
 

 

 University of Groningen

Coordination of an Asynchronous Multi-Agent System via Averaging
Cao, M.; Morse, A.S.; Anderson, B.D.O.

Published in:
Proceedings of the 16th International Federation of Automatic Control World Congress (IFAC)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cao, M., Morse, A. S., & Anderson, B. D. O. (2005). Coordination of an Asynchronous Multi-Agent System
via Averaging. In Proceedings of the 16th International Federation of Automatic Control World Congress
(IFAC) University of Groningen, Research Institute of Technology and Management.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/9b8e884b-ef95-40f9-81b5-5ff967b8ecd9


COORDINATION OF AN ASYNCHRONOUS
MULTI-AGENT SYSTEM VIA AVERAGING
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Abstract: This paper is concerned with the coordination of a group of n > 1
mobile autonomous agents which all move in the plane with the same speed
but with different headings. Each agent updates its heading from time to time
to a new value equal to the average of its present heading and the headings
of its current “neighbors”. Although all agents use the same rule, individual
updates are executed asynchronously. By appealing to the concept of “analytic
synchronization”, it is shown that under mild connectivity assumptions of the
underlying directed graph characterizing neighbor relationships, the local update
rules under consideration can cause all agents to eventually move in the same
direction despite the absence of centralized coordination and despite the fact that
each agent’s set of neighbors change with time as the system evolves.
Copyright c©2005 IFAC
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1. INTRODUCTION

In recent years, there has been a rapidly growing
interest among control scientists and engineers
in the distributed coordination of groups of au-
tonomous agents. One of the research directions
is to provide theoretical explanations for various
collective motions of animal aggregations, such

1 This work is supported by the National Science Founda-
tion.
2 This work is supported by an Australian Research Coun-
cil Discovery Projects Grant and by National ICT Aus-
tralia, which is funded by the Australian Government’s
Department of Communications, Information Technology
and the Arts and the Australian Research Council through
the Backing Australia’s Ability initiative and the ICT
Centre of Excellence Program.

as bird flocking, fish schooling, etc. (Jababaie et
al., 2003; Gazi and Passino, 2003; Cortes and
Bullo, 2003; Leonard and Fiorelli, 2001). The
alignment phenomenon is formulated as a flocking
problem (Jababaie et al., 2003), which is later gen-
eralized as a network consensus problem (Olfati-
Saber and Murray, 2004). This paper studies the
flocking problem under the weaker assumption,
namely that individual agent’s decisions are per-
formed asynchronously. In particular, we con-
sider a system consisting of n mobile autonomous
agents labelled 1 through n, which are all moving
in the plane with the same speed but with differ-
ent headings. Each agent updates its heading from
time to time to a new value equal to the average of
its present heading and the headings of its current



“neighbors”. By a neighbor of agent i at time t is
meant any other agent whose heading informa-
tion at time t is available to agent i. Distributed
systems of this type have been studied before in
(Jababaie et al., 2003; Moreau, 2003) and else-
where. What distinguishes the system considered
here is that in this paper heading updating is
done totally asynchronously while in (Jababaie et
al., 2003; Moreau, 2003) it is not. In the present
context individual agents can update their head-
ings whenever they please; in other words, there is
no assumed global clock according to which they
synchronize their actions.

We formulate the asynchronous flocking problem
in section 2. In section 3 we outline a technique to
model a family of asynchronously functioning pro-
cesses as a single synchronous system. In section
4 we show our main results on proving that the
headings of all n agents converge to a common
steady state heading provided that they are all
“linked together”. Finally, concluding remarks are
made in section 5.

