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Summarv

Archaea, prokaryotes and eukaryotes form the three kingdoms of life. The smallest unit of

life, which can exist independently, is a cell. Archaea and prokaryotes have a relatively very

simple architecture. The cytoplasm (cellular space), containing all metabolites, proteins and

genetic material (DNA), is surrounded by a membrane (thin double-layer of lipids) and a

protective envelope. Eukaryotes have a more complex subcellular organization and have

developed complex compartments that are separated from the cellular fluid (cytosol) by

additional membranes to form highly specialized areas providing optimal conditions to carry

out specific cellular reactions. These structures are called organelles.

One of the compartments, termed nucleus, contains most of the DNA that is sunounded by

the nuclear envelope. Other well known classes of organelles are the endoplasmic reticulum

(among others involved in synthesis of proteins that are destined for the cell exterior), the

vacuole (the machinery for recycling of waste cellular materials) and the mitochondria

(involved in energy production). Mitochondria distinguish themselves from the other

organelles in that they are surrounded by two membranes. These organelles contain

mitochondrial DNA as well as their own protein synthesis machinery. A similar structure is

observed for plant chloroplasts that can use light (photons) as energy source to carry out

specific reactions (photosynthesis). These double-membrane structures are thought to

originate from early aerobic prokaryotes that have entered the eukaryote cell in early

evolution (endosymbiont theory).

A group of organelles that has been discovered comparatively recently are the microbodies.

Microbodies, including peroxisomes, glycosomes, glyoxysomes and hydrogenosomes, are

essential organelles that can carry out a wide range of functions. Their function depends on

the organism in which they occur, the cell type and/or the developmental stage of the

organism. Our group studies peroxisomes, organelles that are ubiquitously present.

Peroxisomes are surrounded by a single membrane and do not contain DNA or a protein

synthesis machinery. Therefore all peroxisomal proteins are nuclear encoded and after their

synthesis in the cytosol imported into the peroxisome. They are involved, among others, in

seed germination and photorespiration in plants, penicillin biosynthesis in certain fungi, the

metabolism ofvarious unusual carbon and nitrogen sources in yeast and in the first steps of

the oxidation of very long chain fatty acids in man. The importance of peroxisomes in human



Summary

cells is probably best illustrated by the existence ofseveral inherited human diseases that are

caused by a defect in the biogenesis/function of these organelles. Peroxisome diseases often

are associated with strong physical abnormalities and may lead to an early death (e.g.

Zellweger syndrome).

Yeast was adopted as attractive model organism to study the molecular mechanisms of

peroxisome biogenesis and functions. This simple unicellular representative of eukaryotes

resembles in many aspects cells of higher evolved multi-cellular organisms like animals and

plants. Therefore the study of many biological processes in yeast contributes to the

understanding of these processes in higher eukaryotes, even in man. Furthermore, yeast

strains that are disturbed in peroxisome biogenesis or function are still viable and can grow at

cultivation conditions that do not depend on peroxisome function.

The present study has focused on peroxisomal matrix protein import in the yeast Hansenula

polymorpha. This yeast species can be found in nature on decaying plant material and in the

soil. In H. polymorpha the size and number of peroxisomes can be readily manipulated by

applying suitable growth conditions. During growth on glucose medium the cells contain one

small peroxisome. However, after shifting the cells to media supplemented with methanol as

the sole carbon and energy source peroxisome multiplication occurs. In wild type cells

peroxisomes multiply by pre-fission of existing organelles.

Many studies have been performed with the aim to unravel the principles of peroxisomal

matrix protein import. The sorting to and recognition of matrix proteins is now relatively well

understood; however, the machinery that translocates these proteins across the peroxisomal

membrane to reach their final destiny is still a complete enigma. In chapter I an overview of

the current knowledge of protein translocation systems of various membrane systems within

the cell is presented, including also few hypotheses to explain peroxisome protein import.

Peroxisomal matrix protein import distinguishes itself from other protein transport systems in

that it can accommodate large multimeric cofactor bound proteins. Cofactors are special

molecules required by a protein to obtain biological activity (e.g. flavin or heme). Binding of

cofactors most likely occurs in the cytosol before import of the proteins into the peroxisome.

However, cofactor binding requires partial folding of the protein and in some cases also the

formation of oligomeric structures (assembly of a few monomer protein units into a higher

ordered complex). These complex structures can be imported into the peroxisome. The

recognition of most peroxisomal matrix proteins and their transport to the organelle is



dependent on one of the two known peroxisomal largeting gignals (PTS) present in the

mature proteins. The majority of matrix proteins possess the peroxisomal targeting signal

PTS1. The consensus PTSI consists of the three amino acids -serine-lysine-leucine (-SKt),

or variants thereof, that is located at the extreme carboxy-terminus (the end of the protein that

is synthesized last). The PTSI is recognized by the carboxyterminal part of the cytosolic

receptor protein Pex5p, which transports the PTS 1 -containing proteins to the peroxisomes.

The PTSI is remarkable, because protein targeting to other organelles like mitochondria or

the endoplasmic reticulum exclusively depends on organellar targeting sequences located at

the part of the protein that is synthesized first (amino-terminus). In most cases these

sequences are removed after transport across the membrane by a specific enzyme (a protein

that catalyzes biochemical reactions), named processing peptidase.

