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Input-to-State Stabilizing MPC for Neutrally Stable Linear
Systems subject to Input Constraints

Jung-Su Kim, Tae-Woong Yoon, Ali Jadbabaie and Claudio De Persis

Abstract— MPC(Model Predictive Control) is representative
of control methods which are able to handle physical con-
straints. Closed-loop stability can therefore be ensured only
locally in the presence of constraints of this type. However,
if the system is neutrally stable, and if the constraints are
imposed only on the input, global asymptotic stability can be
obtained. A globally stabilizing finite-horizon MPC has lately
been suggested for the neutrally stable systems using a non-
quadratic terminal cost which consists of cubic as well as
quadratic functions of the state. In this paper, an input-to-
state-stabilizing MPC is proposed for the discrete-time input-
constrained neutrally stable system using a non-quadratic
terminal cost which is similar to that used in the global
stabilizing MPC, provided that the external disturbance is
sufficiently small. The proposed MPC algorithm is also coded
using an SQP (Sequential Quadratic Programming) algorithm,
and simulation results are given to show the effectiveness of
the method.

I. INTRODUCTION

MPC or model predictive control is a receding horizon
strategy, where the control is computed via an optimiza-
tion procedure at every sampling instant. It is therefore
possible to handle physical constraints on the input and/or
state variables through the optimization [18]. Over the last
decade, there have been many stability results on con-
strained MPC. Moreover, explicit solutions to constrained
MPC are proposed recently [19], [4]. These results reduce
on-line computational burden regarded as a main drawback
of MPC and extend the applicability of MPC to faster plants
as in electrical applications.

Particular attention is paid in this paper to input-
constrained systems as all real processes are subject to
actuator saturation. Generally, it is not possible to stabilize
input-constrained plants globally. However, if the uncon-
strained part of the system is neutrally stable1, then global
stabilization can be achieved. A typical example is the so-
called small gain control [20], [3], [5]; it is noted that
the Lyapunov functions used for stability analysis are non-
quadratic functions containing cubic as well as quadratic
terms.
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1All eigenvalues lie within the unit circle and those on the unit circle
are simple.

Global stabilization of input-constrained neutrally stable
systems is also possible via MPC; see e.g. [6]. As in [6],
use of infinite horizons is generally thought to be inevitable.
However, infinite horizon MPC can cause trouble in prac-
tice. For implementation, the optimization problem should
be reformulated as a finite horizon MPC with a variable
horizon, and it is not possible to predetermine a finite
upper bound on the horizon. It is only fairly recently that
globally stabilizing finite horizon MPC has been proposed
for both continuous-time and discrete-time neutrally stable
systems [12], [21], respectively. This late achievement is
based on two observations; firstly, the stability of an MPC
system is mostly proved by showing that the terminal cost
is a control Lyapunov function [18], [11]. Secondly, the
global stabilization of an input-constrained neutrally stable
system can be achieved by using a non-quadratic Lyapunov
function as mentioned above. By making use of these two
facts, a new finite horizon MPC has been suggested in
[12], [21], where a non-quadratic Lyapunov function as
in [20], [3], [5] is employed as the terminal cost, thereby
guaranteeing the closed-loop stability.

Recently, ISS (Input to State Stability) and its integral
variant, iISS(integral Input to State Stability) have become
important concepts in nonlinear systems analysis and design
[13], [1], [2]. ISS and iISS imply that the nominal system
is globally stable, and that the closed-loop system is robust
against a bounded disturbance and a disturbance with finite
energy, respectively. There have been some reports on ISS
properties of MPC [17], [15], [14]. However, these results
are limited in that plants are assumed to be open-loop stable
in [14], and only local properties are obtained in [17], [15].

On the other hand, we derive in this paper a global
ISS characterization for an input-constrained neutrally sta-
ble discrete-time plant with a restriction on the external
disturbance, by showing that the optimal cost with a non-
quadratic terminal cost is an ISS Lyapunov function. The
proposed MPC algorithm is coded using an SQP (Sequential
Quadratic Programming) algorithm, and simulation results
are given to show the effectiveness of the method.