2. ASYNCHRONOUS FLOCKING PROBLEM

Consider a system that consists of n autonomous
agents, labelled 1 through n, which all move in
the plane with the same speed but with different
headings. Each agent’s heading xi is updated
using a simple local rule based on the average of its
own heading and the headings of its “neighbors”.
Agent i’s neighbors at time t are those agents
whose heading information at time t is available
to agent i. Agent i’s neighbors at any other time
do not have to be the same as those at time t.
Our results apply to any definition of neighbors,
and we do not restrict the definition to constitute
a symmetric relation. In other words, agent i is
agent j’s neighbor at time t does not necessarily
imply that agent j is agent i’s neighbor at time t.
Let Ni(t) and ni(t) denote the set of the labels
and the number of agent i’s neighbors at time
t respectively. Let {tik : i ∈ {1, . . . , n}, k ≥ 1}
denote the set of agent i’s ordered distinct “event
times”, where by an agent i’s event time is meant
any time tik at which agent i updates its heading.
We assume that each agent updates its heading
instantaneously according to the rule

xi(t+ik) =
1

1 + ni(tik)


xi(tik) +

∑

j∈Ni(tik)

xj(tik)


(1)

where xi(t+ik) denotes the value of xi just after tik,
i.e. xi(t+ik) = limt↘tik

x(t). At all times other than
agent i’s event times, agent i’s heading does not
change:

xi(t+) = xi(t), when tik < t < ti(k+1) (2)

So xi(t) is a piecewise constant function which is
constant on each switching interval [tik, ti(k+1)),
k ≥ 1. We assume that the time between such
updates is bounded below by a positive number τB

called a dwell time. In the unlikely event that two
or more agents update their headings at the same
time T , they all use the values of their respec-
tive neighbors’ headings at the time immediately
prior to T , namely limt↗T xj(t). Event times of
distinct agents occur asynchronously, i.e. there is
no correlation between the event times of different
agents.

Our goal is to show that under some connectivity
conditions for neighbor relationship graphs, for
any initial set of agent headings, the headings
of all agents will converge to the same steady
state value xss. There are two main challenges:
one is how to analyze an asynchronous distributed
system, and the other is how to guarantee the con-
vergence under changing neighbor relationships.

3. A SYNCHRONOUS MODEL

Now we will analyze the asymptotic behavior of
the overall asynchronous multi-agent process just
described. Despite the apparent complexity of this
process, it is possible to capture its salient features
using a suitably defined synchronous discrete-
time system S. We call the sequence of steps
involved in defining S analytic synchronization
(Lin, 2004). Analytic synchronization is applica-
ble to any finite family of continuous or discrete
time dynamical processes {P1,P2, . . . ,Pn} under
the following conditions. First, each process Pi

must be a dynamical system whose inputs consist
of functions of the states of the other processes
as well as signals which are exogenous to the
entire family. Second, each process Pi must have
associated with it an ordered sequence of event
times {ti1, ti2, . . .} defined in such a way so that
the state of Pi at event time ti(ki+1) is uniquely
determined by values of the exogenous signals and
states of the Pj , j ∈ {1, 2, . . . , n} at event times
tjkj which occur prior to ti(ki+1) but in the uni-
formly bounded finite past. Event time sequences
for different processes need not be synchronized.
Analytic synchronization is a procedure for creat-
ing a single synchronous process for purposes of
analysis which captures the salient features of the
original n asynchronously functioning processes.
As a first step, all n event time sequences are
merged into a single ordered sequence of event
times T . The “synchronized” state of Pi is then
defined to be the original state of Pi at Pi’s event
times {ti1, ti2, . . .}; at values of t ∈ T between
event times tiki and ti(ki+1), the synchronized
state of Pi is taken to be the same at the value
of its original state at time tiki . The last step



is to define S as a synchronous dynamical sys-
tem evolving on T with state containing as “sub-
states” the synchronized states of the n individual
processes under consideration. Although this last
step is in general challenging, in the present paper
it proves to be straightforward. We refer readers to
(Bertsekas and Tsitsiklis, 1989) for some related
ideas.

3.1 Global Time Axis

Let T ∆= {tik : i ∈ {1, 2, . . . , n}, k ≥ 1} denote
the set of all distinct event times of all n agents.
Relabel this set’s elements as t0, t1, . . . , tl, . . . in
such a way so that tl < tl+1, l ∈ {0, 1, 2, . . .}.
Define Ti to be the ordered subset of T consisting
of agent i’s event times. For i ∈ {1, 2, . . . , n}, let
Li(k) denote that value of l for which tl = tik.
Thus with this notation, tLi(k) = tik. Then each
agent’s heading is also well defined at any other
agent’s event times according to its evolution
equations (1) and (2).

