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Abstract. Non-linear free-surface phenomena, such as extreme waves and violent slosh-
ing, and their impact on the dynamics response of the containing vessels have long been
subjects that could only be studied with experimental methods. Nowadays, computational
CFD tools can make a significant contribution to these flow problems. The paper starts
with a short overview of the most popular numerical methods to simulate highly non-linear
free-surface phenomena, with emphasis on Navier–Stokes methods. Thereafter, it describes
the development efforts made in the maritime SAFE-FLOW project and the micro-gravity
SloshSat FLEVO project. In particular, the improved Volume-of-Fluid (iVOF) free-surface
simulation method ComFlo is presented. Examples of violent fluid dynamics in both ap-
plication areas are presented. In all cases experimental data are available to validate the
outcome of the calculations.

1 INTRODUCTION

Every-day life shows many examples of free-surface flow: the glass of wine you like to
sip or the beautiful surf along the shore in a light sea breeze, to name but a few. However,
these flows can also be less romantic, e.g. when the light breeze has strengthened to a
heavy storm. In such weather conditions waves can become quite extreme and dangerous.
For example, large quantities of ‘green’ water can come onto the deck of floating and
moored structures, presenting a real hazard for both the well-being of the crew and the
integrity of the structure1.

Over the years, several incidents with serious damage have been reported. For instance,
in January 2000 the living quarters on the bow of the Varg FPSO were hit by green water,
resulting in the damage of a window at the second floor, and flooding the area behind it
(Fig. 1). The vessel was out of operation for a number of days. Another example is wave
impact damage to the bow of the Schiehallion FPSO in 1998, resulting in an evacuation
of the personnel and expensive hull repairs including redesign2.
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Figure 1: Left: Damage and first repair of a window on the Varg FPSO. Right: Artist impression of the
NEAR spacecraft.

But also away from our ‘blue planet’ liquid motion can seriously endanger operations.
Everyone over 40 years old will remember the first lunar landing of the Apollo 11 mission.
Less well known (but good visible in the video footage) is that shortly before the actual
landing, sloshing of the remaining fuel caused an oscillatory motion of the Lunar Module
(of about 2-3 degrees), which seriously hampered a safe landing manoeuvre3. Another
well-documented example is the NEAR (Near Earth Asteroid Rendezvous) mission, where
a spacecraft was sent to closely fly-by the Eros asteroid. During the final course correction
the spacecraft experienced unexpected motion and went into a safety mode. Ground
control was ultimately able to recover the mission, although at the cost of a 13-month
delay of the intended rendezvous. Again fuel slosh was named as the probable cause4.

Thus far, existing analysis methods for free-surface motion largely depend on the ap-
plication of linear potential flow theory. The physical phenomena accompanying extreme
events are highly nonlinear, however, and require new methods as a basis for prediction
of the behavior of the water flow. Thus, the desire for simulating complex free-surface
problems like slamming, sloshing and the green water phenomenon has been present for
a long time5–7.

The author’s research group is involved in a number of projects where the above flow
phenomena are studied. Since the late 1970s, together with the National Aerospace
Laboratory NLR, theoretical studies are carried out to investigate liquid sloshing on board
spacecraft8–12. This research has culminated in the design, construction and actual flight
of Sloshsat FLEVO, a facility for liquid experimentation in orbit13. The project was led
by NLR and sponsored by national and international agencies. In the maritime area,
the cooperation with MARIN has to be mentioned, leading to the SAFE-FLOW and
ComFLOW-2 joint-industry projects. In the present paper we will describe some issues
related to the computational modelling of violent free-surface motion in the projects
mentioned.

The mathematical model for complex water flow dates from the first half of the 19th
century already, known as the Navier–Stokes equations. However, it is only for a decade
that these field equations can be solved for large scale complex free-surface flow problems,
thanks to novel numerical algorithms and the increase in computer power. This is an
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important development; in the near future it should provide, besides model testing, an
additional tool for design problems involving these types of flows. This numerical tool is
relatively cheap (in comparison with the costs of experimental facilities), therefore it can
be used in an early stage of the design process.

