
 

 

 University of Groningen

Some basics on tolerances
Molitor, P.; Jäger, G.; Goldengorin, B.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Molitor, P., Jäger, G., & Goldengorin, B. (2005). Some basics on tolerances. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/2ada4419-c2c6-4336-91c5-c5699934764d


Some Basics on Tolerances?
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Abstract
In this note we deal with sensitivity analysis of combinatorial optimization prob-
lems and its fundamental term, the tolerance. For three classes of objective func-
tions (Σ,Π,MAX) we prove some basic properties on upper and lower tolerances.
We show that the upper tolerance of an element is well defined, how to compute
the upper tolerance of an element, and give equivalent formulations when the up-
per tolerance is +∞ or > 0. Analogous results are proven for the lower tolerance
and some results on the relationship between lower and upper tolerances are given.

Key words Sensitivity analysis, upper tolerance, lower tolerance.

1 Introduction

After an optimal solution to a combinatorial optimization problem has been de-
termined, a natural next step is to apply sensitivity analysis (see Sotskov et al.
[17]), sometimes also referred to as post-optimality analysis or what-if analysis
(see e.g., Greenberg [7]). Sensitivity analysis is also a well-established topic in
linear programming (see Gal [4]) and mixed integer programming (see Greenberg
[7]). The purpose of sensitivity analysis is to determine how the optimality of the
given optimal solution depends on the input data. There are several reasons for
performing sensitivity analysis. In many cases the data used are inexact or uncer-
tain. In such cases sensitivity analysis is necessary to determine the credibility of
the optimal solution and conclusions based on that solution. Another reason for
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performing sensitivity analysis is that sometimes rather significant considerations
have not been built into the model due to the difficulty of formulating them. Hav-
ing solved the simplified model, the decision maker wants to know how well the
optimal solution fits in with the other considerations.
The most interesting topic of sensitivity analysis is the special case when the value
of a single element in the optimal solution is subject to change. The goal of such
perturbations is to determine the tolerances being defined as the maximum changes
of a given individual cost (weight, distance, time etc.) preserving the optimality of
the given optimal solution. The first successful implicit application of upper toler-
ances for improving the Transportation Simplex Algorithm is appeared in the so
called Vogel’s Approximation Method (see Reinfeld and Vogel [14]) and has been
used for a straightforward enumeration of the k-best solutions for some positive
integer k (see e.g., Murty [12] and Van der Poort et al. [20]) as well as a base of
the MAX-REGRET heuristic for solving the three-index assignment problem (see
Balas and Saltzman [1]). The values of upper tolerances have been applied for im-
proving the computational efficiency of branch-and-bound algorithms for solving
different classes of NP-hard problems (for example of the traveling salesman prob-
lem (TSP) see Goldengorin et al. [5], Turkensteen et al. [19]). Also for the TSP,
Helsgaun [9] improved the Lin-Kernighan heuristic by using the lower tolerances
to the minimum 1-tree with great success. Computational issues of tolerances to
the minimum spanning tree problem and TSP are addressed in Chin and Hock [3],
Gordeev et al. [6], Gusfield [8], Kravchenko et al. [10], Libura [11], Ramaswamy
and Chakravarti [13], Shier and Witzgall [15], Sotskov [16], Tarjan [18].

The purpose of this paper is to give an overview over the terms of upper and lower
tolerances for the three most natural types

∑
,
∏
,MAX of objective functions.

The paper is the first which deals with these terms in an exact, general and com-
prehensive way, so that discrepancies of previous descriptions can be avoided, e.g.
the condition that the set of feasible solutions is independent of the cost function
is crucial for the definition of tolerances. Furthermore, this coherent consideration
leads to new results about tolerances.

The paper is organized as follows. In section 2 we define a combinatorial min-
imization problem and give all notations which are necessary for the terms of
upper and lower tolerances. In section 3 we define the upper tolerance and give
characteristics of it. Especially, we show that the upper tolerance is well defined
with respect to the problem instance, i.e., that the upper tolerance of an element
with respect to an optimal solution S? of a problem instance P doesn’t depend
on S? but only on P itself. Furthermore we show how to characterize elements
with upper tolerance +∞ or > 0 and how the upper tolerance can be computed.
In section 4 we show similar relations for the lower tolerance. In section 5 we give
relationships between lower and upper tolerances which mostly are direct conclu-
sions from the sections 3 and 4. Our main result for objective functions of type

∑

is that the minimum value of upper tolerance equals the minimum value of lower
tolerance. Similar results for objective functions of type

∏
,MAX do not hold.

In section 6 we prove the non-trivial relations from the sections 3, 4 and 5. We
summarize our paper in section 7 and propose directions for future research.
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2 Combinatorial minimization problems

A combinatorial minimization problem P is given by a tuple (E , D, c, fc) with

• E is a finite ground set of elements,
• D ⊆ 2E is the set of feasible solutions,
• c : E → R is the function which assigns costs to each single element of E ,

and
• fc : 2E → R is the objective (cost) function which depends on function c and

assigns costs to each subset of E .

A subset S? ⊆ E is called an optimal solution of P , if S? is a feasible solution and
the costs fc(S?) of S? are minimal 1 i.e.,

• S? ∈ D
• fc(S?) = min{fc(S); S ∈ D}

We denote the set of optimal solutions by D?.

There are some particular monotone cost functions which often occur in practice:

• [Type
∑

]
The cost function fc : 2E → R is of type

∑
, if for each S ∈ 2E :

fc(S) =
∑

e∈S
c(e)

holds.
• [Type

∏
]

The cost function fc : 2E → R is of type
∏

, if for each S ∈ 2E :

fc(S) =
∏

e∈S
c(e)

and for each e ∈ E :
c(e) > 0

holds.
• [Type MAX]

The cost function fc : 2E → R is of type MAX2, if for each S ∈ 2E :

fc(S) = max{c(e); e ∈ S}

holds.

1 Analogous considerations can be made if the costs have to be maximized, i.e., for com-
binatorial maximization problems.

2 Such a cost function is also called bottleneck function.
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These three objective functions are monotone, i.e., the costs of a subset of E don’t
become cheaper if the costs of a single element of E are increased.

In the remainder of the paper, we only consider combinatorial minimization prob-
lems P = (E , D, c, fc) which fulfill the following three conditions.

Condition 1
The set D of the feasible solutions of P is independent of function c.

Condition 2
The cost function fc : 2E → R is either of type

∑
, type

∏
, or type MAX.

Condition 3
There is at least one optimal solution of P , i.e., D? 6= ∅.

Note that the Traveling Salesman Problem (TSP), Minimum Spanning Tree (MST),
and many other combinatorial minimization problems fulfill these three conditions
(see Bang-Jensen and Gutin [2]).

Given a combinatorial minimization problem P = (E , D, c, fc), we obtain a new
combinatorial minimization problem if we increase the costs of a single element
e ∈ E by some constant α ∈ R. We will denote the new problem by Pα,e =
(E , D, cα,e, fcα,e), which is formally defined by

cα,e(e) =

{
c(e) , if e 6= e
c(e) + α , if e = e

for each e ∈ E and fcα,e is of the same type as fc. Further define

P−∞,e = lim
α→−∞

Pα,e
P+∞,e = lim

α→+∞
Pα,e

We need some more notations with respect to a combinatorial minimization prob-
lem P .

Let e be a single element of E .

• fc(P) denotes the costs of an optimal solution S? of P .
• For M ⊆ D, fc(M) denotes the costs of the best solution included in M . The

costs fc(S) of either infeasible or empty set S are defined as +∞. Obviously,
for each M ⊆ D:

fc(P) ≤ fc(M)

holds.
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• D−(e) denotes the set of feasible solutions of D each of which does not con-
tain the element e ∈ E , i.e.,

D−(e) = {S ∈ D; e 6∈ S}

Analogously, D+(e) denotes the set of feasible solutions D each of which
contains the element e ∈ E , i.e.,

D+(e) = {S ∈ D; e ∈ S}

• D?
−(e) denotes the set of best feasible solutions of D each of which does not

contain the element e ∈ E , i.e.,

D?
−(e) = {S ∈ D; e 6∈ S and (∀S ′ ∈ D)(e 6∈ S′ ⇒ fc(S) ≤ fc(S′) }

Analogously,D?
+(e) denotes the set of best feasible solutionsD each of which

contains the element e ∈ E , i.e.,

D?
+(e) = {S ∈ D; e ∈ S and (∀S ′ ∈ D)(e ∈ S′ ⇒ fc(S) ≤ fc(S′) }

3 Upper tolerances

Let P = (E , D, c, fc) be a combinatorial minimization problem which fulfills
Conditions 1, 2, and 3. Consider an optimal solution S? of P and fix it.
For a single element e ∈ S? of this optimal solution S?, let the upper tolerance
uS?(e) of element e with respect to S? be the maximal number α ∈ R by which
the costs of e can be increased such that S? remains an optimal solution and costs
of all other elements e ∈ E \ {e} remaining unchanged, i.e., for each e ∈ S∗ the
upper tolerance is defined as follows:

uS?(e) := sup{α ∈ R; S? is an optimal solution of Pα,e}

As S? is an optimal solution of P0,e, which is P , the upper tolerance uS?(e) is
either a non-negative number or +∞. Because of condition 2, for each e ∈ S? and
each uS?(e) < +∞, it holds:

uS?(e) = max{α ∈ R; S?is an optimal solution of Pα,e}

Let us prove the following properties.

