by
H2 the quadratic part of H0. At a1 = 1

2 , the kernel of adH2 is generated as an
algebra by z1z̄1, z2z̄2 and z1z̄2

2 + z̄1z
2
2 . These generators are invariant under the

action of the Z2×Z2-symmetry generated by S and T . After Birkhoff normalizing
the spring-pendulum Hamiltonian can be written as

Hn = H2 + f(z1z̄1, z2z̄2, z1z̄2
2 + z̄1z

2
2).

In the new Birkhoff coordinates, the quadratic part of the Hamiltonian is an
integral of motion. We denote this integral by λ := 2H2, see also (2.9) below.
Later on, we refer to this integral as the distinguished parameter. On the original
phase space it has the expression
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λ =
(
x2

1 + y2
1
)

+
1
2
(
x2

2 + y2
2
)

+
8a2

1 + 2a1

(
x1x

2
2 − 2x2y1y2 − x1y

2
2
)

+
4a4

a1(1 − a2
1)
(
(1 − 4a1 + 2a3

1)x
2
1x

2
2 + (1 + 4a1 − 2a2

1 − 2a3
1)x

2
2y

2
1+

(4a1 − 8a2
1)x1x2y1y2 + (−1 + 2a3

1)x
2
1y

2
2 + (−1 + 2a2

1 − 2a3
1)y

2
1y

2
2
)

+
64a2

2

(1 + 2a1)2
(
(1 + a1)x2

1 − a1y
2
1
) (
x2

2 + y2
2
)

+
4a2

2

a1(1 + 2a1)2
(−2(3 + 4a1)x2

2y
2
2 + (1 + 4a1)(x4

2 + y4
2)
)

+
(−10a3 − 2a5)x4

2 + 12(a3 + a5)x2
2y

2
2 + (6a3 − 2a5)y4

2

a1
+O(|xi, yi|5).

(2.8)

We now transform to Hamiltonian polar coordinates. The generators ziz̄i and
z1z̄

2
2 + z̄1z

2
2 take the form L1, L2 and

√
L1L2 cos(φ1 − 2φ2). The coordinates

L1, L2 are globally defined, and the angles φ1, φ2 are well-defined for L1 �= 0
and L2 �= 0, respectively. To reduce to a planar system we apply the symplectic
transformation in these coordinates (see (2.3)),

(2.9) L̄1 = L1, λ = 2L1 + L2, φ̄1 = φ1 − 2φ2, φ̄2 = φ2.

This transformation is singular for L2 = 0 and L1 �= 0, since then L̄1 �= 0 whereas
φ̄1 is ill-defined. This happens at L̄1 = λ/2, and the corresponding circle (in the
L̄1, φ̄1 polar coordinates) is called the singular circle.

The normalized system is independent of φ̄2, whereas the new coordinate φ̄1
becomes constant in the unperturbed (ω = 1

2 ) linear flow. After this we return to
complex coordinates by the usual transformation (2.1). In complex coordinates,
transformation (2.9) reads

(2.10) z1 = z′
1
z′
2

z̄′
2
, z2 = z′

2

√
1 − 2

z′
1z̄

′
1

z′
2z̄

′
2
,

where zi are the old complex coordinates. The singular circle in new coordinates
is z′

1z̄
′
1 = 1

2z
′
2z̄

′
2 (a codimension-1 subspace; it is a circle only after reduction).

Proposition 2.9. (Planar reduction) After Birkhoff normalization and reduc-
tion to one degree of freedom, for the 1 : 2 resonance (a1 ≈ 1

2 ), the Hamiltonian
(2.7) takes the form

Hr = b1ζ1 + b2ζ2 +
1
b33
ζ3 + b4ζ

2
1 + b5ζ1ζ2 + b6ζ

2
2+

b7ζ1ζ3 + b8ζ2ζ3 + b9ζ
3
1 + b10ζ

2
1ζ2 + b11ζ1ζ

2
2 + b12ζ

3
2 + b13ζ

2
3 +O(|zi, z̄i|y),

where ζ1 = x2 + y2, ζ2 = λ, ζ3 = x(x2 + y2 − λ), and the coefficients for the
terms up to order four in the original phase coordinates are given by
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b1 =
1
2
− a1; b2 = a1; b3 =

1
3
√
a2

;

b4 = 8
(

a2
2

1 + 2a1
− 3a3 − a4 + a5

)
; b5 = 8(6a3 + a4 − 2a5);

b6 = −8
(

a2
2

1 + 2a1
+ 3a3 − a5

)
.