II. AN OVERVIEW OF MPC

Following [18], a brief summary on MPC is given in this
section. Consider a discrete-time system described by

x(k + 1) = Ax(k) + Bu(k)

where x(k) ∈ R
n and u(k) ∈ R

m are the state and input,
and (A, B) is assumed to be controllable. Defining

u(k) = {u(k|k), u(k + 1|k), · · · , u(k + N − 1|k)},
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the MPC law is obtained by minimizing with respect to
u(k)

JN (x(k),u(k))=
N−1∑
i=0

l(x(k+i|k), u(k+i|k))+V (x(k+N |k))

subject to

x(k+i+1|k)=Ax(k+i|k)+Bu(k+i|k), x(k|k)=x(k)
x(k+i+1|k) ∈ X , u(k+i|k) ∈ U , i ∈ [0, N − 1]
x(k+N |k) ∈ Xf ⊂ X

where
l(x, u) = xT Qx+uT Ru (1)

with Q and R being positive definite, V (x(k+N |k)) is the
terminal cost, the sets U , X represent the input and state
constraints, and x(k + N |k) ∈ Xf is the artificial terminal
constraint employed for stability guarantees. Note that V (x)
and Xf are chosen such that V (x) is a control Lyapunov
function in Xf . The entire procedure is repeated at each
sampling instant, i.e.

u(k) = u∗(k|k)

where u∗(k + i|k) is the optimal value of u(k + i|k).
The stability properties of the resulting closed-loop are
summarized below.

Theorem 1: [18] For some local controller kf : Xf →
R

m, suppose the following:

A1. Xf is closed and 0 ∈ Xf ⊂ X ;
A2. kf (x) ∈ U , ∀x ∈ Xf (feasibility);
A3. Ax + Bkf (x) ∈ Xf , ∀x ∈ Xf (invariance);
A4. V (Ax+Bkf (x))−V (x)+ l(x, kf (x)) ≤ 0, ∀x ∈ Xf .

Then the optimization problem is guaranteed to be feasible
for all k ≥ 0 as long as the initial state x(0) can be
steerable to Xf in N steps or less (i.e. the problem is
feasible initially). In addition, the optimal cost J∗

N (k) at
time k, i.e. the minimal value of JN (x(k),u(k)) satisfies

J∗
N (k + 1) − J∗

N (k) + l(x(k), u∗(k|k)) ≤ 0,

thereby ensuring asymptotic stability of the closed-loop.

Outline of proof : Suppose that

u∗(k) = {u∗(k|k), · · · , u∗(k + N − 1|k)}
is the optimal (and thus feasible) u(k) obtained at time k,
and consider

ũ(k+1)={u∗(k+1|k),· · ·, u∗(k+N−1|k), kf (x∗(k+N |k))}
where

x∗(k+i+1|k)=Ax∗(k+i|k)+Bu∗(k+i|k), i ∈ [0, N −1].

Note that x∗(k + 1|k) = x(k + 1) as u∗(k|k) = u(k) and
that x∗(k + N |k) ∈ Xf . It then follows from A1 and A2
that ũ(k+1) is also feasible at time k+1, i.e. the feasibility

of the problem at time k+1 is guaranteed by the feasibility
at time k. Also from assumption A4 and

J∗
N (k+1)=JN (x(k+1),u∗(k+1)) ≤ JN (x(k+1), ũ(k+1)),

we have

J∗
N (k + 1) (2)

≤ JN (x(k + 1), ũ(k + 1))
= J∗

N (k)−l(x(k), u∗(k|k))+l(x∗(k+N |k), kf (x∗(k+N |k))
+V (Ax∗(k+N |k)+Bkf (x∗(k+N |k)))−V (x∗(k+N |k))

≤ J∗
N (k)−l(x(k), u∗(k|k)).

This completes the proof. �
Theorem 1 shows that if Xf is a feasible and invariant

set for x(k +1) = Ax(k)+Bkf (x(k)), MPC is stabilizing
and its domain of attraction is the set of the initial state
vectors which can be steerable to Xf in N steps or less.
An interesting consequence is that the MPC can be globally
stabilizing if kf (x) is found such that Xf = R

n. This is in
fact possible if the unconstrained plant is neutrally stable
and if constraints are imposed only on the input, i.e. X =
R

n, as discussed on small gain control in the introduction.