The paper will give an impression of the state-of-the art of hydrodynamical methods
for describing extremely nonlinear flow. It begins with a short overview of the existing
basic methods for complex free-surface flows. Thereafter, the potential is demonstrated
of the ComFlo simulation method, which was developed during the above-mentioned
cooperations. It is based on the Volume-of-Fluid (VOF) technique, developed by Hirt
and Nichols14. A number of improvements were found necessary to overcome the weak
points of the VOF approach; these are discussed further on in the paper. Originally the
method was developed to simulate sloshing liquid on board spacecraft11,12,15–17; in this
environment capillary forces and contact line dynamics can be quite influential. Later the
method was extended to cover applications in maritime engineering18–20 and biomedical
applications21,22. Several types of simulations are presented. In the maritime area we show
a dambreak flow and a ‘green water’ event; as an ‘extra-terrestrial’ example one of the
Sloshsat FLEVO manoeuvres is presented. In all examples comparison with experimental
data is included.

2 METHODS FOR FREE-SURFACE FLOW

To treat dynamically changing, arbitrary liquid configurations a large amount of flex-
ibility has to be present in the numerical approach. It is no longer sufficient to apply a
boundary-element philosophy23,24, but instead a field method has to be used, including
a ‘bookkeeping’ system for tracking the position of the liquid and its free surface25. In
the literature a number of approaches can be found, of which a short assessment will be
given next. A subdivision into three types of methods will be made: fixed-grid methods,
moving-grid methods and gridless methods.

2.1 Fixed-grid methods

A fixed (or Eulerian) grid to discretise the mathematical model greatly reduces the
grid generation effort. However, because the grid is not adapted to the boundaries and
free surface, special attention must be paid to capture the position of the free surface
and to the implementation of boundary conditions. When an appropriate free-surface
tracking/capturing method is used, like Marker-and-Cell (MAC), Volume of Fluid (VOF)
or level set, large free-surface deformations can be handled, including fluid splitting and
fluid merging.

MAC and VOF The Marker-and-Cell (MAC) method is the ‘father’ of all free-surface
flow methods26, and makes use of massless particles to keep track of the liquid region.
Accuracy requires a considerable amount of particles per grid cell, making the method
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computationally expensive, especially in 3D. A cheaper way is to apply only surface
markers27, but now splitting and merging of the surface are difficult to handle. The MAC
follow up is the Volume-of-Fluid (VOF)14. Here a discrete indicator (or color) function
is used that corresponds to the cell volume occupied by fluid. Although the original
version of the reconstruction and displacement algorithm leads to considerable ‘flotsam’
and ‘jetsam’, i.e. artificial drops that numerically pinch off, variants can be designed that
can track an arbitrarily moving free surface with high reliability28,29. A powerful variant
is the piecewise linear reconstruction method (PLIC) introduced by Youngs30. Another
successful member of this family is the CIP method31. An important property of VOF-
type methods, resulting from its finite-volume philosophy, is the exact conservation of the
amount of liquid present. Various maritime applications of VOF can be mentioned32–34.

Level set An alternative to the indicator-function methods is the level set method35,
which makes use of a function representing the distance to the liquid surface. Reconstruc-
tion of the free surface is conceptually simpler than with the VOF method. However, for
violently moving free surfaces the level set function requires to be redefined regularly,
and conservation of the amount of liquid cannot be guaranteed36. Therefore, level set
applications mainly focus on relative calm flows, like the steady wave field around ship
hulls37–39. To reduce mass loss, the level set method is sometimes combined with the VOF
method40,41.

2.2 Moving-grid methods

In moving-grid methods, also known as ALE (Arbitrary Lagrangian Eulerian) meth-
ods42, each time step the grid is fitted to the moving free surface in a Lagrangian manner.
Their advantage is that the boundaries are well defined, making it easy to apply bound-
ary conditions43. However, when the free surface undergoes large deformation, splits or
merges, these methods suffer great problems. This makes them less suitable for applica-
tions involving complex free-surface flows.

