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Algorithm That Mimics Human Perceptual Grouping 
of Dot Patterns 

G. Papari and N. Petkov 

Institute of Mathematics and Computing Science, 
University of Groningen, 

P.O.Box 800, 9700 AV Groningen, The Netherlands 

Abstract. We propose an algorithm that groups points similarly to how human 
observers do. It is simple, totally unsupervised and able to find clusters of com-
plex and not necessarily convex shape. Groups are identified as the connected 
components of a Reduced Delaunay Graph (RDG) that we define in this paper. 
Our method can be seen as an algorithmic equivalent of the gestalt law of per-
ceptual grouping according to proximity. We introduce a measure of dissimilar-
ity between two different groupings of a point set and use this measure to com-
pare our algorithm with human visual perception and the k-means clustering al-
gorithm. Our algorithm mimics human perceptual grouping and outperforms the 
k-means algorithm in all cases that we studied. We also sketch a potential appli-
cation in the segmentation of structural textures. 

1   Introduction 

One of the remarkable properties of the human visual system is its ability to group 
together bits and pieces of visual information in order to recognize objects in complex 
scenes. In psychology, there is a long tradition of research devoted to perceptual 
grouping. This tradition has been largely formed and is still very much influenced by 
gestalt laws that name factors, such as proximity or similarity in orientation, colour, 
shape, or speed and direction of movement which play a role in perceptual grouping 
(see e.g. [1-4]). The sole naming of these factors, however, is not sufficient for a 
quantitative analysis of an image aimed at grouping features together automatically, 
i.e. without the involvement of a human observer. Such automatic grouping is essen-
tial for the computerized recognition of objects in digital images.  

In the current paper we describe an algorithm for the grouping of points (Section 
2) and demonstrate that this algorithm delivers results that are in agreement with hu-
man visual perception (Section 3). To quantify the degree of agreement we introduce 
a measure of dissimilarity between two possible groupings of the points of one set. 
We also compare the performance of our algorithm in mimicking human visual per-
ception with the performance of the k-means clustering algorithm, commonly used in 
computer vision (Section 4). Our algorithm is closely related to the gestalt law of 
proximity but it goes beyond that law in that it has predictive power. In Section 5 we 
refer to some related previous work, draw conclusions and outline future work on 
possible applications in computer vision.  
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2   Grouping Algorithm 

2.1   Voronoi Tessellation and Delaunay Graph 

Given a set S = {p1, …, pN} of N points in the plain, we partition the plain in cells 
C1, …, CN (bound or unbound) such that the points which belong to cell Cj, associated 
with point pj ∈ S, are closer to pj than to any other point pk ∈ S, k j≠ :  

 

 ( ) ( ), , , , ,j j k j kq C d q p d q p q p p S∈ ⇔ ≤ ∀ ∀ ∈ . (2.1) 
  

Such a partition of the plain is called the Voronoi Tessellation (VT) or Voronoi dia-
gram related to S. The dual of the Voronoi tessellation, called the Delaunay Graph 
(DG), is obtained by connecting all pairs of points of S whose Voronoi diagram cells 
share a boundary (Fig. 1). More details about Voronoi tessellation and Delaunay 
graph can be found in the standard literature (see for example [5]). 

 

Fig. 1. Voronoi tessellation and Delaunay graph of a set of points 

2.2   Reduced Delaunay Graph 

Perceptually, a group of points in S is a subset of points, which are much closer to 
each other than to the other points of S. However, the concept of  “much closer” is 
subjective and it is not well defined mathematically. We propose an algorithm which 
partitions S in disjoint subsets, and show that this partitioning corresponds to human 
visual perception of groups. We compute the Delaunay Graph DG of the set S and 
eliminate some edges from it to obtain a new graph that we call the Reduced Delau-
nay Graph; then, we regard the connected components of that graph as groups. This is 
illustrated by Fig. 2. In order to choose which edges must be removed, for each edge 
pq of the DG we first compute the distance d(p, q) (Fig. 2a); then we normalize it with 
the distances of p and q to their respective nearest neighbours:  
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Note that in general ξ(p, q) ≠ ξ(q, p). In this way, we assign two ratios, r1(e) = ξ(p, q) 
and r2(e) = ξ (q, p), to each edge e of the DG (Fig.2b). 

Next, we reduce the two above mentioned numbers to a single quantity, computed 
as their geometric average: 

 

 ( ) ( ) ( )1 2r e r e r e= ⋅  . (2.3) 
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and remove from the DG every edge e for which r(e) is larger than a fixed threshold 
rT. We call the remaining graph Reduced Delaunay Graph (RDG). 