The special form for the coefficient of ζ3 was chosen for notational convenience
in the formulas below. The coefficient b1 vanishes at resonance (a1 = 1

2 ). It is
considered to be small throughout, and is referred to as detuning parameter,
since it measures the deviation from the resonant frequency.

Remark 2.10. (Nondegeneracy conditions) From the expression of the bi,
the first nondegeneracy condition can be read off: 1 + 2a1 �= 0. If we continue
to normalize to higher orders, more conditions of the form a1 �= p/q are found,
where p/q ∈ Q.

Reduction to the central singularity Because the system is planar now,
we may use general (Z2-equivariant) planar transformation φ for further nor-
malization, as opposed to just the symplectic ones. The resulting system is
not dynamically conjugate but equivalent to the original, i.e., it is conju-
gate modulo state-dependent time-reparametrizations; for more remarks see
[BCKV95, BHLV98, BLV98, BCKV93].

The central singularity is defined by b1 = 0 (resonance) and λ = 0. At this
point the singularity still depends on the coefficients b2, b3, . . .. In this section we
bring the system at the central singularity in polynomial normal form x(x2+y2),
which is independent of the bi. This singularity is the Z2-invariant hyperbolic
umbilic (see [PS78]), in Arnol’d’s classification denoted by D+

4 .
First, by a simple scaling transformation φ0 we can achieve that the Hamil-

tonian takes the form Hr ′ := Hr
b1=λ=0 ◦ φ0 = x(x2 + y2) + h.o.t.

Remark 2.11. (Nondegeneracy conditions) This is possible provided that
the coefficient of the third-order terms (in x, y) are nonzero. This translates into
the condition a2 �= 0 (see Proposition 2.9).

Next, we look for a near-identity planar morphism φ removing the h.o.t. from
Hr ′. This morphism should respect the Z2 symmetry (x, y) �→ (x,−y). By a
generalization of [Mar82, theorem III.5.2] incorporating the symmetry group,
Hr ′ is isomorphic to x(x2 + y2); for details see Proposition 5.11 in Sect. 5.3.2.

Armed with the knowledge that φ exists we set out to compute it, using the
following iterative approach. Set φ1(x) = x, and assume that

(2.11) Hr ′ ◦ φk = x(x2 + y2) +O(|x, y|k+3)

for some k. To find φk′ with k′ = k + 1 we set φk′ = φk +
∑
αiti, where {ti}

span the space of Z2-equivariant terms in x, y of degree k′. This results in a
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set of linear equations for the real numbers αi. By existence of the normalizing
transformation, this set of equations is not over-determined, in fact it is usually
under-determined.

Proposition 2.12. There exists a coordinate transformation φ : R2 → R2 such
that Hc := Hr ◦ φ is of the form

Hc = (1 + c1)x(x2 + y2) + c2(x2 + y2) + c3x
4 + c4x

2y2 + c5y
4 +

λ(d1x+ d2x
2 + d3y

2 + d4x
3 + d5xy

2 + d6x
4 + d7x

2y2 + d8y
4) +

λ2(d12x+ d13x
2 + d14y

2) + h.o.t.,

where the h.o.t. are terms of order O(|x, y|5), O(|ci, λ|3) and O(|x, y|3|c, λ|2).
Here di = di(bj) are coefficients, and ci = ci(bj) are parameters, all of them
rational expressions in the bi, with the ci vanishing at b1 = 0. Up to third order
terms, the following is a suitable transformation φ:

φ :

{
x �→ b3x− 1

3b
5
3b4x

2 +
( 1

3b
9
3b

2
4 − 1

3b
6
3b7
)
x3 − b53b4y

2 − ( 13b93b24 + b63b7
)
xy2,

y �→ b3y + 2
3b

5
3b4xy +

( 2
3b

9
3b

2
4 − 4

3b
6
3b7x

2y
)
x2y.

