7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Services and Objects
Andrea, Vincenzo D’; Aiello, Marco

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Andrea, V. D., & Aiello, M. (2003). Services and Objects: Open issues. University of Groningen, Johann
Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022


https://research.rug.nl/en/publications/842cfe72-1b6f-436b-86db-1aaaab4f3f96

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SERVICES AND OBJECTS: OPEN ISSUES

Vincenzo D’ Andrea and Marco Aiello

December 2003

Technical Report # DIT-03-085






Services and Objects: Open issues

Vincenzo D’Andrea and Marco Aiello

Department of Information and Telecommunication Technologies
University of Trento
Via Sommarive, 14 38050 Trento
Ttaly
{dandrea,aiellom}@dit.unitn.it

Abstract. One of the common metaphors used in textbooks on Object-
Oriented programming (OOP) is to view objects in terms of the services
they provide, describing them in “service oriented” terms. This opens
a number of interesting questions, moving away from the simple view
of OOP as an implementation tool for Web Services. First of all: if an
Object is a Service, can we also say that a Service is an Object?

‘While the short answers seems to be negative, there are several connec-
tions between the two concepts and it is possible to exploit the large
repository of methodological tools available in OOP. What are the coun-
terparts, in terms of services, of concepts like class or instance? Is it
possible to apply techniques as containment or inheritance to services?
What are interfaces, properties and methods for services? In this paper
we try to start building some connections, underlining the open issues
and the gray areas.

1 Introduction

One of the common metaphors used in textbooks on Object-Oriented program-
ming (OOP) is to view objects in terms of the services they provide, describing
them in “service oriented” terms (see for instance [3]). Building on abstraction
and encapsulation, the key idea is to hide programming details that provide
object functionalities. An interface describes these functionalities in terms of
methods and properties, providing a logical boundary between operations invo-
cations and their implementations. Then an object is just a “server” of its own
methods. If on the one hand, this view is useful for educational purposes, on the
other hand, it represents only a minor feature when compared to inheritance,
polymorphism, code sharing, and so on.

If the object oriented paradigm is already ‘service oriented’ why is it then
that we talk about a new computing paradigm with the advent of web services?
Objects in OOP are already described as services, so is it because of the gaining
momentum of web services that one describes this new trend as a shift in comput-
ing paradigm? To answer this let us consider more precisely what a web service
is and what we mean by service orientation. In [6], Curberra et al. describe a
web service in the following way:



A Web service is a networked application that is able to interact using
standard application-to-application Web protocols over well defined in-
terfaces, and which is described using a standard functional description
language.

The interfaces no longer hide units of code, but entire applications in a way closer
to components [12]. In addition, the network plays a major role, with the conse-
quences that web services have to deal with issues typical of distributed systems
[5], such as: heterogeneity, openness, security, scalability, failure handling, con-
currency, transparency. Web services are shifting perspective on programming
and are now calling for a new term for programming. There seems to be con-
sensus on the term service oriented computing (SOC). A definition of SOC is in
the “Service Oriented Computing Manifesto” [7].

Services are autonomous platform-independent computational elements
that can be described, published, discovered, orchestrated and programmed
using XML artifacts for the purpose of developing massively distributed
interoperable applications.

The SOC definition above generalizes the one of web services. One does not
distinguish anymore among applications or components, but simply deals with
computational elements. The find-bind-use model can summarize the idea of de-
scribing, publishing, discovering, orchestrating and programming the distributed
computational entities. Standardization is explicitly mentioned and referred to
XML-based languages.

In this position paper, we indicate some areas where web services may be
contaminated by concepts and ideas from the object-oriented paradigm. We will
base our analysis on abstract object-oriented concepts trying to avoid language
peculiarities and tricks.