III. PRELIMINARIES

Some previous results on stabilization of neutrally stable
systems subject to input saturations is introduced.

Consider the following neutrally stable plant

x(k + 1) = Ax(k) + Bsat(u(k)) (3)

where x ∈ R
n, u ∈ R

m, and it is assumed as in the previous
section that (A, B) is controllable and all the eigenvalues
of A lie within and on the unit circle with those on the unit
circle being simple. The saturation function sat(·) is defined
as follows:

sat(u) = [sat(u1) sat(u2) · · · sat(um)]T

where

sat(ui) =

⎧⎨
⎩

umax, ui > umax

ui, |ui| ≤ umax

−umax, ui < −umax

and umax is a positive constant. Then for any Lu satisfying
Luumax > 1, we have

‖sat(u) − u‖ ≤ LuuT sat(u). (4)

It also follows from the neutral stability that there exists a
positive definite matrix Mc satisfying

AT McA − Mc ≤ 0. (5)

Now globally stabilizing small gain control is given by

u(k) = −κBT McAx(k) (6)

where κ (> 0) satisfies

κBT McB < I. (7)
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This control law is similar to those in [20], [3], [7]. It can
then be shown that there exists a positive definite matrix
Mq such that

(A−κBBT McA)T Mq(A−κBBT McA)−Mq = −I. (8)

The following two theorems state global asymptotic stability
of the closed-loop resulting from the small gain control and
MPC, respectively.

Theorem 2: [21] For the closed-loop system (3) and (6),
there exists a Lyapunov function W (x) such that

W (x(k)) = Wq(x(k))+λWc(x(k))

= xT (k)Mqx(k)+λ(xT (k)Mcx(k))
3
2 (9)

W (x(k+1)) − W (x(k)) ≤ −‖x(k)‖2

where

λ =
2κLuσmax(AT

c MqB)√
λmin(Mc)

(10)

with σmax and λmin denoting the maximum singular value
and the minimum eigenvalue, respectively.

Theorem 3: [21] Consider the neutrally stable plant (3)
and the following MPC law:

minimize JN (x(k),u(k))

subject to

x(k+i+1|k)=Ax(k+i|k)+Bu(k+i|k), x(k|k)=x(k)
u(k + i|k) = sat(u(k + i|k)), i ∈ [0, N − 1],

where

V (x(k + N |k)) = ΘW (x(k + N |k)),

and l(x, u) and W (x) are defined as in equations (1)
and (9), respectively. Then, given any positive integer N ,
the closed-loop is globally asymptotically stable for any
positive positive Θ satisfying

Θ ≥ Θ0 := λmax(Q + κ2AT McBRBT McA).

IV. INPUT-TO-STATE STABILIZING MPC

In this section, an input-to-state stabilizing MPC is pro-
posed such that the closed-loop system resulting from the
proposed MPC is ISS under the assumption that the ∞-
norm of the disturbance is sufficiently small. To this end,
firstly ISS of the small gain control is obtained, which is
then used to derive an ISS characterization of the proposed
MPC. To begin with, the definition of ISS and a theorem
regarding the Lyapunov characterization of ISS are stated
below, before presenting our main results.

Consider the following discrete-time nonlinear system
with an external disturbance

x(k + 1) = f(x(k), w(k)). (11)

Definition 1: [13] The system (11) is ISS if there exist
α, γ ∈ K∞ and β ∈ KL such that

α(‖x(k)‖) ≤ β(‖x(0)‖, k) + γ(‖w(k)‖). (12)

Theorem 4: [13] The system (11) is ISS if and only if
there exists an ISS Lyapunov function V : R

n → R≥0 such
that for α1, α2, α3, σ ∈ K∞, V satisfies

α1(‖x(k)‖) ≤ V (x(k)) ≤ α2(‖x(k)‖)
and

V (x(k+1))−V (x(k)) ≤ −α3(‖x(k)‖)+σ(‖w(k)‖). (13)
Remark 1: In [21], a global stabilizing MPC is proposed

by using the terminal cost function as the non-quadratic
function (9) which is a global Lyapunov function. In the
main result, a very similar non-quadratic function is em-
ployed as the terminal cost function to devise an input-to-
state stabilizing MPC.

