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Abstract

Real-time macroeconomic data are typically incomplete for today and
the immediate past (‘ragged edge’) and subject to revision. To enable
more timely forecasts the recent missing data have to be dealt with.
In the context of the U.S. leading index we assess four alternatives,
paying explicit attention to publication lags and data revisions.
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1 Introduction

Macroeconomic data are published with lags causing a ragged edge at the

most recent horizon (Wallis, 1986). Furthermore the data are revised quite

often. Figure 1 illustrates the problem by means of a stylized representation

of the data vintage of some variables in period T . Here, the second and sixth

variable are published with lags. The most recent figure of all variables is

preliminary, or a first estimate; it is revised subsequently in the next vintage.

The exception is the fourth variable, which is published as final data and thus

not subject to revision. Interest rates are an example. Whether and when

other series become final is an open question. It may take quite some time

(years) before final figures are published—and even these can be revised. For

example, the January 2004 vintage of the most recent update on US leading

indicators shows a revision in the money supply (M2) series across the board

from January 1959 onwards!

Problems—and opportunities—associated with real-time data analysis at-

tract a lot of attention. Three broad areas are distinguished: data revisions,

forecasting, and policy analysis. See www.phil.frb.org/econ/forecast/

reabib.html for references. This paper focuses on the first two categories

and discusses more timely forecasting with real-time macroeconomic vari-

ables which involves smoothing the ragged edge and imputation of the most

recent missing observations. In addition, we explicitly take effects of data

revisions into account, albeit in a simple manner.

In the context of linear time series models, delayed observations and data

revisions are straightforwardly dealt with by the Kalman filter. General in-
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Figure 1: Outline of the problem
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troductions to the Kalman filter and state-space modelling are provided in

the textbooks of Harvey (1989) and Hamilton (1994, Chapter 13). Harvey

(1989, Section 8.7.2) discusses solutions for the ragged edge or delayed obser-

vations problem. Howrey (1978, 1984) is an early adopter of the methodology

to model data revisions, see also Harvey et al. (1981) or Harvey (1989, Sec-

tion 6.4.4). Bordignon and Trivellato (1989) present an early application of

forecasting with provisional data.

We illustrate the imputation methods with the U.S. leading economic in-

dex. The system of leading, coincident and lagging business cycle indexes

was developed at the National Bureau of Economic Research (NBER) in the

U.S. in the 1930s, and described in the seminal book of Burns and Mitchell

3



(1946). Nowadays, the indexes are maintained and regularly published by

The Conference Board (TCB), see The Conference Board (2001). Recently,

TCB has made the U.S. leading index more timely by adopting univariate

models for imputation of recent missing observations (McGuckin, Ozyildirim,

and Zarnowitz, 2001). The more timely index uses available information more

efficiently than the previous method by combining projected values for data

missing in the publication period and actual values for the available data

(McGuckin, Ozyildirim, and Zarnowitz, 2003). We find that the alternative

prediction models (running in differences of the indicators) outperform the

univariate imputation method adopted by TCB (in levels). In addition, in-

cluding even a simple model for data revisions improves the accuracy of the

predictions.

The remainder of the paper is organised as follows. Section 2 describes

the methodology. Section 3 presents our application for the U.S. leading

index. Section 4 concludes.

2 Methodology

Macroeconomic forecasters are often faced with a situation in which observa-

tions on some series are released somewhat later than observations on other

series. We assume in this paper that the maximum publication lag is equal

to one month. Let x1 (t), t ∈ N, be the vector of final values for period t of

the variables released without a publication lag and x2 (t) the vector of final

values for period t of the variables released with an one-month publication

lag.
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As mentioned in the Introduction, most macroeconomic variables are sub-

ject to data revisions. The first release of a statistical agency is a provi-

sional value that is revised in subsequent periods. More specifically, statisti-

cal agents release data vintages of time series representing all the agencies’

knowledge on the variables. Two types of revisions can be distinguished:

first, monthly updates due to additional information that becomes available,

and secondly, revisions due to redefinitions.