Theorem 1 Let S? be an optimal solution of P . A single element e ∈ E is con-
tained in every feasible solution of P if and only if uS?(e) = +∞, i.e.,

e ∈
⋂

S∈D
S ⇐⇒ uS?(e) = +∞

Furthermore, if uS?(e) = +∞ holds, optimal solutions of P are also optimal
solutions of Pα,e for all α > 0.
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Theorem 2 The upper tolerance of an element does not depend on a particular
optimal solution of P , i.e.,

(∀S1, S2 ∈ D?) (∀e ∈ S1 ∩ S2) uS1(e) = uS2(e) (1)

Thus, if a single element e ∈ E is contained in at least one optimal solution S? of
P , the upper tolerance of e does not depend on that particular optimal solution S?

but only on problem P itself. Hence, we can refer to the upper tolerance of e with
respect to an optimal solution S? as upper tolerance of e with respect to P , uP(e).

Note that the upper tolerance of an element e which is not contained in an optimal
solution is not defined. For these elements e ∈ E , we set uP(e) := UNDEFINED.

Theorem 3 If e ∈ E with uP(e) 6∈ {UNDEFINED,+∞}, then for all ε > 0 the
element e is not contained in an optimal solution of PuP (e)+ε,e.

Theorem 3 states that, for all e ∈ E with uP(e) 6= UNDEFINED and uP(e) 6= +∞,
increasing the costs of e by uP(e) + ε for ε > 0 makes the element uninteresting
for optimal solutions.

Theorem 4 For each single element e ∈ E which is contained in at least one
optimal solution S? of P , the upper tolerance of e is given by

• uP(e) = fc(D
?
−(e))− fc(P), if the cost function is of type

∑
.

• uP(e) =
fc(D

?
−(e))−fc(P)

fc(P) · c(e), if the cost function is of type
∏

.
• uP(e) = fc(D

?
−(e))− c(e), if the cost function is of type MAX.

Theorem 5 For each single element e ∈ E it holds for a cost function of type
∑

,∏
and MAX:

fc(D
?
−(e)) = fc+∞,e(P)

Theorem 4 and Theorem 5 tell us how to compute the upper tolerance of a single
element e ∈ E with respect to P . We observe (see also [13] and [21])

Corollary 1 Let the cost function be of type
∑
,
∏
,MAX. The upper tolerance of

one element e ∈ E can be computed by solving two different instances of P , i.e.,
the computation of upper tolerance has the same complexity as P itself.

Theorem 6 If the cost function is either of type
∑

or
∏

, then a single element
e ∈ E is contained in every optimal solution if and only if its upper tolerance is
greater than 0, i.e.,

e ∈
⋂

S?∈D?
S? ⇐⇒ uP(e) > 0

or
⋂

S?∈D?
S? = {e; uP(e) > 0}
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Theorem 6 characterizes those elements which are contained in every optimal so-
lution. We only have to know the upper tolerance of an element. Unfortunately,
this property doesn’t hold for a cost function of type MAX.

Remark 1 In general, Theorem 6 doesn’t hold for a cost function of type MAX,
especially there is a combinatorial minimization problem with a cost function of
type MAX such that there is an element e ∈ ∪S?∈D?S? with uP(e) > 0 although
e 6∈ ∩S?∈D?S?.

Corollary 2 Let the cost function be either of type
∑

or of type
∏

. There is only
one optimal solution of P if and only if the upper tolerance uP(e) > 0 for all e
with uP(e) 6= UNDEFINED.

Remark 2 Note that Condition 1 is crucial for all these properties, in particular for
Theorem 4.

4 Lower Tolerances

Now, let S? be an optimal solution of P which doesn’t contain the element e ∈
E . Analogously to the considerations which we have made with respect to upper
tolerances, we can ask for the maximum value by which the costs of element e
can be decreased such that S? remains an optimal solution under assumption that
the costs of all other elements remain unchanged. More formally, we define for all
e ∈ E \ S?:

lS?(e) := sup{α ∈ R; fc−α,e is monotone and
S? is an optimal solution of P−α,e}.

Note that if the cost function of the combinatorial minimization problem is of type∏
, the costs of the elements have to be greater than zero to guarantee monotonicity.

In the following, let δmax(e) be defined as

δmax(e) :=





+∞ , if fc is either of type
∑

or of type MAX

c(e) , if fc is of type
∏

δmax(e) is the maximal value by which element e can be decreased such that the
cost function remains either of type

∑
,
∏

, or MAX.
As S? is an optimal solution of P−0,e which is P , the lower tolerance lS?(e) is
either a non-negative number or +∞ if e 6∈ S?. More exactly, it holds for each
e ∈ E \ S?:

0 ≤ lS?(e) ≤ δmax(e)

Because of condition 2, for each e ∈ E \ S? and each lS?(e) < δmax(e), it holds:

lS?(e) = max{α ∈ R; fc−α,e is monotone and
S? is an optimal solution of P−α,e}.

In the following, we prove the following properties.
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Theorem 7 Let the cost function be of type
∑

or
∏

and let S? be an optimal
solution of P . Then, an element e isn’t contained in a feasible solution if and only
if lS?(e) = δmax(e), i.e.,

e ∈ E \
⋃

S∈D
S ⇐⇒ lS?(e) = δmax(e)

Remark 3 Theorem 7 doesn’t hold for a cost function of type MAX, in general:
the condition e ∈ E \⋃S∈D S is sufficient but not necessary for lS?(e) = +∞.

Remark 3 partly puts lower tolerances with respect to a cost function of type MAX
in question. It states that the lower tolerance of an element can be very large,
namely +∞, although this element can be included in a feasible solution. Actually,
we will show (see page 25) that the element can be included in an optimal solution.
This contradicts the intuition that an element with large lower tolerance is not a
“good” element and should not be included in solutions by heuristics.

Theorem 8 The lower tolerance of an element does not depend on a particular
optimal solution of P , i.e.,

(∀S1, S2 ∈ D?)(∀e 6∈ S1 ∪ S2) lS1(e) = lS2(e)

Thus, if there is at least one optimal solution S? of P which doesn’t contain ele-
ment e, the lower tolerance of e doesn’t depend on that particular optimal solution
but only on problem P itself. As for upper tolerances, we can refer to the lower
tolerance of e with respect to an optimal solution S? as lower tolerance of e with
respect to P , lP(e).

The lower tolerance of an element e which is contained in every optimal solution
is not defined, yet. For these elements e, we set lP(e) := UNDEFINED.

Theorem 9 If e ∈ E is a single element with lP(e) 6∈ {UNDEFINED, δmax(e)},
then element e is contained in every optimal solution of P−(lP(e)+ε),e for all 0 <
ε < δmax(e)− lP(e).

Theorem 9 states that if we decrease the costs of e by more than lP(e), then an
optimal solution will contain element e provided that lP(e) is neither UNDEFINED

nor +∞.

Let for a single element e ∈ E and a cost function of type MAX

g(e) :=

{
minS∈D+(e) maxa∈S\{e}{c(a)} , if D+(e) 6= ∅

+∞ , if D+(e) = ∅

Obviously, it holds:

fc−∞,e(P) = min{g(e), fc(D
?
−(e))} (2)
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Theorem 10 For each single element e ∈ E it holds

• fc(D?
+(e)) = limK→+∞(fc−K,e(P) +K), if the cost function is of type

∑
.

• fc(D?
+(e)) = limK→c(e)−

(
fc−K,e (P)

c(e)−K · c(e)
)

, if the cost function is of type∏
.

• fc(D?
+(e)) = max{g(e), c(e)}, if the cost function is of type MAX.

Theorem 11 For every e ∈ E with lP(e) 6∈ {UNDEFINED, δmax(e)}, the lower
tolerance of e with respect to P is given by

• lP(e) = fc(D
?
+(e))− fc(P), if the cost function is of type

∑
.

• lP(e) =
fc(D

?
+(e))−fc(P)

fc(D?+(e)) · c(e), if the cost function is of type
∏

.

• lP(e) =

{
c(e)− fc(P) , if g(e) < fc(P)

+∞ , otherwise , if the cost function is of type MAX.

Theorem 10 and Theorem 11 tell us how to compute the lower tolerance of a single
element e ∈ E with respect to P . We observe

Corollary 3 The lower tolerance of one element e ∈ E can be computed by solv-
ing two different instances of P for a cost function of type

∑
,
∏

and solving one
instance of P for a cost function of type MAX, i.e., the computation of lower toler-
ance has the same complexity as P itself.

Theorem 12 If the cost function is either of type
∑

or
∏

, then a single element
e ∈ E isn’t contained in an optimal solution if and only if its lower tolerance is
greater than 0, i.e.,

e 6∈
⋃

S?∈D?
S? ⇐⇒ lP(e) > 0

or

E \
⋃

S?∈D?
S? = {e; lP(e) > 0}

Theorem 12 characterizes those elements which are never included in an optimal
solution.

Remark 4 In general, Theorem 12 doesn’t hold for a cost function of type MAX,
especially there is a combinatorial minimization problem with a cost function of
type MAX such that there is an element e 6∈ ∩S?∈D?S? with lP(e) > 0 although
e ∈ ∪S?∈D?S?.
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5 Relationship between Lower and Upper Tolerances

The following properties hold for each cost function fc either of type
∑

or
∏

.