Chapter II describes the re-investigation of the import of alcohol oxidase (AO), an octamic

flavo-enzyme (consists of 8 subunits, each containing the cofactor FAD) that contains an

authentic PTS I signal (ARI). The enzyme catalyzes the first step of methanol metabolism in

H. polymorpha. Import of AO was originally described to depend on its PTSl and the PTSI

receptor Pex5p, because in a strain which had lost the ability to produce Pex5p, AO is

mislocalized to the cytosol and fails to enter peroxisomes. However, removal of the PTSI did

not affectperoxisome import. In fact, even deletions of up to l6 amino acids at the carboxy-

terminus did not affect import of AO into peroxisomes. This result clearly demonstrated that

import of AO is not dependent on its PTSI. Also, AO import did not depend on the C-

terminal half of Pex5p that contains the binding sites for the PTS I sequence, but required the

function of the amino-terminal part of the Pex5p molecule. This result indicates that AO

protein must contain a novel PTS that is still unknown.

AO monomers bind their FAD cofactor in the cytosol prior to import. This binding event is

essential, as AO protein that lacks the cofactor FAD fails to import into peroxisomes. This

observation suggests that cofactor binding is an important prerequisite in the import pathway

and takes place prior the Pex5p recognition process.

As a logical continuation of the above study, we aimed to delineate the region within the first

part of Pex5p of 1L polymorpha that is involved in AO binding and hence, in import of AO

into peroxisomes (chapter III). In this work, we took advantage of the recent finding that

Pex5p from Penicillium chrysogenum (a filamentous fungus that can produce penicillin) is

able to mediate import of PTS1 proteins in 1L polymorpha mutants that are unable to

synthesize their own Pex5p. However, the P. chrysogenum Pex5p was not capable to



transport AO to peroxisomes. Various strains have been constructed that produce different

Pex5p hybrid proteins composed of parts of P. chrysogenum and H. polymorpha Pex5p. We

could clearly show that the amino-terminal part of H. polymorpha Pex5p can mediate AO

import, whereas the corresponding region of P. chrysogenum Pex5p failed to do so. However,

none of the hybrid proteins containing fusions of both Pex5p species within the first part of

Pex5p could fully function in AO import. This led us to conclude that the AO binding site in

Pex5p was not a discrete amino acid stretch. In previous work we showed that the AO sorting

signal is dependent on a certain degree of (FAD binding dependent) folding of the protein

and therefore must be composed of spatially separated amino acids in the partially folded AO

monomer. We speculate that the complementary Pex5p binding structure also is composed of

amino acids that are distributed over the N-terminal part of Pex5p and is only formed and

accessible in properly folded 1L polymorpha Pex5p.

Furthermore, the localization of other PTSl matrix proteins (dihydroxyacetone synthase

[DHAS] and catalase ICATI) was analyzed in the strains producing the hybrid Pex5 proteins.

In all cases the peroxisomal marker protein GFP.SKL (green fluorescant protein fused to the

PTSI -SKL) was normally localized to the peroxisomes indicating that the PTSI sorting,

translocation and Pex5p recycling machinery normally functioned. However, for CAT and

DHAS other subcellular locations were observed, that varied from completely cytosolic to a

dual localization in peroxisomes and the cytosol. This surprising result is consistent with the

view that efficient import of these proteins requires additional information but solely the

PTSI tripeptide. It is tempting to suggest that the import efficiency of CAT and DHAS is

enhanced by the PTS1 context. As both CAT and DHAS are imported as oligomers, this

context may depend on cofactor binding dependent folding of the proteins prior to import to

expose all required Pex5p binding elements.

Chapter IV describes the import of the peroxisomal matrix protein catalase. Catalase

decomposes the toxic compound hydrogen peroxide, generated from methanol, into water

and oxygen. Import of this tetrameric protein depends on the PTSl pathway. A mutant strain

producing catalase that lacks its PTSI (- SKI) shows mislocalization of CAT to the cytosol.

Therefore a second PTS, similar to that observed for AO does not exist in the catalase protein.

However, we were able to show that cofactor binding plays a role in increasing the efficiency

of binding between catalase and its receptor Pex5p. Analysis of catalase mutants disturbed in

binding their cofactor heme revealed that the effrciency ofcatalase import differs dependent

on the amino acid composition of the PTSI. In a mutant strain, disturbed in heme binding to



catalase, a dual location of the protein in the cy.tosol and peroxisomes was observed. Hence,

the endogenous PTSI (-SKI) was not sufficient for import all heme lacking catalase into

peroxisomes. However, this import failure was restored when the -SKI sequence was

replaced by the stronger PTSI sequence, -SKL. These data provided for the first time

evidence that the cofactor heme is bound to catalase in the cytosol, because until now heme

binding was suggested to take place in peroxisomes, and that this heme binding event

contributes to efficient CAT sorting.

The biosynthesis of heme involves a complex pathway, the final step of which takes place in

mitochondria, where a ferrous iron ion is incorporated into the cofactor molecule.

Mitochondrial frataxin, a protein described in chapter V, is supposed to function in this

process. It also has been implicated in the formation of iron-sulfur clusters. In both processes

frataxin may serve as an iron donating protein. The gene encoding frataxin was identified via

functional complementation of an available H. polymorpha mutant affected in growth on

methanol. Mutations in the human gene FRDA (encoding frataxin) are the cause of a

degenerative disease, named Friedreich's ataxia (FRDA) after Nicholaus Friedreich, who

reported this ataxia already in 1863. In the mutant strain of 1L polymorpha analyzed in this

study, we did not observe impairments in iron-sulfur cluster biosynthesis. However, a slight

decrease in heme biosynthesis was observed. The mutant frataxin protein contained a single

amino acid substitution (glycine, amino acid position 132 is substituted by serine) that affects

the function of frataxin. Analysis of catalase activity in the mutant strain grown on glucose

medium showed a clear decrease in activity, most likely due to the observed decrease in heme

biosynthesis, the cofactor of the catalase protein. Furthermore, we observed increased

accumulation of reactive oxygen species (ROS), a typical feature of cells defective in frataxin.