We abstract from the latter type of revisions and assume the data become

final after 5 months, so there is a maximum of five releases and four revisions

for each period. Let xk(i, t) with k = 1, 2 and i = 1, . . . , 5 denote the i-th

release of the value xk for period t. The release period of xk(i, t) is denoted

by τk(i, t). In our case the release period is given by

τ1(i, t) = t + i

τ2(i, t) = t + i + 1.

The fifth release is the final release, hence xk(t) ≡ xk(5, t) and τk(t) ≡

τk(5, t). Some data are revised less often, but this can easily be incorporated.

For instance, if the j-th component of x1 is not revised at all, then x1,j(i, t) =

x1,j(t) for all i.

Statistical agencies typically release a new vintage every month. All val-

ues in a vintage are given by their latest available release, i.e.

xT
1 (t) = x(min(T − t, 5), t) ∀t < T

xT
2 (t) = x(min(T − t− 1, 5), t) ∀t < T − 1,
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where the subscript T denotes the vintage date.

All the information available in period T is represented by the information

set

ΩT = {xk (i, t) : τk(i, t) ≤ T, k = 1, 2, i = 1, . . . , 5, t = 1, . . . , T − 1} . (1)

This information set represents all information actually available to a fore-

caster in a real-time setting. Most forecast evaluations ignore the problem of

real-time forecasting and judge forecasts based on final data. In this situation

the information set becomes

Ω̃T = {xk (t) : τk(1, t) ≤ T, k = 1, 2, t = 1, . . . , T − 1} . (2)

Modelling final data

Most forecasting devices require a complete data set. To smooth the ragged

edge macroeconomic forecasters have two options: they can choose to delete

the most recent information on the variables that are released without a

publication or to predict recent missing observations of the variables that

are released with a lag. The latter strategy is referred to as more timely

forecasting. To predict recent missing observations we have to specify the

dynamics of the final data itself. The first procedure, labelled TCB after

its proponent The Conference Board, ignores data revisions and employs
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univariate AR(2) models on the levels for the imputation, so

x̂1(t|ΩT ) = xT
1 (t) t ≤ T − 1

x̂2(t|ΩT ) =

 xT
2 (t)

b + A1x
T
2 (t− 1) + A2x

T
2 (t− 2)

t < T − 1

t = T − 1

where A1 and A2 are diagonal parameter matrices and b is a parameter vector

arising from modeling the components of x2 separately by AR(2) models with

a constant included. The parameter estimates are obtained from historical

data.

The alternatives model the dynamics of the final data in terms of functions

ri(t) of xi(t)

ri(t) = gi (xi(t)) i = 1, 2.

In particular we assume an p-th order linear model

r(t) = b + A1r(t− 1) + . . . + Apr(t− p) + ε(t),

where r(t) = (r1(t)
′, r2(t)

′)′, and the errors follows a Gaussian White Noise

(GWN) process, ε(t) ∼ GWN(0, Σε).

This data model can easily be put into a State-Space (SS) framework.

Defining the state vector as α(t) = (r(t)′, . . . , r(t− p + 1)′)′, the SS form is

given by the measurement equation

r(t) =

[
I 0 . . . 0

]
α(t), (3)
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and the transition equation

α(t + 1) =



A1 A2 . . . Ap

I . . . 0 0

...
. . .

...
...

0 . . . I 0


α(t) +



I

0

...

0


b +



I

0

...

0


ε(t), (4)

where I is the identity matrix. The ragged edge can be smoothed by imputing

the delayed observations of r2(t) with the Kalman filter.

We assess the following alternative models:

AR(p) : A1, . . . , Ap and Σε are restricted to be diagonal. The parameters

are estimated by OLS for the individual AR(2) models; Σε is formed

by the variances of the residuals of the individual equations.