Corollary 4 Let the cost function be either of type
∑

or of type
∏

. For all e ∈ E ,
the equivalence

lP(e) = UNDEFINED ⇐⇒ uP(e) > 0

holds.

PROOF The statement directly follows from Theorem 6 and the definition of lower

tolerance. �

Corollary 5 Let the cost function be either of type
∑

or of type
∏

. For all e ∈ E ,
the equivalence

uP(e) = UNDEFINED ⇐⇒ lP(e) > 0

holds.

PROOF The statement directly follows from Theorem 12 and the definition of up-

per tolerance. �

Corollary 6 Let the cost function be either of type
∑

or of type
∏

. For each e ∈ E
which is contained in at least one optimal solution of P but not in all, i.e.,

• e ∈ ∪S?∈D?S?
• e 6∈ ∩S?∈D?S?,

the equation uP(e) = lP(e) = 0 holds.

PROOF Both the upper tolerance and the lower tolerance of e are defined. uP(e) =

0 holds because of Theorem 6. lP(e) = 0 holds because of Theorem 12. �

Actually, there is a much more close interrelation between lower and upper toler-
ances. Let us go into more detail, in the following.

Let
uP,min = min{uP(e); e ∈ E and uP(e) 6= UNDEFINED }

and
lP,min = min{ lP(e); e ∈ E and lP(e) 6= UNDEFINED }

be the smallest upper and lower tolerance with respect to P . Furthermore, let
∆P,min be defined as

∆P,min = min{ δmax(e); e ∈ E }

Then, we can prove the following statements.
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Corollary 7 Let the cost function be either of type
∑

or of type
∏

. Provided that
no feasible solution is a subset of another feasible solution and there are at least
two different optimal solutions, i.e., |D?| ≥ 2, the equation

uP,min = lP,min = 0

holds.

PROOF As there are at least two optimal solutions S1 and S2 with neither S1 ⊆ S2

nor S2 ⊆ S1, there is an element e1 ∈ S1 \ S2. Thus,

• e1 ∈ ∪S?∈D?S?
• e1 6∈ ∩S?∈D?S?

By Corollary 6, these two properties of e1 implies uP(e1) = 0 and lP(e1) = 0.
Thus uP,min = lP,min = 0 holds. �

Remark 5 If we relax the condition that no feasible solution is a subset of another
feasible solution, then Corollary 7 doesn’t hold.

Much more interesting is the case that there is only one optimal solution. Here,
both the minimal upper tolerance and the minimal lower tolerance are greater than
0. Nevertheless, they are equal. First, we analyze the special case that there is only
one feasible solution of P .

Lemma 1 Let the cost function be either of type
∑

or of type
∏

. If the set D of
the feasible solutions of P consists of only one element, say S, i.e., | D |= 1, then

uP,min = +∞

and

• lP,min = +∞, if S = E
• lP,min = ∆P,min, if S = ∅
• lP,min ≥ ∆P,min, if S 6= E and S 6= ∅

Remark 6 Note that for the set of feasible solutionsD we have:D 6= ∅ (Condition
3), but nevertheless it might hold: ∅ ∈ D.

Corollary 8 Let the cost function be of type
∑

. If the set D consists of only one
element, i.e., | D |= 1, then

uP,min = lP,min = +∞

holds.

PROOF The corollary is directly implied by Lemma 1 as∆P,min = +∞ for a cost

function of type
∑

. �
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Lemma 2 Let the cost function be of type
∑

. Provided that no feasible solution
is a subset of another feasible solution and there are at least two different feasible
solutions but only one optimal solution, i.e., |D ≥ 2| and |D?| = 1, then the
equation

uP,min = lP,min

holds. In particular, 0 < lP,min 6= +∞ and 0 < uP,min 6= +∞.

Theorem 13 Let the cost function be of type
∑

. Provided that no feasible solution
is a subset of another feasible solution, then the equation

uP,min = lP,min

holds.

PROOF The statement is directly implied by Corollary 7, Corollary 8, and Lemma 2.

�

Remark 7 If we relax the condition that no feasible solution is a subset of another
feasible solution, then Theorem 13 doesn’t hold.

Remark 8 In general, Theorem 13 doesn’t hold for a cost function of type
∏

.

Remark 9 In general, Theorem 13 doesn’t hold for a cost function of type MAX.

Corollary 9 Let the cost function be of type
∑

. Provided that no feasible solution
is a subset of another feasible solution, there is only one optimal solution of P if
and only if the lower tolerance lP(e) > 0 for all e with lP(e) 6= UNDEFINED.

PROOF The statement directly follows from Corollary 2, Theorem 13 and the def-

inition of uP,min and lP,min. �

Finally, we consider the largest upper and lower tolerance with respect to P :

uP,max = max{uP(e); e ∈ E and uP(e) 6= UNDEFINED }
lP,max = max{ lP(e); e ∈ E and lP(e) 6= UNDEFINED }

In the following we need the sets G,H ⊆ E which are defined as follows:

G := { e ∈
⋃

S?∈D?
S?; uP(e) = uP,max }

H := { e ∈ E \
⋂

S?∈D?
S?; lP(e) = lP,max }

We call the set of feasible solutions D connected, if D satisfies
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a)
(⋃

e∈SS?∈D? S? S?−(e)
)
∩H 6= ∅

b)
(⋃

e∈E\TS?∈D? S?
(
E \ S?+(e)

))
∩G 6= ∅

It is easy to see these conditions a) and b) are equivalent to the following conditions
a’) and b’):

a’) ∃e ∈ ⋃S?∈D? S? ∃S?−(e) ∈ D?
−(e) : S?−(e) ∩H 6= ∅

b’) ∃e ∈ E \⋂S?∈D? S? ∃S?+(e) ∈ D?
+(e) : (E \ S?+(e)) ∩G 6= ∅

Theorem 14 Let the cost function be of type
∑

. If the set of feasible solutions D
is connected, then the equation

uP,max = lP,max

holds.

We illustrate the conditions a) and b) and Theorem 14 by the following example:

Consider the following combinatorial minimization problem P = (E , D, c, fc)
defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 4, and c(z) = 8
• D = { {v, x}, {y, z} }
• fc is a cost function of type

∑
.

The only optimal solution is {v, x}.
It holds:

uP(v) = 9

uP(x) = 9

which implies
uP,max = 9

and

lP(y) = 9

lP(z) = 9

which implies
lP,max = 9

Therefore
uP,max = lP,max
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Furthermore it holds:
G = {v, x}
H = {y, z}

D?
−(v) = {{y, z}}

D?
−(x) = {{y, z}}

D?
+(y) = {{y, z}}

D?
+(z) = {{y, z}}

As condition a’) and condition b’) hold, D is connected.

Remark 10 The condition that the set of feasible solutions D is connected is only
a sufficient, but not a necessary condition for uP,max = lP,max, i.e., there is a
combinatorial minimization problem, where uP,max = lP,max, although D is not
connected,

Remark 11 In general, Theorem 14 doesn’t hold for a cost function of type
∏

.

Remark 12 In general, Theorem 14 doesn’t hold for a cost function of type MAX.

6 Proofs

6.1 Proofs of the Properties of Upper Tolerances

6.1.1 Proof of Theorem 1 For the direction “⇒” we only have to prove that an
optimal solution S? remains optimal if the costs of an element ewhich is contained
in every feasible solution are increased. We prove it by case differentiation:

• [The cost function fc is of type
∑

]
As element e is included in every feasible solution of P , increasing the costs
of element e by α > 0 increases the costs of all feasible solution of P by the
term α. Hence, optimal solutions of P are optimal solutions of Pα,e, too.

• [The cost function fc is of type
∏

]
As element e is included in every feasible solution ofP , increasing the costs of
element e by α > 0 increases the costs of all optimal solution of P by the term
α · fc(P)

c(e) and all other feasible solutions S of P by the term α · fc(S)
c(e) which is

greater than α · fc(P)
c(e) . Hence, optimal solutions remain optimal.

• [The cost function fc is of type MAX]
If the costs of element e are increased by α ≤ fc(P)− c(e), optimal solutions
of P obviously are optimal solutions of Pα,e, too, because the new costs of e
are less than or equal fc(P).
If the costs of element e are increased by α > fc(P) − c(e), the costs of a
formerly optimal solution becomes c(e) + α and the costs of each feasible
solution are greater than or equal c(e) + α. Hence optimal solutions remain
optimal.
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To prove the other direction, assume that there is a feasible solution S ∈ D with
e 6∈ S. Increasing the costs of e by some γ > 0 (choose γ large enough) results in

fcγ,e(S
?) > fcγ,e(S)

and S? isn’t an optimal solution of Pγ,e. Thus, the upper tolerance uP(e) of e is
less than γ which is in contradiction to uS?(e) = +∞. �

6.1.2 Proof of Theorem 2 The statement directly follows from Lemma 3, 4, and
5 which we prove in the following. �

Lemma 3 (1) holds for a cost function of type
∑

.

PROOF First, consider the case that uS1(e) = +∞. By Theorem 1, optimal solu-

tions of P are also optimal solutions of Pα,e for all α > 0. Thus, uS2(e) = +∞
holds, too.