Proof: This is a corollary to Proposition 5.11. The transformation φ was
computed using the algorithm outlined above.

We say that Hc is in central singularity reduced form, i.e., at the central singu-
larity b1 = λ = 0 it reduces to the normal form x(x2 + y2).

We consider φ in the above proposition to be fixed, i.e., independent of pa-
rameters. It does depend on the coefficients b2, b3, . . . however, since Hr|λ=b1=0
also depends on those. Some leading order parameters and coefficients of the
deformation Hc are:

c1 = −2
3
b1b

6
3b4, c2 = b1b

2
3,

d1 = − 1
b23
, d2 =

1
3
b23(b4 + 3b5), d3 = b23(b4 + b5).

Inducing the system from a versal deformation From proposition 5.12 in
Chap. 5 it follows that Hu = x(x2 + y2) + u1x + u2y

2 is a versal deformation
of the hyperbolic umbilic x(x2 + y2) (in the context of Z2-symmetric potential
functions). Our system Hc is now normalized to the extent that the algorithms
of Sect. 7.2 may be applied. The result is as follows:

Proposition 2.13. Let Hc be a planar Hamiltonian depending on parameters
ci and coefficients di, with central singularity x(x2 + y2) at c0 = c1 = . . . = 0,
symmetric under the Z2-action (x, y) �→ (x,−y). A versal deformation of this
central singularity is given by

Hu := x(x2 + y2) + u1x+ u2y
2,
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so that there exist φ and ρ such that

(2.12) Hc = Hu(φ(x, y, ci, di), ρ1(ci, di), ρ2(ci, di)),

with φ(x, y, 0, di) = (x, y), ρ(0, di) = (0, 0). To compute

a)φmoduloO(|x, y|A)+O(|ci|B), it is sufficient to knowHc moduloO(|x, y|A+2)+
O(|ci|B);

b)ρ modulo O(|ci|B), it is sufficient to know Hc modulo O(|ci|B) +O(|x, y|3).
For system Hc of Proposition 2.12, modulo O(|ci, λ|3) terms, and writing λ
instead of c0 again, the reparametrization ρ reads

u1 =
(
−1

3
c22 +O(c3i )

)
+ λ

(
d1 − 1

3
c1d1 − 2

3
c2d2 +O(c2i )

)
+

λ2
(
d12 − 1

3
d2
2 −

1
3
d1d4 +O(ci)

)
+O(λ3),

u2 =
(

2
3
c2 − 4

9
c2c1 +O(c3i )

)
+

λ

(
−1

3
d2 + d3 +

1
9
c3d1 − c5d1 +

2
9
c1d2 − 2

3
c1d3 +

5
9
c2d4 − c2d5 +O(c2i )

)
+

λ2
(
−1

3
d13 + d14 +

2
9
d2d4 +

1
3
d3d4 − d3d5 +

1
9
d1d6 − d1d8 +O(ci)

)
+O(λ3).

The coordinate transformation φ, modulo O(|x, y|3) +O(|ci, λ|2) terms, reads

x �→ 1
3
c2 +

1
3
d2λ+

(
1 +

1
3
c1 +

1
3
d4λ

)
x+
(

1
3
c3 +

1
3
d6λ

)
x2 + (c5 + d8λ) y2

y �→
(
1− 1

6
d4λ+

1
2
d5λ+

1
3
c1

)
y +
(

1
2
c4− 3

2
c5− 1

6
c3 +

1
2
d7λ− 3

2
d8λ− 1

6
d6λ

)
xy.