SUR(p) : A1, . . . , Ap are restricted to be diagonal but no restrictions are

imposed on Σε. The parameters are estimated by the Seemingly Unre-

lated Regression (SUR) procedure.

VAR(p) : A1, . . . , Ap and Σε are all free. Parameters are estimated by OLS

for the individual equations; Σε is estimated from the residuals.

Modelling data revisions

Up to now we did not explicitly take the provisional character of our real-

time data into account. In general, provisional values are good indicators

of their corresponding final values and can be exploited in predicting these.

The most common practice, below referred to as the naive approach, is to
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ignore the revision errors and focus on the imputation on the basis of last

available data vintage

x̂k(t|ΩT ) = xk(min(t− s + 1, 5), t) for t ≤ T − 1.

In this case provisional values are considered perfect predictions for the cor-

responding final values. Hence, the approach does not discriminate between

provisional and final values.

A more sophisticated approach takes the revision process into account

and computes predictions for the final values on the basis of provisional

releases and the dynamics of the final values. A typical model yields the

conditional distribution of the unobserved final values given the observed

provisional values. From these densities we can derive the Minimum Mean

Squared Error (MMSE) predictions of the final values,

x̂k(t|ΩT ) = E
(
xk(t)|ΩT

)
t ≤ T − 1.

The measurement equation of the state-space framework of Equations (3)

can easily be extended to incorporate the data revision process. In this paper

we consider a simple measurement error model for the revision process. This

model assumes that preliminary values are final values contaminated with an

additive measurement error, which follows a Gaussian White Noise process.

To be more specific, consider the revision errors

u(i, t) = r(i, t)− r(i + 1, t) i = 1, . . . , 4.
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Stacking the revision errors for the j-th component in a vector, we obtain

ηj(t) = (uj(1, t), . . . , uj(4, t))
′. The revision model assumes

ηj ∼ GWN(0, Ση,j),

E (ηj(t)ηk(t)
′) = 0 j 6= k,

E (ηj(t)ε(t)
′) = 0.

Subsequently stacking the revision errors

ν(t) =


u(1, t)

...

u(4, t)

 ,

yields the following variance-covariance matrix of the revision errors

E (ν(t)ν(t)′) = K10,4


Ση,1 0

. . .

0 Ση,10

 K4,10,

where Km,n is the commutation matrix defined such that Km,n vec A =

vec A′ for an arbitrary m× n-matrix A.

Now the state-space form of the complete model is given by the measure-
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ment equation

y(t) =

(
ι⊗

[
I 0 . . . 0

])
α(t) +





1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0


⊗ I


ν(t), (5)

where y(t) = (r(1, t)′, . . . r(5, t)′)′, ι is the unit vector of length 5, and the

transition equation (4). Again, we can set the Kalman filter to work to

impute the delayed observations r2(t). However, since the revision model

recognizes the provisional nature of the latest data, predictions of the final

data, r̂1(t|ΩT ) and r̂2(t|ΩT ), generally differ from the provisional values and

should be used in forecasting instead.

Leading economic indexes

Below we assess the imputation methods with the U.S. leading economic in-

dex. The construction of a Leading Economic Index (LEI) from its individual

indicators can be summarized by the following two steps. First, differences

or symmetric growth rates of the individual indicators are computed, i.e.

r1(t) = g1 (x1(t))

r2(t) = g2 (x2(t))
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Secondly, these transformed indicators are turned into a LEI by taking a

weighted linear combination

IB (t) = f (r1(t), r2(t)) .

More details are provided in Section 3 below. In this case the index is calcu-

lated based on final values. This index will be referred to as the Benchmark

LEI. Of course, the Benchmark LEI can also be expressed as a function of

the levels of the indicators

IB (t) = h (x1(t), x2(t)) .