A. ISS of the small gain control

In this subsection, an ISS characterization of the small
gain control is derived. Consider the following discrete-time
neutrally stable plant with input saturation

x(k + 1) = Ax(k) + Bsat(u(k)) + w(k) (14)

where w is an external disturbance. The next theorem shows
that the small gain control (6) stabilizes (14) in the sense
of ISS with a restriction on w(k).

Theorem 5: For the closed-loop system (14) and (6),
there exists an ISS Lyapunov function W (x) and a positive
δ such that for ‖w‖ ≤ δ,

W (x(k))=Wq(x(k))+λWc(x(k))

= xT (k)Mqx(k)+λ(xT (k)Mcx(k))
3
2 (15)

W (x(k + 1)) − W (x(k))
≤ −εW ‖x(k)‖2+βw1‖w(k)‖+βw2‖w(k)‖2 (16)

where λ is defined as in (10), and εW , βw1 and βw2 are
some positive numbers.

Proof : Proceeding as in [20], [10], we obtain the differences
of the quadratic and cubic terms as follows:

Wq(x(k + 1)) − Wq(x(k))
≤ −‖x‖2 + a12‖x‖LuuT sat(u)

+ εxq‖x‖2 + βwq2‖w‖2 + βwq1‖w‖ (17)

Wc(x(k + 1)) − Wc(x(k))
≤ 2c1c2‖w‖‖x‖2 + εxc‖x‖2

+βwc1‖w‖+βwc2‖w‖2− a2

κ
‖x‖uT sat(u) (18)

where εxq and εxc are arbitrarily small positve con-
stants, βwq1, βwq2, βwc1 and βwc2 are positive, a1 =
σmax(AT MqB), a2 =

√
λmin(Mc), c1 = 2σmax(AT Mc),

and c2 =
√

λmax(Mc). With λ in (10), we obtain

W (x(k + 1))−W (x(k))

≤
(
− 1+λ2c1c2‖w‖

)
‖x‖2+εx‖x‖2+βw2‖w‖2+βw1‖w‖

≤
(
− 1+λ2c1c2δ

)
‖x‖2+εx‖x‖2+βw2‖w‖2+βw1‖w‖
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where εx = εxq + λεxc, βw1 = βwq1 + λβwc1, and βw2 =
βwq2 + λβwc2. Note that εx can be made arbitrarily small
as εxq and εxc are arbitrarily small. Now for δ such that

−1 + λ2c1c2δ ≤ −εW − εx (19)

with 0 < εW < 1, we have

W (x(k+1))−W (x(k)) ≤ −εW ‖x‖2+βw2‖w‖2+βw1‖w‖
(20)

This completes the proof. �
Remark 2: As εW and εx can be made arbitrarily small

in (19), the inequality in (20) is valid for any δ strictly less
than 1/(2c1c2λ).

Remark 3: The ISS characterization in Theorem 5 is
similar to, but is slightly different from those in [20], [3].
In [3], the ISS characterization is obtained for the case
where the external disturbance enters into the system in
the following manner

x(k + 1) = Ax(k) + Bsat(u + w).

In [20], the ISS characterization is derived for the matched
case, i.e.

x(k + 1) = Ax(k) + Bsat(u) + Bw.

Note also that Theorem 5 can be extended to a discrete time
version of Proposition 14.1.5 of [10].

B. ISS of the proposed MPC

On the basis of the ISS property of the small-gain control
given in the previous subsection, we propose an input-to-
state stabilizing MPC. The following theorem gives a global
ISS characterization2 with a restriction on the disturbance.

Theorem 6: Consider the neutrally stable plant (14) and
the MPC law described in Theorem 3. Then, given any
positive integer N , the closed-loop system is ISS for some
positive Θ, with a restriction on the external disturbance
w(k).