Remark 2.14. (Relevant degree for Hn) To compute ρ up to second order,
it suffices to know Hc modulo O(|ci, λ|3) + O(|x, y|3) terms. In turn, for this,
Hn modulo O(|x, y|7) terms suffices, as λ is a quadratic polynomial on the phase
space of Hn. To compute φ up to terms given in Proposition 2.13, it suffices to
know Hc modulo O(|x, y|5) +O(|ci, λ|2) terms, and again Hn modulo O(|x, y|7)
terms suffices.

Remark 2.15. (Singular circle) In Sect. 2.3.3 the singular circle of Hu is
defined as the circular level set that touches the two saddle points arising for
u1 < 0 (see Fig. 2.4). By a topological argument, its pull-back by φ must coincide
with the singular circle of Hc, defined as the set of singular points of (2.10). Up
to the order in x, y, ci and λ that φ and ρ were computed, we verified that they
indeed do.
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Proof (of proposition 2.13): The first part is proved by inspecting the Kas and
Schlessinger’s algorithm described in section 7.2.2 and 7.2.3, and the division
algorithm 6.14 of Sect. 6.3.7. The fact that Hc is required up to order A + 2
in order to compute φ only up to degree A is due to the first derivatives of
the central singularity being of second degree. Similarly, in order to fix ρ, it is
sufficient to compute Hc up to degree 2 in (x, y) as the deformation directions
associated to ρ1 and ρ2 are of degree 2 or less (namely x and y2 respectively).
A little computer algebra yields the second part.

BCKV normal form of Hc The constructive proofs of Proposition 5.19 and
Lemma 5.18 provide an algorithm for computing the BCKV normal form. Using
the reparametrizations of Proposition 2.13, we choose for Υ the following:

Υ (λ, ci) = (u2(λ, ci) − u2(λ, 0), c1, u2(0, ci), c3, c4, . . .),

which is invertible, and then σ̃2 := u1 ◦ Υ−1. The result is the following:

Theorem 2.16. (BCKV normal form:) The system Hc of Proposition 2.12 is
equivalent, modulo BCKV-restricted morphisms and reparametrizations, and
modulo terms of order O(|ci, λ|3), to

HB(x, y, λ, ci) = x(x2 + y2) + y2(λ+ c2) + x×
(
−c

2
2

3
+O(c3i )+(

d1 − c1d1

3
− 2c2d2

3
+O(c2i )

)
βλ+

(
d12 − d2

2

3
− d1d4

3

)
β2λ2+(

d1d13

3
− d1d14 − 2d1d2d4

9
− d1d3d4

3
+ d1d3d5 − d2

1d6

9
+ d2

1d8 +O(ci)
)
β3λ2

+O(λ3)
)
,

where β = 9(−3d2 +9d3 +c1(2d2−6d3)+c2(5d4−9d5)+c3d1−9c5d1)−1 +O(c2i )
The coefficient of x expressed in the ai reads:

σ̃2 = − 1
48α

(1 − 2a1)2 +O((1 − 2a1)3)+

λ

(
−9a2

2

2αδ
+

1
4αδ2

(
2a4

2 − 144a2
3 + 5a2

4 − 6a3(a4 − 16a5) + 2a4a5+

−16a2
5 + a2

2(−30a3 + a4 + 26a5) + 3a2a6
)
(1 − 2a1) +O((1 − 2a1)2)

)
+O(λ2),

where α = 3
√

2a2
2 and δ = 2a2

2 + 6a3 − a4 − 2a5.

Remark 2.17. (Nondegeneracy conditions) The BCKV normal form is only
well-defined if β is, i.e., if d2 − 3d3 �= 0. This translates into a2 �= 0 and a2

2 �=
(1 + 2a1)(3a3 + a4 − a5). For the spring-pendulum the first condition is trivial,
the second one is not.
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2.3.3 Dynamics and bifurcations

The planar system In this section we regard the system as a planar system
depending on the detuning parameter 1 − 2a1 and distinguished parameter λ.
This gives an integrable approximation to the dynamics of the iso-energetic, or
equivalently3 iso-λ, Poincaré map. In Sect. 2.2.6 we arrived at the planar versal
normal form

Hu(x, y, u1, u2) = x(x2 + y2) + u1x+ u2y
2.