The evolution of agent i’s heading on the set T
can thus be described by

xi(tl+1) =





1
1 + ni(tl)


xi(tl) +

∑

j∈Ni(tl)

xj(tl)




if tl ∈ Ti

xi(tl) otherwise

(3)

3.2 System Equations and Underlying Directed
Graphs

The update equations determined by (3) depend
on the neighbor relationships which exist at time
tl. We define a directed graph with vertex set
{1, . . . , n} so that for j 6= i, (j, i) is a directed
edge from vertex j to vertex i if and only if
tl ∈ Ti and agent j is a neighbor of agent i at
time tl. To account for the fact that agent i’s own
heading information is always used in its heading
update rule, we also say that in the just defined
directed graph, there is always a directed edge
from agent i to itself. At different event times,
we have different directed graphs because different
agents update their headings spontaneously and
the set of neighbors of any agent, for example i, is
not necessarily constant over agent i’s event times.
To account for this we will need to consider all
possible such graphs, which are obviously finite.
In the sequel we use the symbol P to denote
a suitably defined set indexing the class of all
directed graphs Gp defined on n vertices.

We can define the system state as

x = [x1, . . . , xn]′ (4)

In order to write the system equations in state-
space form, for each p ∈ P, we define

Fp = (Dp)−1Ap (5)

where Ap is the adjacency matrix of graph Gp

and Dp is the diagonal matrix whose ith diagonal
element is the valence of vertex i within the graph
Gp. The adjacency matrix A(G) of a directed
graph G is a 0-1 matrix with the rows and columns
indexed by the vertices of G, such that the ij-
element of A(G) is equal to 1 if there is a directed
edge from vertex j to i and is equal to 0 otherwise.
The valence of a vertex i is the number of directed
edges that end at vertex i.

Because the global system now can be viewed as a
discrete synchronous system, the system evolution
can be written as the following equations

x(tl+1) = Fσ(tl)x(tl), tl ∈ T (6)

where σ : T → P is a switching signal whose
value at time tl is the index of the directed graph
representing the agents’ neighbor relationships at
time tl. From (3), we know that Fσ(tl) has positive
diagonal elements. Notice that at time tl /∈ Ti,
there is no edge pointing from the other vertices
towards vertex i in Gσ(tl) and consequently the
elements of the ith row in Fσ(tl) are (Fσ(tl))ii = 1
and (Fσ(tl))ij = 0 with j 6= i and j = 1, . . . , n.

3.3 Connectivity of the Underlying Directed Graphs

A strongly connected directed graph is a directed
graph in which it is possible to reach any vertex
starting from any other vertex by traversing a
sequence of edges in the direction to which they
point. A weakly connected directed graph is a
directed graph in which it is possible to reach any
vertex starting from any other vertex by travers-
ing edges in some direction (i.e. not necessarily in
the direction they point). A global source (often
simply called a source) in a directed graph is
a vertex which can reach all other vertices by
traversing a sequence of edges in the direction
to which they point. As we can see, a directed
graph having a source is weakly connected while
the reverse is not always true.

Consider two directed graphs, Gp1 and Gp2, each
with vertex set V. Let Gp2 ◦ Gp1 denote the
composition of Gp1 and Gp2, which is defined as
the directed graph G with the vertex set V and
the following property: there is a directed edge
from vertex i to j within G if and only if there
exists a vertex k ∈ V such that directed edges
ik and kj are within Gp1 and Gp2 respectively.
In general, this operation on the graphs is not
commutative, i.e. Gp2 ◦ Gp1 6= Gp1 ◦ Gp2. Across



a time interval [t, τ) with t, τ ∈ T and τ > t, the
n agents under consideration are said to be linked
together if the composition of graphs, Gσ(τ−1) ◦
· · ·◦Gσ(t+1)◦Gσ(t), encountered along the interval
has at least one source. Notice that if n agents are
linked together and there is only one source in the
composition of the graphs, then all agents except
the source agent must have updated at least once
across [t, τ); if n agents are linked together and
there is more than one source in the composition
of the graphs, then all n agents must have updated
at least once across [t, τ).