Proof : For notational simplicity, define

u∗
i = u∗(k + i|k) and x∗

i = x∗(k + i|k).

Note that

u∗(k) = {u∗
0, u

∗
1, · · · , u∗

N−1}.
As in the proof of Theorem 1, consider the following
feasible vector at time k + 1

ũ(k + 1) = {u∗
1, · · · , u∗

N−1, kf (x∗
N )}

where kf (·) is defined as

kf (x) = −sat(κBT McAx), (21)

Then, in view of

x(k + 1|k + 1) = x(k + 1) = x∗(k + 1|k) + w(k) = x∗
1,

2The previous results reported in [17], [15] provide local ISS character-
izations; for the notion of local ISS, see [16] (page 192).

the resulting state predictions are given by

x(k + i|k + 1) = x∗
i + Ai−1w(k), 1 ≤ i ≤ N

x(k + N + 1|k + 1) = A(x∗
N + AN−1w(k)) + Bkf (x∗

N )
= Ax∗

N + Bkf (x∗
N ) + ANw(k)

We write JN (x(k + 1), ũ(k + 1)) as

JN (x(k + 1), ũ(k + 1)) (22)

=
N−1∑
i=1

l(x(k+i|k+1), u∗
i )+l(x(k+N |k+1), kf (x∗

N ))

+ ΘW (Ax(k+N |k+1)+Bkf (x∗
N ))

=
N−1∑
i=1

l(x∗
i +Ai−1w, u∗

i )+l(x∗
N +AN−1w, kf (x∗

N ))

+ ΘW (Ax∗
N +Bkf (x∗

N )+ANw)
= J∗

N (x,u)−l(x∗
0, u

∗
0) + M1 + M2 + M3 (23)

where

M1 = l

(
x∗

N +AN−1w, kf (x∗
N )

)

M2 = ΘW

(
Ax∗

N +Bkf (x∗
N )+ANw

)
− ΘW

(
x∗

N

)

M3 =
N−1∑
i=1

{
l(x∗

i + Ak−1w, u∗
i ) − l(x∗

i , u
∗
i )

}
.

We first consider M1 defined above as follows:

M1 = (x∗
N + AN−1w)T Q(x∗

N + AN−1w)
+ sat(κBT McAx∗

N )T Rsat(κBT McAx∗
N )

≤ (x∗
N + AN−1w)T Q(x∗

N + AN−1w)
+ (κBT McAx∗

N )T R(κBT McAx∗
N )

= x∗
N

T Qx∗
N + 2x∗

N
T QAN−1w+wT AN−1T

QAN−1w

+ x∗
N

T κ2AT McBRBT McAx∗
N

≤ ε1‖x∗
N‖2 + β1‖w‖2 (24)

where

ε1 = λmax(Q + κ2AT McBRBT McA) + εy (25)

β1 =
1
εy

‖QAN−1‖ + λmax(AN−1T
QAN−1)

and εy is an arbitrary positive constant. Therefore, ε1
can be made an arbitrary constant larger than λmax(Q +
κ2AT McBRBT McA). In view of Theorem 5, an upper
bound on M2 can be obtained as

M2 = ΘW (Ax∗
N +Bkf (x∗

N )+ANw) − ΘW (x∗
N )

≤ −Θε2‖x∗
N‖2 + Θβ2‖w‖ + Θβ3‖w‖2 (26)

where ε2 is an arbitrary positive constant satisfying 0 <
ε2 < 1, β2 and β3 are positive, and ‖w(k)‖ is assumed to
be less than or equal to a certain number. In order to give
an upper bound on M3, we consider

x∗
i = Aix∗

0 + WciUi
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where

Ui = [u∗
0 u∗

1 · · · u∗
i−1]

T , Wci = [Ai−1B Ai−2B · · · B].