2 Similarities and differences

To justify a call for a paradigm shift, there must be some significant differences
between object-oriented programming and service oriented computing. What we
consider to be the key differences, among the many ones over which much hype
has grown recently, are the following three:

0]0)5 SOC
invoke VS. find-bind-use
shared context vs. multiple contexts
synchronous method invocation vs. asynchronous message passing

Find-bind-use is the heart of service orientation. A software entity that needs
a service from another entity first searches for available services, then decides



on the basis of some parameter among the available ones and only then binds
it in order to use it. On the other hand, in object-oriented programming there
is no search for service, but direct method invocation. The method must be
provided by an object running at invocation time. The find-bind-use model allows
for greater flexibility, especially in distributed environments, opening the road
for the choice of services based on non-functional requirements, such as those
ensuring quality of services.

In OOP the execution context is typically shared among all objects. Usually,
objects are written in the same language, run on the same memory space and
live for the execution span of the same program. Recent extensions allow for the
objects to be distributed (e.g., Java RMI) and to be written in different languages
(e.g., CORBA). These extensions go in the direction of service orientation, where
everything is distributed and services live in heterogeneous multiple contexts.
The operating systems in which web services live, the languages in which they are
written, the middleware used for interoperation is completely transparent in the
SOC model therefore we speak of multiple contexts of execution for interactive
web service.

Finally, the interaction between objects through method invocation, which
can be seen as a message passing mechanism, is synchronous. In open distributed
environments a more flexible communication mechanism is often necessary, that
is, the asynchronous communication among the software entities contributing to
a computation. An example of asynchronicity is when one interacts with a web
service by including an appropriate XML request inside an email.

If the above are the key mechanisms that differentiate between OOP and
SOC, one may wonder at what is the different forms of abstractions that one
considers when looking at SOC. In [3], Budd indicates how OOP realizes various
forms of abstractions. Let us compare these with the SOC case.

Composition is a central issue in service oriented computing. A large amount
of effort in research and industry is devoted to service composition. Some define
ways to design the composition of service (e.g., [4,13]) while others define how
semantically annotated services can be automatically composed (e.g., [10]).

In Object Oriented systems, composition is a design activity and it is mainly
a problem of statically designing the proper architecture of the system. The situ-
ation in Service Oriented computing is radically different: a service can build its
functionalities upon others, for instance an e-commerce purchase service could
include the actual purchase service, the shipping service and the insurance ser-
vice. The composed services are not statically designed, the services and the
supporting infrastructure are designed in terms of dynamically discovering the
other services they need to include. In other words, the service paradigm pro-
vides the capabilities for dynamic, run-time composition rather than requesting
a statically planned architecture.

The dynamic nature of composition has several consequences. Negotiation
and contractual agreements cannot be accomplished off-line, they have to be
dealt with at run-time. The role of catalogs and the discovery mechanism have
no counterpart in the world of objects and components.



Services demand a transition from static binding between objects or com-
ponents that are to be integrated to the dynamic binding of services. From the
point of view of the design there is the need of a transition from designing an
architecture to designing the enabling medium, that is, the infrastructure for
runtime composition.

In object oriented systems, the term inheritance is used to describe the
mechanism allowing the derivation of a class from another one. One may even
distinguish between several forms of inheritance. The most common form is
specialization; a class is defined in terms of specialization of a second one —
this is expressed by the is a relationships (a TextWindow is a Window, i.e., the
TextWindow has all the properties and behaviors of the Window). Specialization
implies a semantic coherence between the two classes, one class is called a subtype
of the other. Otherwise it is just a subclass, where the meanings attached to the
interface can change. It is obvious that while a subclass must have at least
some code differences with respect to the original class, a class that inherits
in the sense of subtype can leave untouched the implementation details of the
inherited class. In other words, the subclass requires a syntactical match, while
the subtype implies also a semantical match between the involved classes.

The concept of subtyping is also related to a common distinction made be-
tween what is sometime referred to as “true” inheritance versus interface inher-
itance. The former is used when a class presents the same external interface and
has access to the code of the inherited class, that is, the subclass is a subtype
unless it overrides the behavior of the inherited one. The term interface is used
when a class has the same external interface of the inherited one, but it has
no direct access to its code. In this case, it became a subtype only when the
behavior of the inherited class is reproduced with the same semantics.