A more timely LEI produced at time T uses all available information

up to that period to produce predictions of the final values of x1 and x2,

x̂1(t|ΩT ), x̂2(t|ΩT ). Thus in general a vintage T of the LEI is given by

IT (t) = h
(
x̂1(t|ΩT ), x̂2(t|ΩT )

)
, t = 1, . . . , T − 1.

The last five values of the more timely index are provisional data, since

they are based on the prediction of the final data. So, we have six releases

of the LEI

I(i, t) = h(x̂1(t|ΩT+i), x̂2(t|ΩT+i)) i = 1, . . . , 6.

The first release is based on imputed data for the delayed observations x2.

The sixth release is final, i.e. I(6, t) = IB(t). All earlier releases are provi-

12



sional and can be considered predictions of the Benchmark LEI. The predic-

tions x̂1(t|ΩT ) and x̂2(t|ΩT ) are generated by a model as explained above.

Forecast evaluation

The first five releases of the LEI can be considered forecasts of the Benchmark

LEI, and typically depend on the imputation method. On order to assess the

quality of the imputations methods, we compare these provisional releases

to the benchmark. We consider prediction errors in symmetric differences of

the LEI, i.e.

RI(i, t) = 2
I(i, t)− I(i, t− 1)

I(i, t) + I(i, t− 1)
,

because they best represent the predictive content of the LEIs. We summarize

the prediction errors by the Root Mean Squared Error (RMSE)

RMSE(i) =

√√√√ n∑
t=1

1

n
(RI(i, t)−RIB(t))2

and the Mean Absolute Error (MAE)

MAE =
n∑

t=1

1

n
|RI(i, t)−RIB(t)|.

In addition we compare different forecasts by means of Theil’s U and the

Diebold-Mariano test statistic. Theil’s U measures the relative forecasting

performance of two forecasts

U =
RMSE1

RMSE2

.
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A value of U smaller than one corresponds to the first forecast having a

smaller RMSE than the other.

Diebold and Mariano (1995) developed a test for the equality of forecast

accuracy of two forecasts under general assumptions. The null hypothesis is

that the expectation of an arbitrary loss differential is equal to zero

E[dt] ≡ [g(e1t)− g(e2t)] = 0,

where we take the quadratic loss function for g. The test statistic is defined

as

DM =
d̄√

2πf̂d(0)/n
,

where d̄ is the sample mean of the loss differential dt, f̂d(0) is an estimate

of spectral density of the loss differential at the zero frequency, and n is the

number of forecasts. The DM statistic has an asymptotic standard normal

distribution under the null hypothesis. For the quadratic loss function Har-

vey, Leybourne, and Newbold (1997) modified the DM statistic to correct

for small samples

DM∗ =

[
n + 1− 2h + h(h− 1)/n

n

] 1
2

DM,

assuming h-step ahead forecasts. The modified DM statistic follows Student’s

t-distribution with n− 1 degrees of freedom under the null hypothesis.
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3 Application: the U.S. leading economic

index

The TCB leading economic index has ten components or indicators. The

indicators are listed in Table 1. Three indicators become available with a lag

of one month: manufacturers’ new orders for consumer goods and materials,

manufacturers’ new orders, nondefense capital goods, and the money supply,

M2.

Table 1: TCB leading indicators

Average weekly hours, manufacturing

Average weekly initial claims for unemployment insurance

Manufacturers’ new orders, consumer goods and materials

Vendor performance, slower delivery diffusion index

Manufacturers’ new orders, nondefense capital goods

Building permits, new private housing units

Stock prices, 500 common stocks

Money supply, M2

Interest rate spread, 10-year Treasury bonds less Federal funds (%)

Index of consumer expectation

Note: indicators with one-month publication lag in italic
Source: TCB Business Cycle Indicators Handbook

The real-time data set consists of vintages of the indicators. The first

vintage, January 1989, runs from January 1959 up to and including December

1988. The final vintage in our data set, the December 2003 vintage, has data
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from January 1959 up to and including November 2003. The three series that

become available with a lag of one month are of course one month shorter.