2.3 Gridless methods

Gridless methods represent the fluid by a large number of particles. In principle this
makes them good methods for problems with large free surface deformations, fluid splitting
and fluid merging. The smoothed particle hydrodynamics (SPH) method is an example
of such a gridless method. Introduced by Monaghan in an astrophysical context, later
applications include the splashing of breaking waves44, the dam breaking problem45–47,
and the response of floating structures48. The application of SPH to fluid dynamics
is very young and the method is quite different from other methods, therefore little is
known about appropriate numerical boundary conditions (e.g. non-reflecting conditions)
and required computational effort (which is still quite large because many particles and
small time steps should be used).
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3 MATHEMATICAL MODEL

Conservation of mass and momentum Flow of a homogeneous, incompressible,
viscous fluid is described by the continuity equation and the Navier–Stokes equations,
describing conservation of mass and momentum, respectively:

∮

∂V

u · n dS = 0, (1)

∫

V

∂u

∂t
dV +

∮

∂V

uuT · n dS = −
1

ρ

∮

∂V

(pn − µ∇u · n) dS +

∫

V

F dV. (2)

Here u = (u, v, w) denotes the velocity in the three coordinate directions, n is the normal
at the boundary ∂V of the control volume V , ρ is the density, p is the pressure and ∇ is
the gradient operator. Further, µ denotes the dynamic viscosity and F = (Fx, Fy, Fz) is
an external body force like gravity or a virtual body force.

Boundary conditions At solid walls a no-slip boundary condition is used: u = 0
for fixed boundaries, and u = ub for moving objects, with ub being the object velocity.
At an inflow boundary the incoming wave is prescribed, e.g. a 5th-order Stokes wave.
At the (opposite) outflow boundary a non-reflecting boundary condition is needed. A
Sommerfeld condition49 is appropriate in cases where a regular wave is used. In the case
of an irregular wave or a much deformed regular wave (e.g. due to the presence of an
object) a damping zone can be added at the end of the domain20,50,51.

Free surface When the position of the free surface is given by s(x, t) = 0, its displace-
ment is described by the kinematic condition Ds/Dt = 0. At the free surface continuity
of normal and tangential stress is prescribed

−p + 2µ
∂un

∂n
= −p0 + σκ; µ

(

∂un

∂t
+

∂ut

∂n

)

= 0. (3)

Here, un and ut are the normal and tangential component of the velocity respectively, p0

is the atmospheric pressure, σ is the surface tension and κ denotes the total curvature of
the free surface. Further, the angle between the free surface and a solid wall is prescribed;
we assume a static contact angle. Experiences with dynamic contact angle models have
been described by Van Mourik et al.15

4 NUMERICAL MODEL – BASICS

4.1 Cartesian cut-cell method

To solve the Navier–Stokes equations numerically, the computational domain is covered
with a fixed Cartesian grid. The variables are staggered as in the original MAC method26:
the velocities are defined at cell faces, whereas the pressure is defined in cell centres.
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The body geometry is piecewise linear and cuts through the fixed rectangular grid: a
cut-cell method52,53. Volume apertures (F b) and edge apertures (Ax, Ay and Az) are used
to indicate for every cell which part of the cell and cell face, respectively, is open for fluid.
When moving bodies are present, these apertures are time dependent.

To track the free surface the Volume-of-Fluid function F s is used, which takes values
between 0 and 1, depending on which fraction of the cell is filled with fluid. Cell labelling
is introduced to distinguish between cells of different characters (Fig. 2). First the cells
that are completely blocked by geometry are called B(oundary) cells. These cells have
volume aperture F b = 0. Then the cells that are empty but have the possibility of letting
fluid flow in are labelled E(mpty). The adjacent cells containing fluid are S(urface) cells.
The remaining cells are labelled as F(luid) cells.

F F F F F

F F F F F

S S F F B

E E S B B

E E E E E

Figure 2: Cell labelling: dark grey denotes solid body, light grey is liquid.

4.2 Discretisation of the continuity equation

The continuity and momentum equations are discretised using the finite-volume method
starting from the conservative formulation as given in Eqs. (1) and (2). In this paper the
discretisation is explained in two dimensions; it can be extended to three dimensions in
a straightforward manner. In Fig. 3 a computational F-cell is shown, which is cut by the
body geometry. When applying conservation of mass in this cell, the discretisation results
in

ueA
x
eδy + vnAy

nδx − uwAx
wδy − vsA

y
sδx + l(ub · nb) = 0, (4)

where the notation is explained in Fig. 3 and ub = (ub, vb).