More precisely, RDG = (VRDG, ERDG) is a graph whose vertex set VRDG is the same 
as the vertex set of the DG, and whose edge set ERDG contains those edges e ∈ EDG for 
which r(e) is less than or equal to a given threshold vlaue rT:  

 

 ( ){ };RDG DG RDG DG TV V E e E r e r= = ∈ ≤ . (2.4) 
 

   Finally, we regard the connected components of the RDG as groups. 
This is illustrated in Fig. 2, where the value chosen for rT is 1.65. The two nor-

malized distances assigned to edge p1p2, for instance, are ξ(p1, p2) = 4.95 and ξ(p2, p1) 
= 2.48. Their geometrical average is 3.5, larger than rT, so p1p2 must be removed. The 
other edges that must be removed are shown in dashed line in Fig.2c. The remaining 
edges (shown in solid line) produce two connected components, {p1,p3,p4} and 
{p2,p5,p6}, which we regard as groups. 

 

Fig. 2. (a) A set of points and its Delaunay graph. The numbers assigned to the edges are equal 
to the distances between the corresponding vertices. (b) A pair of normalized distances is as-
signed to each edge of the DG. (c) The pair of normalized distances assigned to an edge is re-
placed by a single number, computed as their geometric mean. The dash lines represent the 
edges removed from the DG; these are the lines that are assigned numbers larger than the 
threshold (1.65). The vertices and the remaining edges define the reduced Delaunay graph; its 
connected components are regarded as groups.  

3   Results 

In this section we apply our algorithm to several sets of points (see Figures 3-5); in all 
these examples we take a threshold value rT = 1.65 that is empirically chosen.  

In the cases shown in Fig.3a-b the RDG is connected and all points are grouped 
together in one single group; this corresponds to the human visual perception of these 



500 G. Papari and N. Petkov 

 

dot patterns; the examples of Fig.3c-f are point configurations in which distinct 
groups, arranged both regularly and randomly, are formed. In the case shown in 
Fig.4a the points arranged in a circle and the points inside that circle form separate 
groups. Fig.4b-c present examples of sets in which there are isolated points. Fig. 4d-f 
illustrate the ability of our algorithm to find clusters of complex shape that are not 
necessarily convex. 

Fig.5a-b show examples of point sets in which groups of points are immersed in a 
group that covers the whole image. In Fig.5a, for instance, we perceive a set of 
crosses immersed in a square grid, and it is exactly what the RDG reveals. Similarly, 
in Fig.5b we perceive small squares surrounded by a grid of octagons and big squares. 
In Fig.5c the RDG reveals the lines traced by the points. This example has a certain 
relation to the gestalt law of good continuation. The arcs of the RDG not only allow 
identifying groups but also reveal the order of continuation. 

4   Quantitative Comparison to Human Observers 

We claim that our algorithm mimics the grouping properties of the human visual sys-
tem. To quantify this claim, we now compare the grouping results obtained with this 
algorithm with the groupings defined by human observers. For this purpose we first 
introduce a measure of dissimilarity between two possible groupings of the points of 
one set.  

4.1   Dissimilarity Between Two Partitions of a Point Set 

Let { }1 1, , NC U U= K be a collection of disjoint subsets of a point set S, such that the 

union of these subsets is identical with S. Each such subset defines a group of points, 
and C1 defines a possible grouping or partitioning of the points of S into different 
groups. Let { }2 1, , MC W W= K  be another such grouping of S. We introduce the fol-

lowing quantities: 
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,

card card card
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= = = . (4.1) 

In analogy with probability theory, we call αik joint probability and ui and wk marginal 
probabilities; we also say that C1 and C2 are independent if αik = uiwk. We also define 
the following formal entropies [6]: 
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,
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We now define the dissimilarity coefficient ( )1 2,C Cρ  between the two partitions C1 

and C2 as follows: 
 

 ( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 2 1 2
1 2

1 2

, min ,
,

max ,

H C C H C H C
C C

H C H C
ρ

−
=  . (4.3) 

 



 Algorithm That Mimics Human Perceptual Grouping of Dot Patterns 501 

 

 

 

 
 

 

 
 

 
(a)  (b)  (c) 

 

 

 
 

 

 
 

 
(d)  (e)  (f) 

Fig. 3. Six point sets (first and third rows) and their corresponding RDGs (second and fourth 
rows). In cases (a-b) the RDGs are fully connected and all points belong to the same group. In 
cases (c-f) the points are clustered in groups, both regularly and randomly arranged, which are 
correctly detected by the respective RDGs. 
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(a)  (b)  (c) 

 

 

 
 

 

 
 

 
(d)  (e)  (f) 

Fig. 4. Other six point sets (first and third rows) and their corresponding RDGs (second and 
fourth rows). In case (a) the points that form a  circle belong to a different group than the point 
inside that circle. Cases (b-c) are examples of RDGs that have isolated points; in examples (d-f) 
the shape of the clusters is complex and not necessarily convex. 
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(a)  (b)  (c) 

Fig. 5. Point sets (above) and their corresponding RDGs (below). (a-b) A system of groups is 
immersed in a group that covers the whole image. (c) A case related to the gestalt principle of 
good continuation. The edges of the RDG reveal the connectivity of that continuation. 

 
 

It can easily be shown that ρ  is symmetric, positive, equal to zero iff C1 = C2, and 
that it satisfies the triangular inequality; therefore, it defines a metrics in the space of 
the groupings. ρ has also the property to be always between 0 and 1, with ρ = 1 if and 
only if the two concerned groupings are independent. Fig.6 illustrates that the concept 
of dissimilarity between two groupings is related to their correlation. 