The leading index is based on a weighted average of the indicators.

For details see The Conference Board (2001, Section IV). Month-to-month

changes are computed, standardized and added across the components for

each month. Values of the index are then calculated by chaining these

changes from an initial value of 100 in the first period (January 1959) and

rebasing the whole series to average 100 in 1960, our base year. Standard-

ization factors are adjusted once a year in mid-December, when TCB makes

benchmark revisions to bring the index up-to-date with the indicators. In

our empirical analyses below, we apply fixed weights in particular the stan-

dardization factors of TCB (2001, Table 7).

Since we are interested in smoothing the ragged edge for the most recent

observations, we abstract from revisions due to redefinitions, the benchmark

revisions. We construct our own real-time data set by adjusting the final vin-

tage subsequently adding revision errors to the final values of the transformed

indicators.

Final data

We evaluate the four prediction methods for final data and for real-time

data. We begin with the estimation of the model parameters (including co-

variances) on the sample January 1959 up to and including December 1994,

predict the January 1995 values of the indicators x2 for final data and cal-

culate the leading indexes. Then we reestimate the model for January 1959–
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January 1995, and calculate predictions and the leading index for February

1995. We continue this procedure up to and including the June 2003 leading

indexes. Thus we obtain series of LEIs of the four prediction models TCB,

AR, VAR, and SUR. The order of the models is set at two lags, corresponding

to the AR order employed by TCB.

Table 2: Forecast evaluation: final data

TCB AR SUR VAR

RMSE 0.30 0.28 0.28 0.27
MAE 0.23 0.21 0.21 0.21
U 0.93 0.93 0.92
DM∗ 3.22 1.68 1.94
p-values [0.00] [0.05] [0.03]

Table 2 shows forecast evaluation outcomes based on final data. We con-

clude that all three alternatives yield better LEIs than the more timely TCB

index. Especially the outcomes of the Diebold-Mariano test lead to this con-

clusion. The null of equal forecast accuracy is rejected for every alternative.

Note that the Diebold-Mariano outcomes cannot be compared to each other;

the higher DM value for the AR model does not imply better forecasts than

the VAR or the SUR system. The Diebold-Mariano test statistic of equal

forecast accuracy of the VAR (SUR) versus the AR is 0.53 (0.15) with a p-

value of 0.30 (0.44), so equal forecast forecast accuracy of the systems VAR

and SUR versus the univariate AR is not rejected.
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Real-time data

In the real-time analysis forecasts are based on data truly available to the

forecaster at the time the forecasts are made, so on the real-time information

set ΩT of Equation (1) instead of the final data set Ω̃T of Equation (2).

For the analysis of real-time data, we estimate the model again for rolling

windows as above.

Table 3: Evaluation of first releases

TCB AR SUR VAR AR Rev SUR Rev VAR Rev

RMSE 0.31 0.30 0.29 0.29 0.28 0.27 0.27
MAE 0.24 0.23 0.22 0.22 0.22 0.21 0.21
U 0.95 0.94 0.92 0.90 0.87 0.86
DM∗ 3.79 1.69 2.30 4.16 3.02 3.09
p-values [0.00] [0.05] [0.01] [0.00] [0.00] [0.00]

Note: AR (SUR, VAR) Rev stands for the combination of AR (SUR, VAR) and our model
for data revisions. Theil’s U and the DM∗ statistic compare the forecasts of our imputation
models to TCB.

Table 3 shows the outcomes of the evaluation of first releases of the LEI

in real-time. Columns 2–4 list the outcomes ignoring data revisions, whereas

the last three columns take aboard our simple model for data revisions. We

reach the same conclusion as in the final data analysis and observe that all

alternative models outperform the TCB procedure, although reductions in

terms of the forecast evaluation statistics (RMSE, MAE) are small. How-

ever, the Diebold-Mariano tests still reject the null of equal forecast accuracy

compared to TCB. Again, the high DM value of the AR model against TCB

does not imply better forecasting accuracy than the SUR and VAR systems.