F bδxδy
Ax

eδy

Ay
nδx

Ax
wδy

Ay
sδx

l
ue

vn

uw

vs

ub

vb

Figure 3: Conservation cell for the continuity equation.
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4.3 Discretisation of the Navier–Stokes equations

At all faces between cells that contain fluid, i.e. at faces between F-cells and/or S-cells,
the Navier–Stokes momentum equations (2) are solved. They are discretised in a control
volume around a velocity at a cell face. For uncut cells as well as cut cells, the control
volumes are defined as half of the open part of the left neighbour cell plus half of the open
part of the right neighbour cell (Fig. 4). The discretisation is explained for the momentum
equation in x-direction.

The volume integral of the time derivative in Eq. (2) is discretised in space using the
midpoint rule. The volume aperture F b

c of the control volume is defined as F b
c = 1

2
(F b

e +F b
w)

with F b
e and F b

w the volume apertures of the eastern and western cell, respectively.

uc

un

ue

us

vnw vne

vse

ub
l

ub
r

δxw δxe

δy

δys

δyn

Figure 4: Control volume for the discretisation of convective terms.

The convective boundary integral in Eq. (2) is evaluated at all boundaries of the control
volume by multiplying the mass fluxes through the boundaries, mr, md, ml and mu (which
are mass fluxes through the right, lower, left and upper boundaries, respectively), with
the scalar horizontal velocity u at the respective boundaries. The discretisation is given
by

∮

∂V

u u · n dS
.
= mrur − mdud − mlul + muuu =

1
2
(mrue − mdus − mluw + muun) + 1

2
(mr − md − ml + mu)uc, (5)

with the mass fluxes given by

mr = 1
2
(Ax

eueδy + Ax
cucδy + (Ax

c − Ax
e)u

b
rδy), (6)

md = 1
2
(Ay

sevseδxe + max(0, (Ay
ne − Ay

se)v
b
rδxe)

+Ay
swvswδxw + max(0, (Ay

nw − Ay
sw)vb

l δxw)); (7)

similar expressions hold for ml and mu. Here, Ax
e is the aperture belonging to the cell

face at which ue is defined, etc. Note that the mass fluxes consist of a part of the fluid
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flow through the open boundaries and a part of the moving body. Inspection learns
that the coefficient of the central velocity uc in Eq. (5) vanishes, making the convective
contribution to the coefficient matrix skew symmetric (like the continuous operator),
which is a favourable property54. Further, artificial diffusion is added such that it transfers
the above central discretisation of the convective term into a (more stable) first-order
upwind discretisation.

For the diffusive term a discretisation is adopted in which the geometry is handled in
a staircase way, so the cut cells are treated as if they are uncut. This has been done
to prevent stability problems in small cut cells. In this way, the diffusive discretisation
becomes first order, but in the convection-dominated simulations studied here diffusion is
not really important19,20.

The pressure gradient in the x-momentum equation is discretised as a boundary integral

∮

∂V

pnxdS
.
= (pe − pw)Ax

c δy. (8)

Here, pe and pw are the pressure in the eastern and western cells, respectively (Fig. 4),
and Ax

c is the edge aperture of the cell face where the central velocity is defined. Thus
the discrete gradient is the negative transpose of the discrete divergence operator Eq. (4),
which is also an analytic property54. The external force is written as Fg = −∇gz, and it
is discretised similar to the pressure gradient. In this way, it exactly cancels the discrete
hydrodynamic pressure.

The equations of motion are discretised in time using the forward Euler method. This
first order method is accurate enough, because the order of the overall accuracy is already
determined by the first order accuracy of the free-surface displacement algorithm. The
pressure is solved from a Poisson equation55. It does not require boundary conditions
at solid walls; at the free surface the boundary conditions follow from the normal-stress
condition in Eq. (3)26. Numerical stability of the above time integration puts the usual
convective and diffusive requirements on the maximum allowable time step, such as a
CFL-condition16,18–20.

5 NUMERICAL MODEL – FREE-SURFACE ISSUES

This section describes some numerical issues concerning the treatment of the free sur-
face: the displacement algorithm and the boundary conditions for the velocity. In partic-
ular with respect to these two issues adaptations to the original VOF method have been
made.