4. MAIN RESULTS

Reference (Jababaie et al., 2003) provides a
convergence result by analyzing the product of
the matrices associated with underlying graphs,
whose entries are all positive under the assump-
tion that the corresponding underlying graphs are
strongly connected. In the sequel, we will con-
sider a weaker condition for system (6) when its
composition of underlying graphs is only weakly
connected. So the bidirectional information flow
between any pair of agents is no longer guar-
anteed. Consequently, some entries of the prod-
uct of the corresponding matrices might always
be zero, and we cannot obtain the element-wise
positiveness that was achieved in (Jababaie et
al., 2003). Another distinction is that by consid-
ering the composition of the directed graphs, we
take into account the time ordering information
of the directed graphs, which is not considered in
(Jababaie et al., 2003).

4.1 Weakly Connected Graphs

We first consider a special case. Intuitively, the
flocking phenomenon is highly likely to happen if
there is a particular agent whose heading infor-
mation is always available to all the other agents
during the evolution process. Now we will give a
strict proof of convergence in this case. In the set
of directed graphs {Gp : p ∈ P}, we denote by
Q the subset of P with the property that there
exists a vertex s common to all q ∈ Q such that
there is a directed edge from s to each of the other
vertices in Gq. Thus agent s is a neighbor of every
other agent at every event time. Our first result
establishes the convergence of x for the case when
σ takes values only in Q.

Theorem 1. Let x(t0) be fixed and let σ : T → P
be a switching signal satisfying σ(t) ∈ Q for all
tl ∈ T , i.e. there exists a particular agent s that
is a neighbor of all other agents at all times tl ∈ T .
Then

lim
t→∞

x(t) = xss1 (7)

where xss is a number depending only on x(t0)
and σ, 1 ∆= [1 1 . . . 1]′n×1.

To prove Theorem 1, we need to introduce some
related definitions and convergence results in ma-
trix analysis.

As defined by (5), Fp is square and “non-negative”
(a non-negative matrix is a matrix whose elements
are all non-negative) with the property that its
row sums all equal 1 (i.e. Fp1 = 1). Such a matrix
is called stochastic (Horn and Johnson, 1985).
Fp has the additional property that its diagonal
elements are all positive. For the case when p ∈ Q,
Fp is an example of “scrambling matrices” where
by a scrambling matrix is meant any n-by-n, non-
negative matrix M with the property that for
arbitrary i and j with i, j ∈ {1, . . . , n}, i 6= j,
there exists k ∈ {1, . . . , n} such that mik and mjk

are both positive (Shen, 2000).

Lemma 2. Fp is a scrambling matrix when p ∈ Q.

PROOF. Because vertex s is the source and
there is an directed edge from s to each of
the other vertices, we have (Fp)rs > 0, r ∈
{1, 2, . . . , n} and r 6= s. From the fact that Fp has
positive diagonal elements, we also have (Fp)ss >
0. Then for arbitrary i and j, i, j ∈ {1, . . . , n},
i 6= j, we always have (Fp)is > 0 and (Fp)js > 0,
hence Fp is scrambling. 2

Now we will consider the convergence of the
product of scrambling matrices. First we point
out that the class of n-by-n stochastic matrices
with positive diagonal elements is closed under
matrix multiplication. Second, we will re-phrase
Proposition 27 and its proof in (Shen, 2000) as
follows:

Lemma 3. (Proposition 27 in (Shen, 2000)) Let
M = {Mi}, i = 1, 2, . . . be a compact set of
scrambling stochastic matrices. Then for each
infinite sequence Mi1 ,Mi2 , . . . there exists a row
vector c such that

lim
j→∞

Mij Mij−1 · · ·Mi1 = 1c (8)