The level sets of this deformation are organized by a special level set that factor-
izes into first- and second-degree algebraic curves crossing in the point (x, y) =
(−u2,±

√
−u1 − 3u2

2). These curves are given by x = −u2 and (x− 1
2u2)2 +y2 =

−u1 − 3
4u

2
2. For parameter values for which these curves cross, the second equa-

tion defines a circle separating compact level curves from unbounded ones. This
circle is referred to as the singular circle, the reason being that it is the image
of singular points of the transformation (2.10).

The deformation has the critical points (x, y) = (±
√
−(1/3)u1, 0) and

(−u2,±
√
−u1 − 3u2

2. Saddle-center and and Hamiltonian pitchfork bifurcations
occur along the curves u1 = 0 and u1 + 3u2

2 = 0, respectively (see figure 2.4).
Plugging in the reparametrizations found in Proposition 2.13, Sect. 2.3.2, yields
implicit equations for these bifurcation curves in the (λ, 1−2a1)-plane. For prac-
tical reasons we choose to solve for λ in terms of 1 − 2a1. The result is:

Proposition 2.18. In the reduced system Hc of Proposition 2.12, saddle-center
and Hamiltonian pitchfork bifurcations respectively occur along the following
curves in parameter space:

(u1 = 0 :)(2.13)

λ = − (1 − 2a1)2
(
4(5 + 8a1)a2

2 + (4a2
1 − 1)(24a3 + 5a4 − 8a5)

)
3456(1 + 2a1)a4

2
+

+O((1 − 2a1)3),
(u1 + 3u2

2 = 0 :)(2.14)

λ =
(1 − 2a1)2

64a2
2

+
(a2

2 − a4)(1 − 2a1)3

128a4
2

+O((1 − 2a1)4).

Remark 2.19. (Phantom bifurcation) The parameter λ is nonnegative, and
close to resonance (a1 ≈ 1

2 ) the solution (2.13) is negative. In the system H0,
therefore, the corresponding bifurcation does not occur. This conclusion also
follows from the observation that at the bifurcation (2.13) the singular circle
disappears, whereas Hr exhibits this singularity for all parameter values (as
long as λ > 0).

The second solution does define a bifurcation, however. We continue with its
description.
3 see [BCKV93, Sect. 4.2]
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Fig. 2.2 Qualitative picture of intersections of the reduced phase space with level
sets of Hn (here depicted as planes, which is the limiting situation for small energies,
i.e., small balloons) through the singular point in ρ2, ψ, χ-space, for three values of the
detuning parameter.

Bifurcations and dynamical implications First we discuss the bifurcation
of the reduced system Hc in the plane. If we let a1 deviate sufficiently far from
the resonant value 1

2 , the corresponding points in the (u1, u2)-plane in Fig. 2.4
will trace out a line that crosses the parabola twice, as u1 is always negative.

Assume the parabola is crossed from below. Then at first the system has one
maximum inside the singular circle, and a saddle point outside it. After the first
Hamiltonian pitchfork bifurcation, two saddle points have formed on the singular
circle, together with a minimum inside, with no critical points outside. The two
saddle points have a heteroclinic connection because of the Z2 symmetry.

The second bifurcation destroys the maximum, leaving only a minimum in-
side the circle, and again a saddle outside of it.

Topological remarks A priori the spring-pendulum lives on the fixed-energy
submanifold in R4, in our case S3. This sphere is homeomorphic to D2 × S1

modulo an identification on ∂D2 × S1.
The normalized Hamiltonian Hn on S3 has an S1-symmetry. There is one S1-

orbit on which points have stabilizer (or isotropy subgroup) Z2, see Proposition
2.2; all other points have trivial stabilizer. As an illustration of this topology,
consider the following model of S3 in the form of a map D2 × S1 → S3 given by

(x, y, φ) �→ (
√

1 − r2 cosφ,
√

1 − r2 sinφ, x cos 2φ− y sin 2φ, x sin 2φ+ y cos 2φ).