5.1 Free-surface displacement

The free surface is displaced using an improved (iVOF) version of the Volume-of-Fluid
method14. A piecewise constant reconstruction of the free surface is used, where the free
surface is displaced by changing the VOF value in a cell using calculated fluxes through
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cell faces. Near the free surface these fluxes are constrained, based on available liquid
and/or void space; the original flux expressions14 are used.

h

x

z

Figure 5: The VOF function in cells near surface cells is updated using a local height function.

The original VOF method has two main drawbacks. The first is that flotsam and
jetsam can appear28,58, which are small droplets disconnecting from the free surface. The
other drawback is the gain or loss of water due to rounding the VOF function when F s > 1
or F s < 0. By combining the VOF method with a local height function16, these problems
do not appear any more. For every surface cell locally a function is defined that gives
the height of the fluid in a column of three cells (Fig. 5). The direction in which the
function is defined is the direction of the coordinate axis that is most normal to the free
surface (the positive z-direction in Fig. 5). Then, after calculating the fluxes across the
cell boundaries of all three cells (the dashed-line region in Fig. 5) as in classical VOF, not
the individual VOF values of the three column cells are updated, but the height function
is updated. The individual VOF values of the three cells are then calculated from the
height of the fluid in the column. In this way, the method is strictly mass conserving and
almost no flotsam and jetsam appear19. The local height function can also be used to
accurately compute the curvature of the free surface16 (essential for capillary-dominated
applications), which has recently led to increasing attention for this approach56,57.

Both methods, the original VOF method and the iVOF method with local height
function, have been compared in a dambreak simulation. In the left Fig. 6 the result is
shown of the free surface configuration of a calculation with the original VOF displacement
method. The created flotsam and jetsam, small droplets disconnecting from the free
surface, are clearly visible. With a local height function, the amount of flotsam and
jetsam has decreased considerably as can be seen in the right Fig. 6. Further, the loss
of water using original VOF is considerable: about 7% after 6 seconds. In the adapted
iVOF method, the loss of water is only 0.02%, so mass is much better conserved.

5.2 Velocities near the free surface

Velocities in the neighbourhood of the free surface can be grouped in different classes
(see Fig. 2): i) the velocities between two F- and/or S-cells are determined from the
momentum equation; ii) the velocities between an S- and an E-cell are determined using
boundary conditions that will be described below; iii) the velocities between two E-cells
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Figure 6: Snapshots at the end of dambreak flow simulations with different algorithms for the displacement
of the free surface: original VOF (left) and VOF combined with a local height function (right).

that are needed to solve the momentum equation are determined using the tangential
free-surface condition (3).

The treatment of the velocities at the cell faces between S- and E-cells (SE-velocities)
turns out to have significant consequences for the robustness and the accuracy of the
simulation method. We discuss two methods, with their respective pro’s and con’s.

• Method 1: The divergence of every S-cell is set to zero as in original MAC26. When
only one SE-velocity is present in the S-cell, this velocity is uniquely defined. When
more E-cells surround the S-cell, the net mass flux through FS-boundaries is divided
over the SE-boundaries such that ∇ · u = 0 is satisfied.

• Method 2: The SE-velocities are determined by extrapolating interior velocities.
The velocities used for the extrapolation are taken from the direction of the bulk of
the fluid. Both constant and linear extrapolation are considered.

Our simulations reveal that Method 1 gives less accurate results than Method 2. An
example can be seen in Fig. 7, where a snapshot of the wave elevation in a steep wave
event is shown. The extrapolation of the velocity field of Method 2, indicated by the solid
line, gives a good prediction of the wave elevation compared to the measurements.

Further, Method 1 suffers from loss of robustness in cut cells, in particular when the
aperture of the SE-velocity is small19. However, also linear extrapolation in Method 2
can lead to instabilities when the velocity field is not smooth. But when using constant
extrapolation, Method 2 is much more robust.

The smoothness of the pressure field is better for Method 1. When with Method 2 a
surface (or empty) cell of which the divergence is not zero (i.e. ∇ · u 6= 0) changes into
a fluid cell, the pressure has to respond within one time step to restore ∇ · u = 0. This
shows up as spikes in the pressure signal (see Fig. 10). By construction, these spikes do
not appear in Method 1, where always ∇ · u = 0 in surface cells.