In terms of implementation, a simplifying model is to view inheritance as
a special form of composition. Composition generally implies wrapping the in-
terface of the included classes, and filtering the communication between these
classes and the external world. Inheritance can be described as if the inheriting
class incorporates (composes with) the inherited one, but without filtering the
communication; the inherited class can be accessed directly. An object of the
inheriting class responds to the same invocations as an object of the inherited
class. If the subclass is also a subtype, the results will also be the same.

To think at inheritance (subtyping) as a form of composition which maintains
the interface (behavior) of the composed object, makes it easier to reason about
similar concepts in the service world.

In OOP, polymorphism indicates an operation that can take operands of
different type, i.e., objects of different classes. There are various kinds of poly-
morphism: parametric, inclusion, overloading and coercion.

Subtyping induces inclusion polymorphism. For instance, consider a class
shape which has a method draw. The circle class, which subtypes the shape
class, then also has a draw method. This allows to use a circle or a square object
with the shape operations. One can then design a system relying only on the



methods of the inherited class; run-time binding mechanism will then call into
use the proper object.

A similar concept is that of overloading. A symbol is overloaded when it is
used for operations that have different semantics depending on the class of the
operands (e.g., the ‘+’ operator in Java which adds integers and concatenates
strings).

In the service oriented architecture is hard to find equivalent notions, because
a formal concept of typing and inheritance is missing.

Design patterns [8] are often connected with OO methodologies, especially
for describing the interactions between the objects in a system. A Design Pattern
is a well understood and proved solution to a design problem, such as creating
a wrapper around an object or defining the interface between a client and a
server. A pattern differs from an algorithm because it includes both procedures
and architecture, described in a way resembling more a case study than a precise
prescription.

This approach is quite effective and can be relevant for designing and devel-
oping individual services, but its application is more related to software engi-
neering methodology while Service Oriented Computing appears to be more an
information system engineering issue.

Other typical object oriented abstraction items to be found in [3] are (1)
division into parts, encapsulation, interface and implementation, which directly
map to SOC abstraction principles; (2) the service view which is exactly where
the SOC emphasis lies; and (3) layers of specialization, history of abstraction,

frameworks, which are not relevant in this first comparison between OOP and
SOC.

3 Is a service an object?

We have so far seen that connections between objects and services are not at all
new. Some references draw explicit links between the two concepts, e.g., “As a
very rough approximation, one web service can be compared to one method in
more traditional software context” [11]. Other connections are less evident; for
instance in [1] the authors describe a methodology for defining what they call
a “Compatible Service”, that is an abstract description of a class of services,
derived from concrete services description. While this generalization mechanism
seems the opposite of creating an instance from a prototypical description, the
concepts involved are quite similar.

In general, it is not immediate to identify in the world of services an analogy
for the concepts of class and object. In OOP, a class is a category that represents
a set of objects having the same characteristics, and an object is a concrete real-
ization of a class — an instance of a class. While classes are stateless an instance
of a class has a state which depends on the sequence of operations undergone
by it. The object behavior in response to an external request is determined by
the class. All the object derived from a class will respond in the same way in



response to the same invocation, provided they are in the same state, or the
response does not depend on the state.

Are we now in the position to answer the question of whether a service is an
object? We propose a negative answer to this question, but the analysis provided
so far brings evidence to the fact that many similarities connect OOP and SOC.
More object related concepts can move into the service oriented world in order to
enhance the technology and, perhaps, clarify the role and scope of web services.
Here are the most immediate example of concept migration:

Inheritance. Of the two concepts of inheritance for OOP, the interface in-
heritance seems to be the most immediate to apply to web services. Consider
a payment service which could be subtyped in a service with acknowledgment
of receipt. In a workflow, the former could be substituted by the latter as it is
guaranteed that the same port types are implemented in the subtyped service.