In the following, we assume that uS1(e) 6= +∞ and uS2(e) 6= +∞.

Let us prove uS1(e) ≥ uS2(e), now.

As both solutions S1 and S2 are optimal, the equation

∑

e∈S1

c(e) =
∑

e∈S2

c(e) (3)

holds.

Furthermore, the following statements are true:

• By Condition 1, both S1 and S2 are feasible solutions of PuS2 (e),e.
• As e is an element of both S1 and S2, the costs of S1 and S2 increase by the

term α, respectively, if the costs of e are increased by α:

fcα,e(S1) =
∑

e∈S1\{e}
c(e) + (c(e) + α)

=
∑

e∈S1

c(e) + α

=
∑

e∈S2

c(e) + α see (3)

=
∑

e∈S2\{e}
c(e) + (c(e) + α)

= fcα,e(S2)
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This implies that, for all α > 0, S1 is an optimal solution of Pα,e if S2 is an
optimal solution of Pα,e. Hence,

uS1(e) ≥ uS2(e)

holds.
Obviously, the relation

uS1(e) ≤ uS2(e)

can be shown analogously. �

Lemma 4 (1) holds for a cost function of type
∏

.

PROOF First, consider the case that uS1(e) = +∞. By Lemma 1, optimal solutions

of P are also optimal solutions of Pα,e for all α > 0. Thus, uS2(e) = +∞ holds,
too.

In the following, we assume that uS1(e) 6= +∞ and uS2(e) 6= +∞.

The statement of Lemma 4 can be proven analogously to Lemma 3 because of the
following two facts:

• For each e ∈ S1 ∩ S2:
∏

e∈S1\{e}
c(e) =

∏

e∈S2\{e}
c(e)

because
∏
e∈S1

c(e) =
∏
e∈S2

c(e) and c(e) 6= 0.
• For each e ∈ S1 ∩ S2 and for each α > 0:

fcα,e(S1) =
∏

e∈S1\{e}
c(e) · (c(e) + α)

=
∏

e∈S2\{e}
c(e) · (c(e) + α)

= fcα,e(S2)

�

Lemma 5 (1) holds for a cost function of type MAX.

PROOF First, consider the case that uS1(e) = +∞. By Lemma 1, optimal solutions

of P are also optimal solutions of Pα,e for all α > 0. Thus, uS2(e) = +∞ holds,
too.

In the following, we assume that uS1(e) 6= +∞ and uS2(e) 6= +∞.

Because of the definition of uS1(e) and Condition 1, the following statements
obviously hold for all ε > 0 :
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• S1 is an optimal solution of PuS1 (e),e.
• S1 isn’t an optimal solution of PuS1 (e)+ε,e although feasible solution.

It directly follows that

fcuS1
(e),e

(S1) := max{c(e); e ∈ S1}
= c(e) + uS1(e)

must hold. Otherwise, fcuS1
(e),e

(S1) > c(e) + uS1(e) would hold and the costs of
e could be increased by some constant ε > 0 without violating the optimality of
S1.

Furthermore, we have

fc(S2) = fc(S1) as S1, S2 ∈ D?

≤ fcuS1
(e),e

(S1) monotony of the cost function

= c(e) + uS1(e)

Thus, as the cost function we consider in this lemma is of type MAX, the costs of
S2 with respect to PuS1 (e),e is determined by element e as e ∈ S2 and the costs of
all the other elements of S2 are less than or equal c(e) + uS1(e), i.e.,

fcuS1
(e),e

(S2) = c(e) + uS1(e)

= fcuS1
(e),e

(S1).

As S1 is an optimal solution ofPuS1 (e),e,S2 is also an optimal solution ofPuS1 (e),e.
Thus

uS2(e) ≥ uS1(e)

holds.

The relation
uS2(e) ≤ uS1(e)

can be shown analogously. �

6.1.3 Proof of Theorem 3

Lemma 6 Let S1, S2 ⊆ 2E be two subsets of E , e ∈ S1 ∩ S2 and α > 0. It holds:

fc(S1) ≥ fc(S2) =⇒ fcα,e(S1) ≥ fcα,e(S2) (4)

Note that the above implication even holds for all α ∈ R, if the cost function is
either of type

∑
or
∏

.

PROOF We prove the lemma by case differentiation.
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• The cost function is of type
∑

fcα,e(S1) = α+ fc(S1)

≥ α+ fc(S2)

= fcα,e(S2)

Thus, (4) holds even for all α ∈ R.
• The cost function is of type

∏

fcα,e(S1) = (c(e) + α) · fc(S1)

c(e)
as c(e) 6= 0

≥ (c(e) + α) · fc(S2)

c(e)

= fcα,e(S2)

Thus, (4) holds even for all α ∈ R.
• The cost function is of type MAX

There are three sub-cases to distinguish:
Case 1: fc(S1) ≥ c(e) + α and fc(S2) ≥ c(e) + α

Because of α > 0, it follows

fcα,e(S1) = fc(S1)

fcα,e(S2) = fc(S2)

so that (4) obviously holds.

Case 2: fc(S1) ≥ c(e) + α and fc(S2) < c(e) + α

Because of α > 0, it follows

fcα,e(S1) = fc(S1)

≥ c(e) + α

= fcα,e(S2)

Case 3: fc(S1) < c(e) + α and fc(S2) < c(e) + α

It follows

fcα,e(S1) = c(e) + α

= fcα,e(S2)

�

Now, we prove Theorem 3.
Let e ∈ E be with uP(e) 6∈ {UNDEFINED,+∞}, ε > 0 and S ∈ D with e ∈ S
a feasible solution of PuP (e)+ε,e. We show that S isn’t an optimal solution of
PuP (e)+ε,e.

Because of Condition 1, S is a feasible solution of P .

Now, we can distinguish two cases:
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• [S is optimal with respect to P]
Then, uS(e) is defined and, because of the definition of upper tolerance and
Theorem 2, S isn’t an optimal solution of PuP (e)+ε,e

• [S isn’t optimal with respect to P]
Because of uP(e) 6= UNDEFINED, there is an optimal solution S? of P with
e ∈ S?. As just proven, S? is not optimal with respect to PuP (e)+ε,e.
As S 6∈ D?, it follows

fc(S) > fc(S
?)

As e ∈ S ∩ S?, Lemma 6 can be applied:

fcuP (e)+ε,e
(S) ≥ fcuP (e)+ε,e

(S?)

Hence, S cannot be optimal with respect to PuP (e)+ε,e as its costs are higher
than or equal those of S? which isn’t an optimal solution of PuP (e)+ε,e.

�

6.1.4 Proof of Theorem 4 Theorem 4 follows from the following three lemma,
Lemma 7, 8, and 9. �

Lemma 7 Let the cost function be of type
∑

. For each single element e ∈ E which
is contained in at least one optimal solution S? of P , the upper tolerance of e is
given by

uP(e) = fc(D
?
−(e))− fc(P)

PROOF Let us first prove that uP(e) ≥ fc(D?
−(e))− fc(P) holds.

If uP(e) = +∞, the above relation is obvious. Thus, we can assume uP(e) 6= +∞
in the following.
The equation

fcuP (e)+ε,e
(D?
−(e)) = fc(D

?
−(e))

holds for each ε > 0, as only the costs of element e are increased.
By Theorem 3, for all ε > 0 there is no feasible solution S ∈ D with e ∈ S which
is an optimal solution of PuP (e)+ε,e, i.e.,

fcuP (e)+ε,e
(D?
−(e)) < fcuP (e)+ε,e

(S?)

holds as e ∈ S?.

Hence, for all ε > 0

fc(D
?
−(e)) = fcuP (e)+ε,e

(D?
−(e))

< fcuP (e)+ε,e
(S?)

= fc(P) + uP(e) + ε.
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Thus,
fc(D

?
−(e)) ≤ fc(P) + uP(e)

holds which is equivalent to

fc(D
?
−(e))− fc(P) ≤ uP(e)

Now, let us prove the other direction, namely uP(e) ≤ fc(D?
−(e))− fc(P).

Let

β(e) := fc(D
?
−(e))− fc(P)

We can assume that β(e) 6= +∞, as otherwise the assertion is proven obviously.

Increasing the costs of e by β(e) + ε with ε > 0 lets increase the costs of the
formerly optimal solution S? to

fcβ(e)+ε,e
(S?) = fc(S

?) + β(e) + ε

= fc(P) + (fc(D
?
−(e))− fc(P)) + ε

= fc(D
?
−(e)) + ε

> fc(D
?
−(e))

= fcβ(e)+ε,e
(D?
−(e)).

Thus S? is no optimal solution of Pβ(e)+ε,e and uP(e) < β(e) + ε. It follows

uP(e) ≤ β(e)

= fc(D
?
−(e))− fc(P).

�

Lemma 8 Let the cost function be of type
∏

. For each single element e ∈ E which
is contained in at least one optimal solution S? of P , the upper tolerance of e is
given by

uP(e) =
fc(D

?
−(e))− fc(P)

fc(P)
· c(e)

PROOF Let us first prove that uP(e) ≥ fc(D
?
−(e))−fc(P)

fc(P) · c(e) holds.

We only have to prove the relation for uP(e) 6= +∞.