(Here r2 = x2 + y2 and D2 = {r2 ≤ 1}.) This map is surjective, and injective
on the interior of its domain. It provides a correspondence between S1-invariant
functions on S3 and functions on D2 that are constant on ∂D2, that is, functions
on S2. This conclusion holds for any4 nondegenerate S1-action on S3, and justifies
viewing the bifurcations described above on S2. This is the content of the remark
4 There exist mutually non-homotopic, even non-homeomorphic, nondegenerate S

1-
actions on S

3. This is in contrast to the case of S
2: up to homotopy between actions

there exists only 1 nondegenerate S
1-action on S

2. Here, a nondegenerate action is
an action that maps nonidentity elements to nonidentity elements.
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in Sect. 2.2, where we said that S3 divided out by an S1-action gives S2. After
this division, the singular circle collapses to a single point on S2, and is referred
to as the pole.

More precise information can be obtained by looking at the algebra. In gen-
eral, the normalized Hamiltonian can be written as Hn = f(ρ1, ρ2, ψ, χ) where
ρ1 = z1z̄1, ρ2 = z2z̄2, ψ = z1z̄

2
2 + z̄1z

2
2 and χ = (z1z̄2

2 − z̄1z
2
2)/i are invariants

generating the S1-invariant functions (i.e., they form a Hilbert basis). Note that
for time-reversible Hamiltonians the Birkhoff normal form is independent of χ,
which explains why χ does not appear in Proposition 2.2. The invariants sat-
isfy the relation ρ1ρ

2
2 = (ψ2 + χ2)/4. Moreover, reality conditions imply ρ1 ≥ 0

and ρ2 ≥ 0. The quadratic part H2 is an integral of Hn, and without loss of
generality we may reduce to H2 = 2ρ1 + ρ2 = ε, where ε is some small posi-
tive number. Then, the relation between the invariants defines a 2-dimensional
manifold in the real space R3 � (ρ1, ψ, χ), the reduced phase space, namely
(ε − 2ρ1)2ρ1 = 1

4 (ψ2 + χ2). Topologically it is a sphere in this real space, but
it has a cone-like singularity at ρ2 = 0 (see figure 2.2). This singularity has
dynamical significance: it is always a fixed point.

We now interpret the bifurcations on this (topological) sphere. Levels of Hn

are surfaces in R3 � (ρ1, ψ, χ) and intersect the reduced phase space in a curve;
again, see Fig. 2.2. For small energies the level sets of Hn will be approximately
planar on the scale of the reduced phase space (‘balloon’), and the intersection
curves are smooth circles, except for the level of the pole.

As in the previous section, suppose we traverse the (u1, u2)-plane on the
left of the u2-axis crossing the parabola of Hamiltonian pitchfork bifurcations
twice. First, the Hamiltonian has one maximum somewhere on the sphere, and
a minimum at the pole. The homoclinic5 connection appearing in the planar
normal form after the first bifurcation (see Fig. 2.5) corresponds to a level curve
passing through the pole. In this situation, the pole is no longer a minimum. At
the second bifurcation the homoclinic connection disappears, implying that the
pole is an extremum again, now a maximum.

Dynamics of the spring-pendulum At the pole, ρ2 = 0 and ρ1 is a maximum,
corresponding to the pendulum oscillating vertically without swinging (x2 = 0,
see figure 2.1). Points on this periodic orbit have nontrivial stabilizer, Z2; in other
words, the period of this orbit is (to first order) half that of the other periodic
orbits. In the literature it is referred to as the short periodic orbit. Since the pole
always exists and is always a fixed point, the short periodic orbit always exists.
Far from resonance (outside the parabola of Fig. 2.4) the pole is an extremum
of the Hamiltonian, so that this orbit is stable. It is unstable close to resonance.