To overcome the problems described above, in practice a method is chosen that is
an engineering mix between the two methods. The extrapolation method with constant
extrapolation performs best and has been chosen in our numerical method. But to prevent
spikes in the pressure signal, ∇·u = 0 is enforced during each time step when a cell changes
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Figure 7: Different methods for free-surface velocities in a steep wave simulation: ∇ · u = 0 and linear
extrapolation.

label from surface cell to fluid cell. The constant extrapolation is changed to linear
extrapolation when greater accuracy in wave simulations is needed. This combination
results in a highly accurate and very robust method.

Remark: In a two-phase computational model, everywhere in the domain the fluid
velocity is calculated59; it is always divergence-free. Thus, the ambiguity in selecting
conditions for the SE-velocities is circumvented, and the pressure signal is expected to
be smooth. First experiences with such an approach do confirm these advantages of a
two-phase approach60,61.

6 VALIDATION AND EXAMPLES

6.1 Dambreak simulation

At the Maritime Research Institute MARIN experiments have been performed with
breaking dam flows. These experiments can be seen as a simple model of green water
flow on the deck of a ship. In a large tank of 3.22 × 1 × 1 m3, behind a door 0.55 m of
water is waiting to be released. In the tank a box has been placed that represents a scale
model of a container on the deck of a ship. During the experiment, measurements have
been performed of water heights, pressures and forces.

In the simulation, a fine grid of 236×76×68 grid cells has been used with some stretch-
ing towards the bottom of the tank. The simulation is continued for 6 seconds with an
automatically adapted time step (maximum CFL-number around 0.75), resulting in a
time step of the order of 0.001 seconds.

Figure 8 shows a snapshot of the early stage of the simulation together with an image
of the video from the experiment. Good agreement between simulation and experiment
is observed. The shape of the free surface bending a bit forward is seen in both experi-
ment and simulation. In the simulation the free surface has some ripples, which can be
suppressed by using a piecewise linear reconstruction of the free surface30 instead of the
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Figure 8: Snapshot of a dambreak simulation with a box in the flow compared with experiment.

reconstruction aligned with the coordinate axes used in this paper.
Figure 9 shows time histories of the water height at two locations: in the reservoir

(H4), and in the tank just in front of the box (H2). The agreement in both pictures is
very good until the water has returned from the back wall (after about 1.8 seconds). After
that some differences occur, but the global behaviour is still the same. After the water
has returned from the wall, the fluid height at probe H2 is the largest. The water flows
back to the reservoir, where it turns over again after about 4 seconds. The moment that
this second wave meets the height probe at H2 again (after about 5 seconds) is almost
exactly the same in simulation and experiment.

The instant when the wave hits the box is perfectly captured by the simulation as can
be seen from Fig. 10, which shows the pressure at point (P1) at the lower front of the
box In this point, the magnitude of the impact pressure is the same for simulation and
experiment. The moment the return wave hits the box again (after about 4.7 seconds) is
visible in the graphs.

Figure 9: Vertical water heights in the reservoir at position H4 (left) and in the tank at H2 (right).
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Figure 10: Pressure signals at the lower front of the box (P1) upon grid refinement; the right picture
zooms in near first impact.

Some spikes appear in the pressure signals (for example at 1.3 seconds). These spikes
occur because some water enters an empty cell that is completely surrounded by cells with
fluid. When the water enters the E-cell, there is no empty cell left in the neighbourhood,
so this cell changes to a fluid cell in one time step without being a surface cell in between.
This discontinuous change in label and the corresponding restoration of ∇ ·u = 0 results
in a pressure peak over the whole pressure field.

Figure 10 also shows a grid refinement study of the dambreak simulation. Three
different grids have been used with, in increasing order, 59×19×17, 118×38×34 and
236×76×68 grid points. The pressure along the lower part of the front side of the box is
shown. The overall flow of the water is pretty much the same in all three grids, but when
zooming in on the pressure peak (in the right-hand figure) differences become visible: the
coarsest grid is clearly not good enough.