The equation
fcuP (e)+ε,e

(D?
−(e)) = fc(D

?
−(e))

holds for each ε > 0, as only the costs of element e are increased.
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By Theorem 3, for all ε > 0 there is no feasible solution S ∈ D with e ∈ S which
is an optimal solution of PuP (e)+ε,e, i.e.,

fcuP (e)+ε,e
(D?
−(e)) < fcuP (e)+ε,e

(S?)

holds as e ∈ S?.

Hence, for all ε > 0

fc(D
?
−(e)) = fcuP (e)+ε,e

(D?
−(e))

< fcuP (e)+ε,e
(S?)

=
∏

e∈S?\{e}
c(e) · (c(e) + uP(e) + ε)

=
∏

e∈S?
c(e) + (uP(e) + ε) ·

∏

e∈S?\{e}
c(e)

=
∏

e∈S?
c(e) + (uP(e) + ε) · 1

c(e)
·
∏

e∈S?
c(e)

= fc(S
?) + (uP(e) + ε) · 1

c(e)
· fc(S?)

= fc(P) + (uP(e) + ε) · 1

c(e)
· fc(P)

Thus,
fc(D

?
−(e))− fc(P)

fc(P)
· c(e) < uP(e) + ε

holds which implies

fc(D
?
−(e))− fc(P)

fc(P)
· c(e) ≤ uP(e)

Now, let us prove the other direction, namely uP(e) ≤ fc(D
?
−(e))−fc(P)

fc(P) · c(e).

Let

β(e) :=
fc(D

?
−(e))− fc(P)

fc(P)
· c(e)

Once again, we can assume that β(e) 6= +∞.
Increasing the costs of e by β(e) + ε with ε > 0 lets increase the costs of the
formerly optimal solution S? to

fcβ(e)+ε,e
(S?) =

fc(S
?)

c(e)
· (c(e) + β(e) + ε)

>
fc(S

?)

c(e)
· (c(e) + β(e))
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= fc(S
?) + β(e) · fc(S

?)

c(e)

= fc(P) +
fc(D

?
−(e))− fc(P)

fc(P)
· c(e) · fc(P)

c(e)

= fc(D
?
−(e))

= fcβ(e)+ε,e
(D?
−(e))

Thus S? is no optimal solution of Pβ(e)+ε,e and uP(e) < β(e) + ε. It follows

uP(e) ≤ β(e)

=
fc(D

?
−(e))− fc(P)

fc(P)
· c(e).

�

Lemma 9 Let the cost function be of type MAX. For each single element e ∈ E
which is contained in at least one optimal solution S? of P , the upper tolerance of
e is given by

uP(e) = fc(D
?
−(e))− c(e)

PROOF Let us first prove that uP(e) ≥ fc(D?
−(e))− c(e) holds.

We only have to prove the relation for uP(e) 6= +∞.

The equation
fcuP (e)+ε,e

(D?
−(e)) = fc(D

?
−(e))

holds for each ε > 0, as only the costs of element e are increased. Furthermore

fcuP (e)+ε,e
(S?) = c(e) + uP(e) + ε

holds as S? is no optimal solution of PuP (e)+ε,e.

By Theorem 3, for all ε > 0 there is no feasible solution S ∈ D with e ∈ S which
is an optimal solution of PuP (e)+ε,e, i.e.,

fcuP (e)+ε,e
(D?
−(e)) < fcuP (e)+ε,e

(S?)

holds as e ∈ S?.

Hence, for all ε > 0

fc(D
?
−(e)) = fcuP (e)+ε,e

(D?
−(e))

< fcuP (e)+ε,e
(S?)

= c(e) + uP(e) + ε

Thus,
fc(D

?
−(e))− c(e) < uP(e) + ε

holds which implies
fc(D

?
−(e))− c(e) ≤ uP(e)
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Now, let us prove the other direction, namely uP(e) ≤ fc(D?
−(e))− c(e).

Let

β(e) := fc(D
?
−(e))− c(e)

We can assume that β(e) 6= +∞.

For the optimal solution S? ∈ D? with e ∈ S?, the following holds for all ε > 0 :

fcβ(e)+ε,e
(S?)

= max{max{c(e); e ∈ S? \ {e}}, c(e) + β(e) + ε }
= max{max{c(e); e ∈ S? \ {e}}, c(e) + fc(D

?
−(e))− c(e) + ε }

= max{max{c(e); e ∈ S? \ {e}}, fc(D?
−(e)) + ε }

> fc(D
?
−(e))

Thus S? is no optimal solution of Pβ(e)+ε,e and uP(e) < β(e) + ε for all ε > 0. It
follows

uP(e) ≤ β(e)

= fc(D
?
−(e))− c(e).

�

6.1.5 Proof of Theorem 5 Let e be a single element of E .
First, let e be in each feasible solution of P . Then

fc(D
?
−(e)) = fc(∅) = +∞ = fc+∞,e(P)

So assume that there is at least one feasible solution S with e 6∈ S. Let S∗+∞ be
an optimal solution of fc+∞,e(P). Because of the assumption and Condition 1,
e 6∈ S∗+∞. So

fc(D
?
−(e)) = fc+∞,e(D

?
−(e)) = fc+∞,e(P)

�
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6.1.6 Proof of Theorem 6 By Theorem 4,

uP(e) =





fc(D
?
−(e))− fc(P) , if fc is of type

∑

fc(D
?
−(e))−fc(P)

fc(P) · c(e) , if fc is of type
∏

holds.
We first prove the direction “⇒”.

Because e is contained in every optimal solution, the costs of a feasible solution
not containing e is greater than the costs of an optimal solution, i.e.,

fc(D
?
−(e)) > fc(P)

Hence, uP(e) > 0 is greater than 0.

Now, let us prove the other direction.
Assume that there is an optimal solution S? with e 6∈ S?. By this,

fc(D
?
−(e)) = fc(P)

and uP(e) = 0 follows. �

6.1.7 Proof of Remark 1 Consider the following combinatorial minimization prob-
lem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = c(y) = 2, and c(z) = 3
• D = { {p, q}; p, q ∈ E and p 6= q }
• fc is a cost function of type MAX.

Obviously, there are three optimal solutions, {v, x}, {v, y}, and {x, y}. The costs
fc(D

?
−(v)) of the best feasible solution which doesn’t contain v is 2. By Theorem

4, the upper tolerance of v with respect to P is given by fc(D?
−(v))−c(v). Hence,

uP(v) = 1 > 0 although {x, y} is an optimal solution of P which doesn’t contain
v. �

6.1.8 Proof of Corollary 2 The condition that uP(e) > 0 for all e with uP(e) 6=
UNDEFINED is equivalent to the condition that uP(e) > 0 for all e ∈ ∪S?∈D?S?.
With Theorem 6 this is equivalent to

⋃

S?∈D?
S? ⊆

⋂

S?∈D?
S?

This is equivalent to

S1 ⊆ S2 ∀S1, S2 ∈ D?

and to

|D?| = 1

�
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6.1.9 Proof of Remark 2 Just look at the following combinatorial minimization
problem P = (E , D, c, fc) which doesn’t fulfill Condition 1:

• E = {v, x, y, z} with c(v) = c(x) = 1 and c(y) = c(z) = 2
• D = { {p, q}; p, q ∈ E with p 6= q and c(p) = c(q) }
• fc is a cost function of type

∑
.

Then there is exactly one optimal solution of P , namely S? = {v, x}. Thus

fc(P) = fc(S
?) = 2

holds. Furthermore, there is exactly one feasible solution which doesn’t contain
element v, namely S = {y, z}. Because of

fc(D
?
−(v)) = fc(S) = 4,

the equation

fc(D
?
−(v)) − fc(P) = 2

holds. However,

uS?(v) = 0

as increasing the costs of v by α > 0 makes S? infeasible.

This proves that Theorem 4 doesn’t hold if the combinatorial minimization prob-
lem P doesn’t fulfill Condition 1. �

6.2 Proofs of the Properties of Lower Tolerances

6.2.1 Proof of Theorem 7 If there is no feasible solution which contains element
e ∈ E , then the costs of e can be decreased by α > 0 without affecting the costs of
a feasible solution. Thus optimal solutions of P are optimal solutions of P−α,e.

To prove the other direction, assume that there is a feasible solution S ∈ D with
e ∈ S. Decreasing the costs of e by some 0 < γ < δmax(e) (choose γ such that
c(e)− γ is small enough) results in – note that we consider only a cost function of
type

∑
and

∏
in this lemma –

fc−γ,e(S) < fc−γ,e(S
?)

and S? is no optimal solution of P−γ,e. Thus the lower tolerance of e with respect
to S? is less than γ and lS?(e) < δmax(e). �
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6.2.2 Proof of Remark 3 The first part of the proof of Theorem 7 shows that the
condition is sufficient even if the cost function is of type MAX.

To prove that the condition isn’t necessary for a cost function of type MAX, con-
sider the combinatorial minimization problem P = (E , D, c, fc) defined by:

• E = {v, x, y} with c(v) = 1 and c(x) = c(y) = 2
• D = { {p, q}; p, q ∈ E and p 6= q }
• fc is a cost function of type MAX.

Obviously, each feasible solution is optimal as the costs of each feasible solution is
2. Decreasing the costs of element v by α > 0 does not affect the costs of a feasible
solution. Thus, each feasible solution ofP is an optimal solution of P−α,v. Hence,
l{x,y}(v) = +∞ although v is contained in the optimal solution {v, x}. �

6.2.3 Proof of Theorem 8 First, consider the case lS1(e) = δmax(e). Because of
Theorem 3, we have to make a case differentiation.