PROOF. We first point out the fact that for
a given constant row vector b and any stochas-
tic matrix A, we have A(1b) = 1b because of
the fact that A1 = 1. For any M ∈ M, de-
fine λ(M) = mini,j

∑n
k=1 min{mik,mjk}. Then

λ(M) > 0 because M is scrambling. Because M is
stochastic, λ(M) ≤ 1 with λ(M) = 1 if and only
if all the rows of matrix M are the same. Since M
is compact, we can define



λ(M) ∆= inf
M∈M

λ(M) > 0

Denote the ith row of matrix M by m′
i. Then

define

diam∞(M) ∆= max
i,j

‖mi −mj‖∞

where for a vector a = [a1 a2 . . . an]′, ‖a‖∞ =
maxi |ai|. Then Hajnal’s inequality (Shen, 2000)
says that for any stochastic matrices A1 and A2,
we have diam∞(A2A1) ≤ (1− λ(A2))diam∞(A1),
hence

diam∞(Mij
Mij−1 · · ·Mi1) ≤ (1− λ(M))jdiam∞(I)

where I is the n-by-n identity matrix. Because
0 < λ(M) ≤ 1, then as j → ∞, we have
diam∞(Mij Mij−1 · · ·Mi1) → 0, which implies
that the element-wise difference between any
pair of rows in the product Mij Mij−1 · · ·Mi1 ap-
proaches 0. Then (8) holds. 2

Now we are in a position to prove Theorem 1.

Proof of Theorem 1: From (6), we have

x(tj) = Fσ(tj−1) · · ·Fσ(t0)x(t0)

By Lemma 2, for σ(tj) ∈ Q, the set of possible
Fσ(tj), j ≥ 0, is a finite set of scrambling matrices.
Hence, by Lemma 3 there exists a row vector c
such that

lim
j→∞

Fσ(tj)Fσ(tj−1) · · ·Fσ(t0) = 1c

Letting xss
∆= cx(t0), we arrive at (7). 2

4.2 Generalization

It is possible to establish convergence to a com-
mon heading under conditions which are sig-
nificantly less stringent than those assumed in
Theorem 1. We now consider a situation where
the agents are linked together across some finite-
length intervals. In this case, the convergence of
the n-agent system is still guaranteed while some
pairs of agents may never be strongly connected.

Given a sequence of finite-length time intervals
across which all n agents are linked together, our
first result claims that there exists a finite-length
time interval such that the composition of the
directed graphs encountered along this interval is
an element in the set {Gp: p ∈ Q}.

Theorem 4. Given any starting time ti0 ∈ T ,
assume that there exists an infinite sequence

of contiguous, non-empty, bounded time-intervals
[tij , tij+1), tij ∈ T , j ≥ 0, starting at ti0 , with
the property that across each such interval, the
n agents are linked together with one agent s as
the source in every such interval. Then there ex-
ists a non-empty bounded time-interval [ti0 , tik

),
tik

∈ T , k > 0, such that across [ti0 , tik
) , there is

a directed edge from vertex s to every other vertex
in the composition of the corresponding graphs.

To prove this theorem, we need the following
definition and results. We shall make use of the
standard partial ordering ≥ on n×n non-negative
matrices by writing B ≥ A whenever B − A is
a non-negative matrix. For a non-negative ma-
trix R, we denote by dRe, the matrix obtained
by replacing all of R’s non-zero entries with 1s.
Notice that R is scrambling if and only if dRe is
scrambling. It is true that for any pair of n×n non-
negative matrices A and B with positive diagonal
elements, that dABe = ddAedBee, dABe ≥ dBe
and dBAe ≥ dAe. The following lemma is Lemma
6 in (Jababaie et al., 2003).