4.2   Results 

We used the dissimilarity coefficient defined above to compare the results of our 
grouping algorithm with the perceptual grouping as done by human observers. For 
each of the images named in the first column of Table 1, we asked eight human ob-
servers (male, age varying between 25 and 48) to group the points of the correspond-
ing set. Originally, we used a larger number of point sets but then we excluded sets 
for which the observers produced different groupings; the set shown in Fig. 4d is one 
such case that is included here for illustration; the maximum dissimilarity coefficient 
of two groupings produced by two observers for this set was 0.026. For all other point 
sets included here the groupings produced by different observers are identical. 

In all the cases but the ones presented in Fig.4d and Fig.5c our algorithm produces 
groupings that are identical with the groupings defined by the human observers. Con-
sequently, the dissimilarity coefficients of the groupings obtained by the algorithm 
and by perceptual grouping are 0 in these cases, Table 1. One case in which a  
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difference arises is shown in Fig.7. As can be seen, this difference is small which is 
well reflected in the small value of the corresponding dissimilarity coefficient. For the 
case shown in Fig.4d the dissimilarity coefficient is computed as the average of the 
dissimilarity coefficients between the algorithmic grouping on one hand and each of 
the human perceptual groupings on the other hand. The average value obtained in this 
way is smaller than the maximum value of dissimilarity between the perceptual 
groupings by two different observers. 

Table 1 shows also the results achieved by another algorithm - the k-mean cluster-
ing [7]. Since this algorithm requires a number of clusters to be specified, this number 
has been selected to be equal to the number of groups drawn by the human observers. 
In all cases, the RDG algorithm outperforms the k-means algorithm in its ability to 
mimic human perception. The performance difference is especially large for point sets 
in which the groups (as defined by human visual perception) are not convex and have 
complex form, Fig.7.  

 

Fig. 6. (a) The groupings/partitions C1 = {U1, U2, U3} and C2 = {U1, U2, U3} defined by the con-
tinuous and dashed lines, respectively, are strongly correlated and consequently their dissimi-

larity ( )1 2,C Cρ  is small. (b) The partitions C1 and C3 = {U1, U2, U3} are totally uncorrelated 

and their dissimilarity coefficient is maximal. 

           

Fig. 7. (left) The RDG grouping algorithm mimics human perception while (right) the k-means 
algorithm clusters points in a very different way 
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Table 1. Dissimilarity coefficient values between perceptual grouping by humans and two 
grouping algorithms, RDG and k-means 

 

Point 
set 

ρ 

(RDG to human) 

ρ 

(k-mean to human) 
Fig. 3c 0 0.08 

Fig. 3d 0 0.04 

Fig. 3e 0 0.05 

Fig. 3f 0 0.05 

Fig. 4a 0 0.24 

Fig. 4d 0.007 0.48 

Fig. 4e 0.21 0.85 

Fig. 4f 0 0.68 

Fig. 5c 0.17 0.30 

5   Summary and Conclusion 

Attempts to identify perceptually meaningful structure in a set of points have been 
made in previous works. Voronoi neighbourhood is used in [8]. A discussion in [9] 
motivates a graph-approach to detect Gestalt groups. In [10] the following concept is 
introduced: two points p and q of a set S are considered relatively close if d(p,q) < 
max{d(p,x), d(q,x)}, ∀x∈S; linking all points of S which are relatively close, we ob-
tain what is called the Relative Neighbourhood Graph [11]. In [11] it is shown by 
some examples that points are linked in a way that is perceptually natural for human 
observers. However, this algorithm cannot be used to find groups of points, which is 
the goal of the current paper. A nice algorithm, presented in [12], repeatedly splits the 
convex hull of the point set, until clusters are found; but it is unable to find clusters 
which are one inside the other. 

We introduced the concept of a RDG that we use to group points. We demonstrated 
that this algorithm mimics human visual perception. For this purpose we introduced a 
quantitative measure of dissimilarity between two possible groupings of the points of 
a set. The dissimilarities between groupings produced by our algorithm and percep-
tual groupings done by human observers are zero or very small for a number of point 
sets that we studied. In contrast, the popular k-means clustering algorithm groups 
points in a way that is quite different from visual perception. Our algorithm is very 
simple, totally unsupervised, and is able to find groups of complex  shape. 

In future work we will apply this algorithm to computer vision problems, such as 
segmentation of structural textures. Such textures cannot be treated adequately with 
traditional filter based approaches (see e.g. [13]). Our idea is to first reduce a texture 
(Fig.8a) to one or more sets of points that indicate the positions of structural elements, 
using morphological filters, and to group them using the RDG approach, Fig.8b-c.   
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 (a) (b) (c) 

Fig. 8. (a) A texture in which the regions are defined by different structural elements. (b) The 
positions of the + elements are identified by a morphological filter selective for the + shape, 
and the points are connected in a RDG to identify regions of + elements. (c) The regions that 
contain L elements are identified in a similar way using another morphological filter. 
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