• [The cost function is either of type
∑

or
∏

]
By Theorem 7, e isn’t contained in a feasible solution, thus optimal solutions
remain optimal if the costs of e are decreased by 0 ≤ α ≤ δmax(e). In partic-
ular, S2 is an optimal solution of P−α,e. Hence, lS2(e) = δmax(e).

• [The cost function is of type MAX]
In this case, δmax(e) = +∞.
Now, assume that lS2(e) = α 6= +∞. Then for all ε > 0, S2 isn’t an optimal
solution of P−(α+ε),e. Hence, as S2 is optimal with respect to P , there is a
feasible solution S ∈ D with
• e ∈ S
• fc−(α+ε),e

(S) < fc−(α+ε),e
(S2)

It follows

fc(S1) = fc−(α+ε),e
(S1) because of e 6∈ S1

≤ fc−(α+ε),e
(S) because of lS1(e) = +∞

< fc−(α+ε),e
(S2)

= fc(S2) because of e 6∈ S2

which is a contradiction to the fact that both S1 and S2 are optimal with respect
to P . Thus, lS2(e) has to be +∞.

This close the proof that lS1(e) = δmax(e) implies lS2(e) = δmax(e).

Now, consider the other case, namely lS1(e) < δmax(e).

If we decrease the costs of element e by lS1(e), the following statements hold:

• By Condition 1, S1 and S2 are feasible solutions with respect to P−lS1 (e),e.
• Because of the definition of lower tolerance, S1 is an optimal solution of
P−lS1(e),e.
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• As the costs of neither S1 nor S2 are affected by decreasing the costs of e, we
have

fc−lS1
(e),e

(S2) = fc(S2)

= fc(S1) S1 and S2 are optimal w.r.t. P
= fc−lS1

(e),e
(S1)

It follows that S2 is an optimal solution of P−lS1 (e),e, too. Hence

lS2(e) ≥ lS1(e)

holds.

Analogously we can prove lS2(e) ≤ lS1(e). This closes the proof.

�

6.2.4 Proof of Theorem 9 Let ε be with ε < δmax(e) − lP(e). Let S ∈ D with
e 6∈ S be a feasible solution of P−(lP (e)+ε),e. We show, that S is not an optimal
solution of P−(lP (e)+ε),e.

Because of Condition 1, S is a feasible solution of P .

We have to distinguish two cases:

• [S is optimal with respect to P]
In this case, the lower tolerance of e with respect to S is defined and lS(e) =
lP(e) holds. By the definition of lower tolerance, S isn’t an optimal solution
of P−(lP (e)+ε),e.

• [S isn’t optimal with respect to P]
Because of lP(e) 6= UNDEFINED, there is at least one optimal solution S? of P
with e 6∈ S?. As just proven, S? isn’t an optimal solution of P−(lP (e)+ε),e.

As S 6∈ D?,
fc(S) > fc(S

?)

holds, and because of e 6∈ S ∪ S?, the costs of neither S nor S? are changed if
the costs of e decrease. Thus

fc−(lP (e)+ε),e
(S) = fc(S)

> fc(S
?)

= fc−(lP (e)+ε),e
(S?)

holds and S is not an optimal solution of P−(lP (e)+ε),e.

�
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6.2.5 Proof of Theorem 10 First, let e be not contained in a feasible solution of
P , i.e., D+(e) = ∅. Then

fc(D
?
+(e)) = fc(∅) = +∞

Furthermore

lim
K→+∞

(
fc−K,e(P) +K

)
= fc(P) + lim

K→+∞
K = +∞

for a cost function of type
∑

and

lim
K→c(e)−

(
fc−K,e(P)

c(e)−K · c(e)
)

= fc(P) · c(e) · lim
K→c(e)−

1

c(e)−K = +∞

for a cost function of type
∏

and

max{g, c(e)} = max{+∞, c(e)} = +∞

for a cost function of type MAX.

Now, let e be contained in at least one feasible solution of P .
For a cost function of type

∑
it holds for all K > 0:

fc(D
?
+(e)) = fc−K,e(D

?
+(e)) +K

The assertion follows, as for sufficiently large K, fc−K,e(D?
+(e)) = fc−K,e(P).

For a cost function of type
∏

it holds for all K > 0:

fc(D
?
+(e)) =

fc−K,e(D
?
+(e))

c(e)−K · c(e)

Analogously, the assertion follows, as forK sufficiently close to c(e), fc−K,e(D?
+(e))

= fc−K,e(P).

The assertion for a cost function of type MAX directly follows from the definition
of g.

�

6.2.6 Proof of Theorem 11 Theorem 11 follows from the following three lemma,
Lemma 10, 11, and 12. �

Lemma 10 Let the cost function be of type
∑

. For each single element e ∈ E with
lP(e) 6∈ {UNDEFINED, +∞}, the lower tolerance of e is given by

lP(e) = fc(D
?
+(e))− fc(P)
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PROOF Let us first prove that lP(e) ≥ fc(D?
+(e))− fc(P) holds.

Decreasing the costs of e by lP(e) + ε with ε > 0 decreases the costs of the best
feasible solutions which contain e by lP(e) + ε, i.e.,

fc−(lP (e)+ε),e
(D?

+(e)) = fc(D
?
+(e))− lP(e)− ε

By Theorem 9, for all ε > 0 an optimal solution of P−(lP (e)+ε),e contains e, i.e.,

fc−(lP (e)+ε),e
(D?

+(e)) < fc−(lP (e)+ε),e
(D?
−(e))

Now, let S? be an optimal solution of P with e 6∈ S?. Such a feasible solution S?

exists as lP(e) 6= UNDEFINED holds. Because of

fc−(lP (e)+ε),e
(D?
−(e)) = fc(D

?
−(e))

= fc(S
?) because S? ∈ D?

−(e)

= fc(P) as S? is optimal w.r.t. P ,

we can conclude

fc(D
?
+(e))− lP(e)− ε = fc−(lP (e)+ε),e

(D?
+(e))

< fc−(lP (e)+ε),e
(D?
−(e))

= fc(P)

Thus,
fc(D

?
+(e))− lP(e) ≤ fc(P)

holds which is equivalent to

fc(D
?
+(e))− fc(P) ≤ lP(e)

Now, let us prove the other direction, namely lP(e) ≤ fc(D?
+(e))− fc(P).

Let

β(e) := fc(D
?
+(e))− fc(P)

and let S? be an optimal solution of P with e 6∈ S?. S? exists because of lP(e) 6=
UNDEFINED.

As we have assumed lP(e) 6= +∞, D?
+(e) is not empty and β(e) 6= +∞ holds,

by Theorem 7.
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Decreasing the costs of e by β(e)+εwith ε > 0 makes the best solutions ofD?
+(e)

cheaper than the formerly optimal solution S? which doesn’t contain e. Indeed, for
all ε > 0, the following equations hold:

fc−(β(e)+ε),e
(D?

+(e)) = fc(D
?
+(e))− β(e)− ε

= fc(D
?
+(e))− (fc(D

?
+(e))− fc(P))− ε

= fc(P)− ε
< fc(P)

= fc(S
?)

= fc−(β(e)+ε),e
(S?)

Thus, for all ε > 0, S? is no optimal solution of P−(β(e)+ε),e and it follows

lP(e) ≤ β(e)

= fc(D
?
+(e))− fc(P).

�

Lemma 11 Let the cost function be of type
∏

. For each single element e ∈ E with
lP(e) 6∈ {UNDEFINED, c(e)}, the lower tolerance of e is given by

lP(e) =
fc(D

?
+(e))− fc(P)

fc(D?
+(e))

· c(e)

PROOF Let us first prove that lP(e) ≥ fc(D
?
+(e))−fc(P)

fc(D?+(e)) · c(e) holds.

Decreasing the costs of e by lP(e) + ε with ε > 0 decreases the costs of the best
feasible solutions which contain e by

(lP (e) + ε) · 1

c(e)
· fc(D?

+(e)),

i.e.,

fc−(lP (e)+ε),e
(D?

+(e)) = fc(D
?
+(e))− (lP(e) + ε) · 1

c(e)
· fc(D?

+(e))

By Theorem 9, for all ε > 0 an optimal solution of P−(lP (e)+ε),e contains e, i.e.,

fc−(lP (e)+ε),e
(D?

+(e)) < fc−(lP (e)+ε),e
(D?
−(e))
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Now, let S? be an optimal solution of P with e 6∈ S?. Such a feasible solution S?

exists as lP(e) 6= UNDEFINED holds. Because of

fc−(lP (e)+ε),e
(D?
−(e)) = fc(D

?
−(e))

= fc(S
?) because of S? ∈ D?

−(e)

= fc(P) as S? is optimal w.r.t. P ,

we can conclude for all ε > 0:

fc(D
?
+(e))− (lP(e) + ε) · 1

c(e)
· fc(D?

+(e))

= fc−(lP (e)+ε),e
(D?

+(e))

< fc−(lP (e)+ε),e
(D?
−(e))

= fc(P).

Thus,

fc(D
?
+(e))− lP(e) · 1

c(e)
· fc(D?