6.2 Green water on deck of moving vessel

As a second application we present a simulation of green water loading using the
same wave field characteristics as in an experiment performed by Buchner5. Thereto,
the computational Navier–Stokes domain is limited to the area close to the bow; the
region further away is modelled by a (cheaper) diffraction code (in this case Diffrac

developed at MARIN). This zonal domain decomposition allows detailed flow simulations
in areas with complex nonlinear flows and still limits the computation times. The linear
diffraction analysis provides improved boundary conditions (velocities and water heights)
for the computational domain, as well as the vessel motion.

In the experiment a free floating FPSO (floating production storage and offloading
platform) has been placed in regular waves with period 12.9 s, wave height 13.52 m and
wavelength 260 m; the total water depth is 150 m. Measurements were made of the wave
in front of the FPSO, water heights and pressures at the deck and the pressure at some
places on a deck structure.

The grid on which the kinematics are calculated in the diffraction code consists of
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Figure 11: Zonal domain decomposition: the Navier–Stokes calculations are restricted to the surroundings
of the bow, the far-field wave kinematics and vessel motions are calculated using a diffraction code.

61×21×13 grid points with a distance between the grid points of 13 m, 13 m and 12.5 m
in x-, y- and z-direction, respectively. The computational domain is focussed on the bow
of the ship, and covers about half a wavelength up front and half the ship length aft of the
bow. The y-coordinate has values between −100 and 100 m, whereas in z-direction the
domain is cut off at −100 m. Selecting a grid for such computations is always a compromise
between accuracy, computer memory and computing time. A grid of 112 × 80 × 76 grid
points is used in the iVOF simulation with stretching towards the bow of the ship: cells
in the neighbourhood of the bow have sizes in x-, y- and z-direction of 1.4 m, 2.0 m and
1.1 m, respectively. The simulation has been carried out for 15 seconds. The discrete
treatment of the latter motion relative to the fixed Cartesian grid is described in detail
in the PhD theses of Fekken18 and Kleefsman20.
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Figure 12: Contours of the water front propagating over the deck of the FPSO, model test every 0.31 s

(left) and ComFlo every 0.30 s (middle). Right: snapshot of the simulation.

Figure 12 shows contours describing the propagation of the water front on the deck of
the FPSO. The agreement between the propagation of the water front in experiment and
simulation is rather good. The water jet is formed a bit earlier in the simulation than in
the experiment. Also, a snapshot of the simulation at time 7.5 s is shown, where the high
velocity jet is very well visible.
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Figure 13: Water height (left) and pressure (right) at the deck close to the deck structure.

Figure 13 shows water height and pressure at a position close to the deck structure.
The predicted water height is 1.5 meter higher than measured in the experiment; however,
note that this difference is less than two grid cells. The second hump in the left of Fig. 13
is predicted by ComFlo at the same moment as in the experiment. This hump is present
due to the water returning from the deck structure. The right-hand graph in Fig. 13
shows the pressure; again the amount of water on the deck is too large. In this graph,
an oscillating behaviour of the pressure can be observed, which as caused because the
monitoring point, fixed at the moving structure, switches to another computational cell.

6.3 Sloshing in micro-gravity

A third example of free-surface flow concerns sloshing liquid on board spacecraft. Ex-
periments have been carried out recently with the Sloshsat FLEVO spacecraft, launched
on February 12, 2005. This mini satellite has been built by the Dutch National Aerospace
Laboratory NLR13. Its dry mass is 95 kg. A cylindrical shaped fluid tank with hemi-
spherical ends, with a volume of 86.9 liters, is positioned inside the satellite. This tank
is partly filled with 33.5 kg of distilled water, which could freely slosh during the experi-
ments. Given the physical properties of the tank material, a contact angle of 90 degrees is
considered a reasonable assumption. The motion of Slsohsat is controlled by 12 thrusters.
During a period of 8 days various experiments have been carried out; several relevant
quantities for the Sloshsat motion were measured, such as the angular velocity ω and the
linear acceleration q̇. The various experiments and preliminary results are described by
Vreeburg10 and Luppes et al.11,12.