Inheritance enables service substitution, service composition and it induces
a notion of inheritance on entire compositions of services. Consider a workflow
A built on a generic service and another one B with the same data and control
links, but built on services which subtype the services of A. Could we say that
B inherits from A or that B is a specialization of A7

Polymorphism. Both inclusion polymorphism and overloading can be ex-
tended to the service paradigm. A composition operation in a workflow may
have different meanings depending on the type of the composed services. For
example, composing a payment and a delivery service may have a semantics for
which the two services run in parallel; on the other hand, the composition of two
subtyped services in which the payment must be acknowledged by the payers
bank and the delivery must include the payment transaction identifier have the
semantics of a sequencing the execution of the services.

Composition. A formal and accepted notion of composition is currently
missing in the SOC domain and, as just proposed, inheritance and polymorphism
could induce such precise notions of composition over services. Could this help
dissolve the fog around the meaning of composition for web services? Could
this bring together “syntacticians” which claim that nothing can be composed if
not by design with “semanticians” which claim that anything can be composed
automatically? Perhaps not, but it could fill some of the gaps left by standards
which do not have a clear semantics, most notably, BPEL [2] which is proposing
itself as the standard for expressing aggregations of web services.

Statefullness. Finally, the difference between stateless class definitions and
statefull objects in OOP can impact web services technology where services are
stateless entities. Web services resemble more to class definitions, but the notion
of an existing instance of a service with its state is paramount. Software entities
need to access each others state in order to fully interoperate. Here the paral-
lel is with the history of HTML pages. When first introduced HTTP/HTML
interactions were stateless, but this limited by far the client-server communica-
tion. It did not take long before the introduction of statefull interactions via the
invention of ‘cookies’ [9].



The object oriented paradigm has a solid formal background and is a well-
established reality of today’s computer science. Service oriented computing is,
on the other hand, a new emerging field, which tryies to realize global inter-
operability between independent services. To meet this goal, service oriented
technology will need to solve a number of challenging issues, such as how to
manage precise service semantics. One way to attack this problems is by ‘bor-
rowing’ concepts from the object oriented world. In this paper we presented a
parallel between objects and services that might be somewhat arguable, but one
cannot dispute that services exhibit a number of object-like behaviors. Our fo-
cus has been on inheritance and polymorphism for composition semantics and
we have also stressed the need of state information for services, but we do be-
lieve that there is space for even further contamination between object oriented
methodologies and service oriented computing.

References

1. V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A methodology for
e-Service substitutability in a virtual district environment. In J. Eder and M. Mis-
sikoff, editors, CAiSE 2003, pages 552—567, 2003.

2. BEA, IBM, Microsoft, SAP AG, and Siebel. Business Process Execution Language
for Web Services, 2003. http://www-106.ibm.com/developerworks/library/ws-
bpel/.

3. T. Budd. An Introduction to Object-Oriented Programming. Addison Wesley, 2002.
(3rd edition).

4. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. eFlow: a plat-
form for developing and managing composite e-services. Technical report, Hewlett
Packard, 2000.

5. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design. Addison Wesley, 2001. (3rd edition).

6. F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and how. In
Workshop on Obejcet Orientation and Web Services OOWS2001, 2001.

7. M. Papazoglou et al. SOC: Service Oriented Computing manifesto, 2003. Working
draft available at http://www.eusoc.net.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable ObjectOriented Software. Addison-Wesley, 1995.

9. D. Kristol. HTTP cookies: Standards, privacy, and politics. ACM Transactions
on Internet Technology (TOIT), 1(2):151-198, 2001.

10. S. Mcllraith and T. Son. Adapting Golog for composition of semantic web services.
In Proc. of the Int. Conf. on Knowledge Representation and Reasoning (KR2002),
pages 482-493, 2002.

11. G. Piccinelli, A. Finkelstein, and C. Nentwich. Web service need consistency. In
Workshop on Obejcet Orientation and Web Services OOWS2002, 2002.

12. C. Szyperski. Component software: beyond object-oriented programming. Addison-
Wesley, ACM, 1998.

13. J. Yang and M. Papazoglou. Web component: A substrate for web service reuse
and composition. In CAiSE, pages 21-36, 2002.