Using this expression, we obtain an upper bound on M3 as
follows:

M3

=
N−1∑
i=1

{
(x∗

i + Ai−1w)T Q(x∗
i + Ai−1w) − x∗

i
T Qx∗

i

}

=
N−1∑
i=1

{
2
(

Aix∗
0+WciUi

)T

QAi−1w+wT Ai−1T
QAi−1w

}

=
N−1∑
i=1

{
2
(

x∗
0
T AiT + Ui

T Wci
T

)
QAi−1w

+ wT Ai−1T
QAi−1w

}

=
N−1∑
i=1

{
2x∗

0
T AiT QAi−1w + 2Ui

T Wci
T QAi−1w

+ wT Ai−1T
QAi−1w

}

≤ ε3‖x∗
0‖2 + β4‖w‖2 + β5‖w‖ (27)

where ε3 is an arbitrary positive constant, and β4 and β5

are positive. Note that we use 2UT
i WT

ciQAi−1w ≤ β5‖w‖
above, which ensues from the fact that the inputs are
bounded due to saturation. To sum up, (24), (26) and (27)
result in an upper bound on the difference of the optimal
cost as follows:

J∗
N (k + 1) − J∗

N (k)
≤ JN (x(k + 1), ũ(k + 1)) − JN (x(k),u∗(k))
≤ −l(x∗

0, u
∗
0)+ε3‖x∗

0‖2+(ε1−Θε2)‖x∗
N‖2

+(β1+Θβ3+β4)‖w‖2+(Θβ2 + β5)‖w‖.
Therefore, if Θ is set to a value larger than or equal to ε1

ε2
,

we have

J∗
N (k+1)−J∗

N (k) ≤ −(λmin(Q)−ε3)‖x‖2+β6‖w‖2+β7‖w‖.
(28)

where β6 = β1 + Θβ3 + β4 and β7 = Θβ2 + β5. The proof
is then completed by observing that ε3 in (28) can be made
arbitrarily small; note that this ISS characterization holds
with a restriction on w as ‖w‖ is assumed to be sufficiently
small when deriving (26) using Theorem 5.

V. SIMULATION

To demonstrate the effectiveness of the proposed MPC
scheme, we consider the following plant

x(k+1) =
[

1 1
0 0.8

]
x+

[
0
1

]
u(k)+

[
1
1

]
w(k), −1 ≤ u ≤ 1

where w(k) is an external disturbance. Note that the un-
constrained part of the system is neutrally stable with

one integrator. For implementation, we employ an SQP
algorithm in the optimization toolbox for Matlab. The MPC
parameters used in the simulation are summarized below.

N = 3, Q =
[
1 0
0 1

]
, R = 0.8,

Mc =
[
0.06 0.3
0.3 2

]
, κ =

0.95
λmax(BT McB)

,

Θ = 1.05 · Θ0.

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

25

30

35

State

5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

Input

Fig. 1. State and input with x0 = [10, 8] and w(k) random

Figure 1 shows the results for the case where the dis-
turbance is a random bounded sequence ranging from 0 to
0.5. Despite the presence of the persistent disturbance, the
output remains bounded as suggested by Theorem 6.

Figure 2 concerns the case where the disturbance has
finite energy (w(k) = 5 · 0.9k). As global stability is
guaranteed by ISS and global stability implies the iISS
property [1], the output is bounded and tends to zero as
time goes by.

To sum up, the simulations here illustrate what the the-
orems of this paper state. The stability properties obtained
are global, and as a consequence, there is no problem
with feasibility. The closed-loop is also robust against the
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Fig. 2. State and input with x0 = [10, 8] and w = 5 · 0.9k

disturbance. This is in sharp contrast with finite-horizon
quadratic MPC, where the domain of attraction does not
cover the whole space and thus infeasibility can always
occur due to the disturbance even when the initial state
belongs to the domain of attraction.

VI. CONCLUSION

In this paper, we have proposed an input-to-state-
stabilizing MPC for input-constrained neutrally stable sys-
tems using a non-quadratic terminal cost under the as-
sumption that the external disturbance is sufficiently small.
Simulations using an SQP algorithm show the effectiveness
of the proposed MPC. Possible directions for future research
include switching-based adaptive MPC for uncertain input-
constrained neutrally stable systems; it is expected that
the ISS property obtained here may be used to develop a
switching algorithm, leading to a stable adaptive system.
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