The experiments with Sloshsat were supported by a theoretical/computational model
implemented in ComFlo, combined with a model for coupled solid-liquid interaction
dynamics16,17. The latter influence is modelled as a virtual body force F in the Navier–
Stokes momentum equation (2):

F = −q̇ − ω̇ × r − ω × (ω × r) − 2ω × u, (9)
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Figure 14: The Sloshsat FLEVO satellite: left the exterior; right a schematic internal view.

where q̇ denotes the linear acceleration of the moving coordinate frame fixed to the solid
body, and ω and ω̇ denote the angular velocity and acceleration of the solid body.

In this paper we will present some results for a so-called flat-spin manoeuvre. Here,
Sloshsat is initially forced to rotate around the axis of intermediate MOI (moment of
inertia), during which the fluid configuration settles in equilibrium. After some time,
the thruster action is canceled and a free tumble of Sloshsat commences. During this
free tumble, the rotational direction of Sloshsat (slowly) moves towards the maximum
MOI, with a significant amount of nutation and large-scale fluid action. Hence, such a
manoeuvre is very suitable for the validation of our numerical model.
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Figure 15: Simulation versus measurements for the flat-spin experiment.

The comparison for the flat-spin manoeuvre is given in Fig. 15. Controlled by thruster
action, in the first 33 seconds Sloshsat is approximately rotating around the axis of in-
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Figure 16: Sloshsat orientation and water configuration during a flat-spin manoeuvre at t = 14, 18, 32,
37, 44, 64, 830 and 831 seconds. (lexicographical order).

termediate MOI. Then the thruster action is stopped, and Sloshsat is allowed to tumble
freely. The obtained components of ω of the simulation are in good agreement with those
of the measurements, except for a higher level of damping (which is due to some numeri-
cal diffusion). The profile of ωy shows an interesting phenomenon. Each nutation period
contains a higher frequency, which is the result of sloshing water pounding the tank wall.
This secondary frequency is present in both experiment and simulation, indicating that
in the simulation the Sloshsat motion adopts the sloshing frequency correctly.

The Sloshsat orientation and water configuration during the simulation of the flat-
spin manoeuvre is depicted in Fig. 16. In the first subfigure, the water inside Sloshsat
is adapted to the rotation around the axis of intermediate MOI (t = 14s). In the next
figures, the fluid movement during the free tumble manoeuvre is shown. In the two final
subfigures, the transition toward stable rotation around the axis of maximum MOI is
almost completed (t = 830s and 831s). The orientation in these subfigures indicates a
rotation period of T ≈ 12 seconds, which is in agreement with ωy ≈ −0.55 (Fig. 15).

7 CONCLUDING REMARKS

In the present paper results have been shown of the simulation of hydrodynamic impact
problems using the iVOF Navier–Stokes solver ComFlo. The combination of the original
VOF method with a local height function considerably improves the free-surface treatment
by removing much of the flotsam and jetsam. Also, the sensitivity of the simulation results
to the boundary conditions for the velocities at the free surface has been discussed.

Engineering applications have been presented for a dambreak flow, green water on a
moving vessel, and sloshing in a spacecraft. In all cases experimental data are available
for validation purposes.
• The dambreak simulation featured an on-deck box on which pressures and forces have
been measured and calculated. The comparison with experiment was found very good.
• In the green water simulation a zonal domain decomposition has been applied: the far
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field has been described by a (cheaper) diffraction method, and only the close vicinity is
modelled with the (more expensive) nonlinear Navier–Stokes equations. Pressure loads
on the deck structure compare quite well with experiment, although the amount of water
on deck is somewhat overpredicted.
• The flat-spin example includes capillary physics as well as liquid–spacecraft interaction.
It shows that the sloshing frequency of the water inside the tank is adopted correctly by
the satellite motion, although the damping is somewhat overpredicted.

The results of the simulations give much confidence in the performance of the method.
It will be developed further in the coming years by extending it towards compressible two-
phase flows (in the ComFLOW-2 project61). A major advantage of a two-phase model
is that the boundary conditions for the velocities at the free surface, which have a large
influence on the robustness and accuracy of the method, are not needed anymore. Also,
in this way pockets of entrapped air in the wave impact region can be modelled; these
can have a substantial influence on the impact pressures62,63.
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