Lemma 5. (Lemma 6 in (Jababaie et al., 2003))
Let M1,M2, . . . ,Mk be a finite sequence of n-by-n
non-negative matrices whose diagonal entries are
all positive. Suppose that M is a matrix which
occurs in the sequence at least m > 0 times. Then

dM1M2 · · ·Mke ≥ dMme (9)

Proof of Theorem 4: Let Htj associated with
the time interval [tij , tij+1) be the product of ma-
trices as in Htj = dFσ(tij+1−1) · · ·Fσ(tij+1)Fσ(tij

)e.
Then Htj is also associated with the composition
of the directed graphs encountered along this time
interval with the property that s is a source in
this composition. There are only a finite number
of all possible Htj . Let H denote the set of all
possible Htj and let a finite number w denote the
number of elements in H. Then we can relabel H’s
elements as H1, H2,. . .,Hw. It’s easy to see that
for some 1 ≤ u ≤ w, there exists a finite length
interval [ti0 , tik

) such that Hu occurs at least n
times in the corresponding sequence of matrices,
Hti0

, Hti1
,. . ., Htik−1 . From Lemma 5, we know

that

dHtik−1 · · ·Hti1
Hti0

e ≥ d(Hu)ne (10)

Suppose that within the composition of graphs
associated with Hu, vertex s can reach vertex r
(r ∈ {1, . . . , n} and r 6= s) by traversing q edges
in the direction in which the edges point, where
obviously 0 < q < n. Then ((Hu)q)sr > 0. Since
there is always a directed edge from vertex i to
itself, if s can reach r in q steps, then s can also
reach r in n steps. This implies ((Hu)n)sr > 0.
Hence, from (10) we know that across [ti0 , tik

),



there is a directed edge from vertex s to any other
vertex within the composition of the correspond-
ing graphs. 2

Now we are in a position to present the conver-
gence result.

Theorem 6. Let x(t0) be fixed and let σ : T →
P be a switching signal for which there exists
an infinite sequence of contiguous, non-empty,
bounded time-intervals [tij , tij+1), tij ∈ T , j ≥ 0,
starting at ti0 = t0, with the property that across
each such interval, the n agents are linked together
with agent s as the source. Then

lim
t→∞

x(t) = xss1 (11)

where xss is a number depending only on x(t0)
and σ.

PROOF. From Theorem 4, with the given switch-
ing signal, there exists a sequence of contiguous,
non-empty, bounded time-intervals [tjk

, tjk+1), with
tjk

∈ T , tj0 = t0, such that agent s is a neighbor of
every other agent at time tjk+1 in the composition
of graphs encountered along [tjk

, tjk+1). Similar
to the proof of Theorem 1, we can show that
the matrix Fσ(tjk+1−1)Fσ(tjk+1−2) · · ·Fσ(tjk

) is a
scrambling matrix. Then

x(tjk
) = Fσ(tjk

−1) · · ·Fσ(t0)x(t0)

=
(
Fσ(tjk

−1) · · ·Fσ(tjk−1 )

)

· · ·
(
Fσ(tj1−1) · · ·Fσ(t0)

)
x(t0)

By a similar argument as that is used in proving
Theorem 1, we can show that there exists a row
vector c such that

lim
k→∞

Fσ(tjk
) · · ·Fσ(t0) = 1c

Letting xss
∆= cx(t0), we arrive at (11). 2

5. CONCLUDING REMARKS

This paper provides an approach to studying
the asynchronous flocking problem. A modelling
technique is first introduced to construct a syn-
chronous model for analysis purposes. Then a re-
lationship is established between a class of weakly
connected graphs and scrambling matrices. The
convergence property of the product of scrambling
matrices is utilized to prove the convergence of the
asynchronous flocking problem.

The asynchronous model is more realistic than
existing synchronized multi-agent system models.

Consequently, it is more appropriate to use the
asynchronous model in the study of actual coor-
dinated movements of groups of mobile robots.
In fact, it is not only heading variables that can
be averaged during the asynchronous multi-agent
processes; we can also consider any physical vari-
able which obeys some update rules like (1) and
(2). We can even consider a vector variable, whose
entries are updated independently. The heading
information in 3-dimensional space is an example
of such a vector variable, where each entry will
converge at the same rate as determined by the
matrices Fσ(tj) if neighbor relations are the same
across all entries of the heading vector. In the
future, we will further consider the communica-
tion delays, errors, etc. that may be present in
asynchronous functioning processes.
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