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Abstract. A novel deformable model for image segmentation and shape
recovery is presented. The model is inspired by fluid dynamics and is
based on a flooding simulation similar to the watershed paradigm. Unlike
most watershed methods, our model has a continuous formulation, being
described by two partial differential equations. In this model, different
fluids, added by placing density (dye) sources manually or automatically,
are attracted towards the contours of the objects of interest by an image
force. In contrast to the watershed method, when different fluids meet
they may mix. When the topographical relief of the image is flooded,
the interfaces separating homogeneous fluid regions can be traced to
yield the object contours. We demonstrate the flexibility and potential
of our model in two experimental settings: shape recovery using manual
initializations and automated segmentation.

1 Introduction

A central problem in computer vision is image segmentation, the process of
partitioning of an image into several constituent components. Among many seg-
mentation techniques, deformable models, introduced in the 2.5-D case by Ter-
zopoulos [1], specialized to the 2-D case by Kass et al. [2], and generalized to
the 3-D case by Terzopoulos et al. [3], found applications in medical imaging
(see [4, 5] for recent surveys), geometric modeling, computer animation, tex-
ture segmentation and object tracking. More recently, deformable models based
on the level set framework [6, 7] have become extremely popular, since they
can handle complicated topologies of the underlying shapes, unlike parametric
snakes [2, 8].

Fluid models have been previously developed for medical image registration by
Christensen et al. [9] and by Bro-Nielsen et al. [10]. Although Jain et al. [11] point
out the connections between Christensen’s work and active contours, the idea
does not seem to have been explored in detail. Therefore, it is one of the goals of
this paper to present a novel, physically-motivated deformable model for image
segmentation and shape recovery based on a fluid simulation. The segmentation
process implied by our method can be regarded as a flooding simulation of
the topographical relief model of the gradient-magnitude image, similar to the
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watershed paradigm [12, 13]. Similar to the watershed from markers, several
density (dye) sources, placed automatically or manually, can be thought of as
locations where the relief was pierced, and different fluids can enter as the relief
is flooded. In contrast to the watershed method, when different fluids meet they
are allowed to mix; this may happen at locations with weak response of the
gradient operator. However, at locations with high gradient magnitudes, the
advancing fluid-fronts will not mix. When the relief is completely flooded, the
interfaces separating fluid regions with different densities can be traced to yield
the contours of the objects present in the input image.

The proposed method needs an initialization step, but this step is less critical
than in the active contour model, rendering the method suitable for automated
segmentation. Unlike the active contour model, our model allows dye sources
to be placed entirely inside an object, outside on one side of the object, or
crossing over parts of boundaries. In contrast to attractive forces based on the
squared gradient-magnitude image [2] which act only in small vicinities along
boundaries of objects, the image force in our model exhibits increased capture
range because of its long range attraction, and enhanced robustness against
boundary leakage. Unlike the watershed method which needs to address the
problem of severe over-segmentation, in our model this problem is dealt with
intrinsically.

2 Formulation of the Proposed Deformable Model

2.1 Model Formulation

Mathematically, in the Eulerian (grid based) formulation, fluids are described
by a velocity field u, a density field ρ and a pressure field p. The evolution of
these quantities is governed by the Navier-Stokes equations [14]

∂u
∂t

= −(u · ∇)u − 1
ρ
∇p + ν∇2u (1)

∇ · u = 0 , (2)

where ν is the kinematic viscosity. The velocity causes the fluid to transport
(advect) objects, densities, and other quantities along with the flow; in fact, the
velocity of a fluid also carries itself; this is represented by the first term on the
right-hand side of Eq. (1). The second term of Eq. (1), the pressure term, appears
when an external force is applied to a fluid. The viscosity of a fluid measures the
resistance of the fluid to the flow. In Eq. (1) viscosity is represented by diffusion
of the velocity field. These equations have to be supplemented with boundary
conditions, and here we will assume that the fluid lies in some bounded domain.

The Navier-Stokes equations can be adapted for image segmentation by (i)
providing suitable external (image) forces, denoted by F, which attract the fluid
to the boundaries of the objects of interest; (ii) providing (manually or auto-
matically) density (dye) sources, Sρ, and (iii) defining appropriate initial and
boundary conditions. In addition, we modify the equation for conservation of



498 A.C. Jalba and J.B.T.M. Roerdink

momentum by dropping the pressure term and by adding an additional damp-
ing term, such that the modified equation becomes

∂u
∂t

= −(u · ∇)u + ν∇2u + β ∇(∇ · u) + F , (3)

where β is the dynamic-viscosity coefficient of the fluid (see below). The rationale
for removing the pressure term is that it is expensive to compute, since it involves
solving a Poisson equation [14,15]. The new term in Eq. (3), the gradient of the
divergence of the velocity field, is better suited for our purposes. Since ∇ · u
represents net change in velocity across a small region of space, following the
gradient of this change tends to restore the initial velocity. Hence, it does act as
a damping term, having a regularizing effect during the flow. Note that in our
formulation we drop the incompressibility requirement, i.e., Eq. (2).

The method should be able to represent objects (or boundaries) during and
at the end of the simulation. Moreover, it should be possible during initialization
to place density (dye) sources manually or automatically (similar to markers in
watershed segmentation). Therefore, we supplement Eq. (3) by an additional
equation for a density (dye) moving through the velocity field

∂ρ

∂t
= −(u · ∇)ρ + Sρ , (4)

where Sρ denotes density sources. Note that these quantities are only carried
along (advected) by the fluid, and they do not affect its flow.