Additional Diebold-Mariano tests of SUR and VAR against AR forecasts
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give DM statistics of 0.27 and 0.86 with p-values of 0.40 and 0.20, so the null

hypothesis of equal forecast accuracy is not rejected for these cases.

The final three columns of Table 3 demonstrate that inclusion of a model

for data revisions further reduces the RMSE and MAE statistics. Table 4

supports the observation that models with explicit attention for revisions

outperform their naive counterparts. Testing the null of equal forecast ac-

curacy among all prediction models leads to a rejection (at the 1% level) in

favour of the models with attention for data revisions.

Table 4: Evaluation of first releases: impact of modelling revisions

AR SUR VAR
Naive Rev Naive Rev Naive Rev

RMSE 0.30 0.28 0.29 0.27 0.29 0.27
MAE 0.23 0.22 0.22 0.21 0.22 0.21
U 0.95 0.93 0.93
DM∗ 4.04 4.70 3.92

[0.00] [0.00] [0.00]

Note: columns labelled Naive do not model data revisions, contrary to columns labelled
Rev. Theil’s U and the DM∗ statistic test the impact of including the revision model.

Table 5 compares the second to the fifth release of the LEIs in real-time.

Although no actual imputation of the most recent missing observation for

the indicators x2 is required here, the inclusion of a revision model generally

leads to predicted final values that differ from their provisional counterparts.

More specifically, the revision model recognises the additional uncertainty

associated with provisional data and thus relies more on last observed final

data. Therefore, an LEI based on predicted final values might outperform

its naive equivalent. This is not the case in our application. The outcomes
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show that the naive model in not inferior to the AR, VAR and SUR models

with data revisions. Our simple measurement error model is probably not

sophisticated enough to increase the quality of the second to the fifth release

of the LEIs.

Table 5: Impact of modelling revisions on second to fifth release of LEI

Release Naive AR Rev SUR Rev VAR Rev

2 RMSE 0.07 0.07 0.07 0.07
MAE 0.05 0.05 0.05 0.05
Theil’s U 1.00 1.03 1.03
Diebold-Mariano −0.09 −0.54 −0.61

[0.54] [0.70] [0.73]

3 RMSE 0.04 0.04 0.04 0.04
MAE 0.03 0.03 0.03 0.03
Theil’s U 1.06 1.06 1.06
Diebold-Mariano −0.79 −0.88 −0.88

[0.78] [0.81] [0.81]

4 RMSE 0.03 0.03 0.03 0.03
MAE 0.02 0.02 0.02 0.02
Theil’s U 1.05 1.04 1.05
Diebold-Mariano −0.63 −0.54 −0.68

[0.73] [0.70] [0.75]

5 RMSE 0.02 0.02 0.02 0.01
MAE 0.01 0.01 0.01 0.01
Theil’s U 1.12 1.12 0.87
Diebold-Mariano −2.06 −1.95 −2.03

[0.98] [0.97] [0.98]

20



4 Conclusion

This paper deals with problems associated with real-time forecasting. In

particular, we employ a state-space framework to handle the ragged edge and

data revisions simultaneously. An application to the U.S. leading economic

index shows the potential of our method. The TCB procedure to make

the LEI more timely can be improved upon by adopting a univariate and

two multivariate prediction models running in differences of the indicators.

Besides, including even a simple data revision model improves the accuracy

of the forecasts.

A univariate model only uses its own observed past in making predic-

tions for the delayed observations, while multivariate models take aboard all

available recent information. Therefore it comes as a surprise that the multi-

variate models (SUR and VAR) are not superior to the univariate alternative.

A possible explanation might be the short publication lag, resulting in the

loss of a relatively limited amount of information in a univariate model over

multivariate models. Many countries face longer publication delays, making

our framework to deal with delayed observations and revisions, especially

using multivariate models, even more attractive.
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