+(e)) ≤ fc(P)

holds which is equivalent to

fc(D
?
+(e))− fc(P)

fc(D?
+(e))

· c(e) ≤ lP(e)

Now, let us prove the other direction, namely

lP(e) ≤ fc(D
?
+(e))− fc(P)

fc(D?
+(e))

· c(e)

Let

β(e) :=
fc(D

?
+(e))− fc(P)

fc(D?
+(e))

· c(e)

and let S? be an optimal solution of P with e 6∈ S?. S? exists because of lP(e) 6=
UNDEFINED.

As lP(e) 6= c(e) holds by assumption, D?
+(e) isn’t empty (see Theorem 7) and

fc(D
?
+(e)) 6= +∞ holds. Hence

β(e) =
fc(D

?
+(e))− fc(P)

fc(D?
+(e))

· c(e)

=

(
1− fc(P)

fc(D?
+(e))

)
· c(e)

< c(e).
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Decreasing the costs of e by β(e) + ε with 0 < ε < c(e) − β(e) makes the best
solutions of D?

+(e) cheaper than the formerly optimal solution S? which doesn’t
contain e. Indeed, for all ε > 0, the following equations hold:

fc−(β(e)+ε),e
(D?

+(e))

= fc(D
?
+(e))− (β(e) + ε) · 1

c(e)
· fc(D?

+(e))

< fc(D
?
+(e))− β(e) · 1

c(e)
· fc(D?

+(e))

= fc(D
?
+(e))− fc(D

?
+(e))− fc(P)

fc(D?
+(e))

· c(e) · 1

c(e)
· fc(D?

+(e))

= fc(P)

= fc(S
?)

= fc−(β(e)+ε),e
(S?).

Thus, for all ε > 0, S? is no optimal solution of P−(β(e)+ε),e and it follows

lP(e) ≤ β(e)

=
fc(D

?
+(e))− fc(P)

fc(D?
+(e))

· c(e).

�

Lemma 12 Let the cost function be of type MAX. For each single element e ∈ E
with lP(e) 6∈ {UNDEFINED, +∞}, the lower tolerance of e is given by

lP(e) =




c(e)− fc(P) , if g(e) < fc(P)

+∞ , otherwise

PROOF Let e ∈ E with lP(e) 6= UNDEFINED, i.e., e is not contained in every optimal

solution. Then

fc(P) = fc(D
?
−(e)) (5)

First, let g(e) < fc(P). Assume c(e) < fc(P). Then we obtain a contradiction
because of Theorem 10

fc(D
?
+(e)) = max{g(e), c(e)} < fc(P)

Thus

c(e) ≥ fc(P)
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It holds for α ≥ 0:

fc−α,e(P) = min{fc−α,e(D?
+(e)), fc−α,e(D

?
−(e))}

(Th.10,(5))
= min{max{g(e), c(e)− α}, fc(P)}
{

= fc(P) , if α ≤ c(e)− fc(P)
< fc(P) , if α > c(e)− fc(P)

It follows lP(e) = c(e)− fc(P).

Now, let g(e) ≥ fc(P). From (2) it follows:

fc−∞,e(P) = min{g(e), fc(D
?
−(e))}

= min{g(e), fc(P)}
= fc(P)

lP(e) = +∞ follows from the definition of lower tolerance.
�

6.2.7 Proof of Theorem 12 By Theorem 11,

lP(e) =





fc(D
?
+(e))− fc(P) , if fc is of type

∑

fc(D
?
+(e))−fc(P)

fc(D?+(e)) · c(e) , if fc is of type
∏

holds.

We first prove the direction “⇒”.

Because e isn’t contained in an optimal solution, the costs of a feasible solution
which contains e is greater than the costs of an optimal solution, i.e.,

fc(D
?
+(e)) > fc(P).

Hence, lP(e) is greater than 0.

Now, let us prove the other direction.
Assume that there is an optimal solution S? with e ∈ S?. By this,

fc(D
?
+(e)) = fc(P)

and lP(e) = 0 follows. �
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6.2.8 Proof of Remark 4 Consider the following combinatorial minimization prob-
lem P = (E , D, c, fc) defined by:

• E = {v, x, y} with c(v) = 1, c(x) = 1, c(y) = 1
• D = E2, i.e., D = { {v, x}, {v, y}, {x, y} },
• fc is a cost function of type MAX.

Each feasible solution is an optimal solution, i.e, E = ∪S?∈D?S? and so E \
∪S?∈D?S? = ∅. It holds

lP(v) = +∞

which is a contradiction to Theorem 12. �

6.3 Proofs of the Relationship between Upper and Lower Tolerances

6.3.1 Proof of Remark 5 Consider the following combinatorial minimization prob-
lem P = (E , D, c, fc) defined by:

• E = {v, x, y} with c(v) = 0, c(x) = 1, c(y) = 2
• D = { {x}, {v, x}, {y} },
• fc is a cost function of type

∑
.

We have two optimal solution {x} and {v, x}. It holds

uP,min = uP(v) = 0

lP,min = lP(y) = 1

For a cost function of type
∏

change c(v) = 1.
Again we have two optimal solution {x} and {v, x}. It holds

uP,min = uP(v) = 0

lP,min = lP(y) = 1

�

6.3.2 Proof of Lemma 1 Obviously, S is also the only optimal solution of P .
We make the following case differentiation:

• [S = E]
As every single element of E is contained in each feasible solution, each single
element e ∈ E has the upper tolerance uS(e) = +∞ because of Theorem
1. As the only optimal solution contains each single element of E , the lower
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tolerance isn’t defined for a single element of E , i.e., lP(e) = UNDEFINED for
all e ∈ E , and

{ lP(e); e ∈ E and lP(e) 6= UNDEFINED } = ∅

holds. Hence,

lP,min = min{ lP(e); e ∈ E and lP(e) 6= UNDEFINED }
= min ∅
= +∞
= min{+∞}
= min{uP(e); e ∈ E }
= min{uP(e); e ∈ E and uP(e) 6= UNDEFINED }
= uP,min

• [S = ∅]
As the only optimal solution is empty, the upper tolerance isn’t defined for a
single element of E , i.e., uP(e) = UNDEFINED holds for all e ∈ E . This implies

{uP(e); e ∈ E and uP(e) 6= UNDEFINED } = ∅

and

uP,min = min{uP(e); e ∈ E and uP(e) 6= UNDEFINED }
= min ∅
= +∞.

As the only feasible solution is empty, Theorem 7 can be applied to each single
element e ∈ E . Hence, lP(e) = δmax(e) holds for all e ∈ E . This implies
lP,min = ∆P,min.

• [S 6= E and S 6= ∅]
For each single element eout ∈ E\S, the lower tolerance lP(eout) is δmax(eout)
and the upper tolerance of eout isn’t defined. Analogously, for every single el-
ement ein ∈ S, the upper tolerance uP(ein) is +∞ and the lower tolerance of
ein isn’t defined. Thus, uP,min = +∞ and lP,min ≥ ∆P,min hold.

�

6.3.3 Proof of Lemma 2 In the following, let S? be the optimal solution of P .

We first prove lP,min ≤ uP,min.

Let S ∈ D \ {S?} be a feasible (but non-optimal) solution. By assumption, S? 6⊆
S, i.e., there is an element e? ∈ S? \ S. Because of Theorem 1 and e? 6∈ S ∈ D,
uP(e?) 6= +∞.
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Now, let e? be an element of S? with uP(e?) 6= +∞. Because of the defini-
tion of upper tolerance, for all ε > 0, solution S? is not an optimal solution of
PuP (e?)+ε,e? , i.e., there is a solution S ′ ∈ D \ {S?} with e? 6∈ S′ and

fcuP (e?)+ε,e?
(S′) < fcuP (e?)+ε,e?

(S?) (6)

Again, S′ 6⊆ S? holds, i.e., there is an element e′ ∈ S′ \ S?. Now, decreasing the
costs of element e′ by uP(e?) + ε also implies that S? is not an optimal solution
any more. In fact,

fc−(uP (e?)+ε),e′ (S
′)

= fc(S
′)− (uP(e?) + ε) as e′ ∈ S′

= fcuP (e?)+ε,e?
(S′)− (uP(e?) + ε) as e? 6∈ S′

< fcuP (e?)+ε,e?
(S?)− (uP(e?) + ε) because of (6)

= (fc(S
?) + uP(e?) + ε)− (uP(e?) + ε) as e? ∈ S?

= fc(S
?)

= fc−(uP (e?)+ε),e′ (S
?) as e′ 6∈ S?

holds. This implies lP(e′) < uP(e?) + ε for all ε > 0, hence lP(e′) ≤ uP(e?).
As such an element e′ does exist for each element e? ∈ S? with uP(e?) 6= +∞,

lP,min ≤ uP,min
holds.
Now, we prove

lP,min ≥ uP,min

Let S ∈ D \ {S?}. By the assumption of the lemma, S 6⊆ S?, i.e., there is an
element e ∈ S \ S?. Because of Theorem 7 and e ∈ S ∈ D, lP(e) 6= +∞.
Now, let e′ be an element of E \ S? with lP(e′) 6= +∞. Because of the defini-
tion of lower tolerance, for all ε > 0, solution S? is not an optimal solution of
P−(lP (e′)+ε),e′ , i.e., there is a solution S ′ ∈ D \ {S?} with e′ ∈ S′ and

fc−(lP (e′)+ε),e′ (S
′) < fc−(lP (e′)+ε),e′ (S

?) (7)

Because of the assumption, S? 6⊆ S′ holds, i.e., there is an element e? ∈ S? \ S′.
Now, increasing the costs of element e? by lP(e′) + ε also implies that S? is not
an optimal solution any more. In fact,

fclP (e′)+ε,e? (S′)

= fc(S
′) as e? 6∈ S′

= fc−(lP (e′)+ε),e′ (S
′) + (lP(e′) + ε) as e′ ∈ S′

< fc−(lP (e′)+ε),e′ (S
?) + (lP(e′) + ε) because of (7)

= fc(S
?) + (lP(e′) + ε) as e′ 6∈ S?