In that situation, the spring-pendulum exhibits two stable periodic trajec-
tories (the long periodic orbits), corresponding to the two extrema existing on
the sphere (see the center picture in Fig. 2.2). Physically, the lower mass traces
5 The connection is not heteroclinic; see e.g. Fig. 2.2, center picture. In Fig. 2.5 the

pole is blown up to a circle, so that there the connection seems to be heteroclinic.
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out ∪-shaped and ∩-shaped paths, respectively. As the system moves away from
resonance, one of these paths gets wider while the other gets narrower, until
at bifurcation, the narrow one coincides with the short periodic orbit. After
the bifurcation only one long periodic orbit remains (which is stable); the short
periodic orbit has also become stable.

a1 = 0.40 a1 = 0.50

a1 = 0.68 a1 = 0.70

Fig. 2.3 Orbits of iso-energetic Poincaré map of H0 near 1 : 2 resonance, for various
values of detuning parameter 1− 2a1 (see Proposition 2.9). For these pictures we used
a2 = 0.07, a3 = 0.001, other coefficients zero and H0 = 0.2.

Comparison with numerical simulations To check the results above, we
integrated H0 numerically, and plotted the iso-energetic Poincaré section φ2 = 0
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for varying values of the energy and detuning parameter a1. The resulting pic-
tures, shown in figure 2.3, are similar to those found by computation and shown
in Fig. 2.5. The differences (chaotic regions, subharmonics) are caused by the
flat perturbation between the normalized H0 and Hn, destroying integrability
in H0; see also remarks in Sect. 2.1.

To check (2.14), we located some bifurcation points, by varying the detuning
parameter a1 for fixed H, a2 and a3. Other ai were set to zero. The results are
given in table 2.2. To compute λ we used equation (2.8); we see that for these
values of the energy, λ = 2H to good approximation. The final column gives the
bifurcation value of λ given by (2.14) in each situation. The agreement with the
measured value of λ is very good, especially for small H, as expected.

Bifurcation diagrams and comments For the spring-pendulum in 1 : 2
resonance, the iso-energetic Poincaré map is shown in Fig. 2.3 for various values
of the detuning parameter. Its main bifurcation occurs at a1 ≈ 0.69, where an
elliptic equilibrium disappears. To find analytic expressions for this bifurcation
value, first the planar normal form is computed, which turns out to be

x(x2 + y2) + u1x+ u2y
2.

Here ui are the unfolding parameters. Its bifurcation diagram is depicted in
Fig. 2.4. The curve u1 = 0 corresponds to a saddle-center bifurcation, while
u1 + 3u2

2 = 0 corresponds to a Hamiltonian pitchfork bifurcation. Using the
reparametrizations, it turns out that the bifurcation curve u1 = 0 does not cor-
respond to bifurcations in the original system. The other curve does, however.
Fig. 2.5 gives the bifurcation diagram in original parameters. Grey areas are por-
tions of the parameter- or phase-plane that do not correspond to a configuration
of the original system.

Table 2.2 Comparison of bifurcation values obtained numerically, and by means of
the pull-back of the bifurcation curve, (2.14)

H a1 a2 a3 λmeasured λpredicted

0.01 0.5385 0.07 0.001 0.020 0.018
0.01 0.463 0.07 0.001 0.020 0.018
0.001 0.51255 0.07 0.001 0.00200 0.00198
0.001 0.4876 0.07 0.001 0.00200 0.00199
0.001 0.5365 0.2 0.001 0.00200 0.00201
0.001 0.465 0.2 0.001 0.00200 0.00198
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Fig. 2.4 Bifurcation diagram of the Z2-invariant hyperbolic umbilic x(x2 + y2) +
u1x + u2y

2. Across the bifurcation lines saddle-center bifurcations occur. Across the
parabola u1 +3u2

2 = 0 a Hamiltonian pitchfork bifurcation occurs due to Z2 symmetry.

Fig. 2.5 Bifurcation diagram of the planar reduced system Hr, obtained from pulling
back the bifurcation diagram of Fig. 2.4 to original coordinates. Grey areas denote
portions of phase- or parameter-space that do not correspond to phase points of the
original system.
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