= fclP (e′)+ε,e? (S?)− (lP(e′) + ε) + (lP(e′) + ε) as e? ∈ S?

= fclP (e′)+ε,e? (S?)
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holds. This implies uP(e?) < lP(e′) + ε for all ε > 0, hence uP(e?) ≤ lP(e′).

As such an element e? does exist for each element e′ ∈ E \S? with lP(e′) 6= +∞,

uP,min ≤ lP,min

holds.

This closes this proof. Note that we have also shown uP,min 6= +∞. �

6.3.4 Proof of Remark 7 The proof is the same as the proof of Remark 5. �

6.3.5 Proof of Remark 8 Consider the following combinatorial minimization prob-
lem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 1, and c(z) = 1.5
• D = { {v, x}, {y, z} }
• fc is a cost function of type

∏
.

By definition, there are two feasible solutions and one optimal solution, namely
{y, z} whose costs fc({y, z}) are 1.5. It holds

uP(v) = UNDEFINED

uP(x) = UNDEFINED

uP(y) = 1/3

uP(z) = 0.5

which implies

uP,min = 1/3

and

lP(v) = 0.25

lP(x) = 0.5

lP(y) = UNDEFINED

lP(z) = UNDEFINED

which implies

lP,min = 0.25

Therefore

uP,min 6= lP,min

�
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6.3.6 Proof of Remark 9 Consider the following combinatorial minimization prob-
lem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 2, and c(z) = 2
• D = E3, i.e., D = { {v, x, y}, {v, x, z}, {v, y, z}, {x, y, z} }
• fc is a cost function of type MAX.

Each feasible solution is an optimal solution. It holds

uP(v) = 1

uP(x) = 0

uP(y) = 0

uP(z) = 0

which implies
uP,min = 0

and

lP(v) = +∞
lP(x) = +∞
lP(y) = +∞
lP(z) = +∞

which implies
lP,min = +∞

Therefore
uP,min 6= lP,min

�

6.3.7 Proof of Theorem 14 First, we show uP,max ≥ lP,max.
Because of Theorem 4 there is an e1 ∈

⋃
S?∈D? S

? with

uP,max + fc(P) = fc(D
?
−(e1))

Condition a’) of the definition of connected implies that there exists e2 ∈
⋃
S?∈D? S

?,
S?−(e2) ∈ D?

−(e2) and e3 ∈ H with

e3 ∈ S?−(e2)

or

S?−(e2) ∈ D+(e3)

We have:
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uP,max + fc(P) = fc(D
?
−(e1))

≥ fc(D
?
−(e2)) because of Theorem 4

= fc(S
?
−(e2))

≥ fc(D
?
+(e3))

= lP(e3) + fc(P) because of Theorem 11
= lP,max + fc(P) because of e3 ∈ H

Now, we show lP,max ≥ uP,max.
Because of Theorem 11 there is an e1 ∈ E \

⋂
S?∈D? S

? with

lP,max + fc(P) = fc(D
?
+(e1))

Condition b’) of the definition of connected implies that there exists e2 ∈ E \⋂
S?∈D? S

?, S?+(e2) ∈ D?
+(e2) and e3 ∈ G with

e3 ∈ E \ S?+(e2)

or

S?+(e2) ∈ D−(e3)

We have:

lP,max + fc(P) = fc(D
?
+(e1))

≥ fc(D
?
+(e2)) because of Theorem 11

= fc(S
?
+(e2))

≥ fc(D
?
−(e3))

= uP(e3) + fc(P) because of Theorem 4
= uP,max + fc(P) because of e3 ∈ G

�

6.3.8 Proof of Remark 10 Consider the following combinatorial minimization
problem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 4, and c(z) = 5
• D = E2, i.e., D = { {v, x}, {v, y}, {v, z}, {x, y}, {x, z}, {y, z} }
• fc is a cost function of type

∑
.
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The only optimal solution is {v, x}. It holds

uP(v) = 3

uP(x) = 2

which implies

uP,max = 3

and

lP(y) = 2

lP(z) = 3

which implies

lP,max = 3

Therefore

uP,max = lP,max

Furthermore it holds:

G = {v}

H = {z}

D?
−(v) = {{x, y}}

D?
−(x) = {{v, y}}

D?
+(y) = {{v, y}}

D?
+(z) = {{v, z}}

As neither condition a’) nor condition b’) holds, D is not connected.
�

6.3.9 Proof of Remark 11 Consider the example for the illustration of Theorem
14 for a cost function of type

∏
, i.e., the following combinatorial minimization

problem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 4, and c(z) = 8
• D = { {v, x}, {y, z} }
• fc is a cost function of type

∏
.
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The only optimal solution is {v, x}.
It holds:

uP(v) = 15

uP(x) = 30

which implies

uP,max = 30

and

lP(y) = 3.75

lP(z) = 7.5

which implies

lP,max = 7.5

Therefore

uP,max 6= lP,max

Furthermore it holds:

G = {x}

H = {z}

D?
−(v) = {{y, z}}

D?
−(x) = {{y, z}}

D?
+(y) = {{y, z}}

D?
+(z) = {{y, z}}

As condition a’) and condition b’) hold, D is connected. �

6.3.10 Proof of Remark 12 Consider the example for the illustration of Theorem
14 for a cost function of type MAX, i.e., the following combinatorial minimization
problem P = (E , D, c, fc) defined by:

• E = {v, x, y, z} with c(v) = 1, c(x) = 2, c(y) = 4, and c(z) = 8
• D = { {v, x}, {y, z} }
• fc is a cost function of type MAX.
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The only optimal solution is {v, x}.
It holds:

uP(v) = 7

uP(x) = 6

which implies

uP,max = 7

and

lP(y) = +∞
lP(z) = +∞

which implies

lP,max = +∞

Therefore

uP,max 6= lP,max

Furthermore it holds:

G = {v}

H = {y, z}

D?
−(v) = {{y, z}}

D?
−(x) = {{y, z}}

D?
+(y) = {{y, z}}

D?
+(z) = {{y, z}}

As condition a’) and condition b’) hold, D is connected.
�
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7 Summary and Future Research Directions

In this paper we have rigorously defined and studied the properties of upper and
lower tolerances for a general class of combinatorial optimization problems with
three types of objective functions, namely with types

∑
,
∏

, and MAX. Theorems
2 and 8 indicate that the upper and lower tolerances do not depend on a particular
optimal solution under the condition that the set of feasible solutions is indepen-
dent on the costs of ground elements.

For problems with the objective functions of types
∑

and
∏

Theorem 6 implies
that the upper tolerances can be considered as an invariant characterizing the struc-
ture of the set of all optimal solutions as follows. If all upper tolerances are positive
(see Corollary 2), then the set of optimal solutions contains a unique optimal so-
lution. If some upper tolerances are positive and others are zeros, then the set of
optimal solutions contains at least two optimal solutions such that the cardinal-
ity of their intersection is equal to the number of positive upper tolerances. If all
upper tolerances are zeros, then the set of optimal solutions contains at least two
optimal solutions such that the cardinality of their intersection is equal to zero, i.e.
there is no common element in all optimal solutions. Similar conclusions can be
made from Theorem 12 and Corollary 9 if we replace each optimal solution by its
complement to the ground set.

One of the major problems, when solving NP-hard problems by means of the
branch-and-bound approach, is the choice of the branching element which keeps
the search tree as small as possible. Using tolerances we are able to ease this
choice. Namely, if there is an element from the optimal solution of the current
relaxed NP-hard problem (we assume that this optimal solution is a non-feasible
solution to the original NP-hard problem) with a positive upper tolerance, then
this element is in all optimal solutions of the current relaxed NP-hard problem.
Hence, branching on this element means that we enter a common part in all pos-
sible search trees emanating from each particular optimal solution of the current
relaxed NP-hard problem. Therefore, branching on an element with a positive up-
per tolerance is not only necessary for finding a feasible solution to the original
NP-hard problem but also is a best possible choice. An interesting direction of re-
search is to develop tolerance based b-n-b type algorithms for different NP-hard
problems with the objective functions of types

∑
and

∏
.

Many modern heuristics for finding high quality solutions to a NP-hard problem
delete high cost elements and save the low cost ones from a relaxed NP-hard prob-
lem. A drawback of this strategy is that in terms of either high or low cost elements
the structure of all optimal solutions to a relaxed NP-hard problem cannot be de-
scribed. A tolerance of an element is the cost of excluding or including that element
from the solution at hand. Hence, another direction of research is to develop toler-
ance based heuristics for different NP-hard problems with the objective functions
of types

∑
and

∏
.
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