One still needs to devise suitable initial and boundary conditions. Analogous
to our flooding paradigm, the initial fluid velocity is set to zero, i.e., u(x, t = 0) =
u0(x) = 0, the initial density is set to some small constant ρ0, ρ(x, t = 0) = ρ0.
The same initialization is used at each grid location. Further, we assume that
the resolution of the computational grid equals that of the input image. Then,
dye sources Sρ with equal density (Sρ = ρ1, with ρ1 > ρ0) are provided, which
stop adding dye to the flow after a few time steps. An obvious choice for the
external force F is some measure of the gradient of the input image I, such that
the dye is attracted towards the contours of the objects of interest.

In our model sources can be placed far away from object boundaries, due to
self-advection of velocities, which results in a long-range attractive field. The ad-
vantage of long-range attractive fields over attractive fields based on the squared
gradient-magnitude image [2], is their increased capture range. Similar attrac-
tive fields have already been successfully used within the context of deformable
models, see for example [16, 17].

External forces. A suitable external force which guides the advancing fronts
towards object boundaries is given by

F = Fimg + Fst + Fct = ∇(|∇Iσ |) − κn − αn , (5)

where Iσ = I ∗ Gσ denotes the input image, regularized by convolution with a
Gaussian kernel of width σ, κ and n are the curvature and the unit normal at the
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interface S between fluids with different densities, and α ∈ (0, 1] is a constant
weight. The term Fimg represents the image force and attracts the dye towards
object boundaries. The term Fst represents surface tension and ensures that
homogeneous dye regions have smooth boundaries, since curvature is minimized.
During the flow this term has a stabilizing effect and improves the behaviour of
the model with respect to boundary leakage, a problem frequently encountered
with active contours based on the level set formalism, see [17, 16, 6, 7]. The last
term, Fct plays the role of a pressure term, spreading the dye at constant speed,
thus correcting the problem with densities being advected to the nearest object
boundaries, see subsection 2.1. Note that this pressure force acts only at the
interface between fluids, unlike the pressure force in Eq. (1). Similar pressure
terms have been previously proposed both in the contexts of parametric active
contours [18, 16] and level sets [6, 7]. All terms in Eq. (5) are scaled and/or
normalized, such that they have the same magnitude.

Boundary conditions. For densities, Eq. (4), we simply assume continuity at
the boundaries of the computational grid, i.e., ∂ρ/∂n = 0. For velocities at
the boundaries of the computational grid we use the so-called no-slip boundary
condition [14], i.e., u = 0 at these locations. We could address the problem
with the fluid spreading over object boundaries by defining boundary conditions
similar to the no-slip condition. However, since the method should be also usable
with grey-scale images, we use the rule

u ← u e−γ|∇Iσ | , (6)

where γ > 0 is a constant parameter controlling the “strength” of the stopping
criterion used to update velocities at each time step of the simulation. According
to this rule, the velocity is decreased exponentially in the presence of large image
gradients, i.e., near object boundaries. This rule along with the damping and
viscosity terms of Eq. (3) greatly improves the behaviour of the model with
respect to boundary leakage, see section 3.

2.2 Relation to Active Contours and Watersheds

Consider the interface S as a parametric curve that deforms in time, i.e., X(s, t)=
[x(s, t), y(s, t)] with s ∈ [0, 1] is the arc-length parameter and t is the time. The
dynamics of the curve is described by Newton’s law,

μ
∂2X
∂t2

+ γ
∂X
∂t

+ Fint = Fext, (7)

where μ is mass density, γ is viscosity (damping) coefficient, and Fint and Fext

are internal and external forces. Since at the interface the forces are Fint =
−(α+κ)n and Fext = ∇(|∇Iσ|), setting μ = 0 in Eq. (7) as in [19], the equation
of motion becomes

γ
∂X
∂t

= (α + κ)n + ∇(|∇Iσ|). (8)
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Note that since the particles are transported with the fluid, the advection equa-
tion, Eq. (4), can be discarded. Embedding the curve X as the zero level set of
the scalar function φ(x, t), the evolution becomes

γ
∂φ

∂t
= (α + κ) |∇φ| + ∇(|∇Iσ |) · ∇φ. (9)

The first three force terms from Eq. (3) (convection, diffusion and damping) have
been ommited here since they act on the velocity field u in the proposed method.
However, these terms have beneficial effects in our model (e.g. long-range attrac-
tion due to convection of velocities, regularization, etc.), which are lost in the
level-set formulation from Eq. (9). Moreover, the flexibility in initialization will
be lost and boundary-leakage problems specific to level sets will appear.

If we neglect the second term from Eq. (9), set κ = 0 and let α = 1
|∇Iσ | ≥ 0,

the level-set motion equation of the interface becomes

γ
∂φ

∂t
=

1
|∇Iσ | |∇φ| , (10)

which is a continuous formulation of the watershed method based on the Eikonal
equation. Further, if sources (markers) are placed at regional minima of the
gradient-magnitude image, the evolution becomes similar to the watershed from
markers.

2.3 Method of Solution

Equations (3) and (4) can be solved using the stable fluids technique for solving
Navier-Stokes equations developed by Stam [15]. The advantage of his technique
is that it is easy to implement, allows the user to interact in real-time with
three-dimensional simulations of fluids, and is stable, allowing for large time
steps during the numerical integration. Although the model may not be accurate
enough for certain engineering applications, its accuracy suffices for our purposes.

Eq. (3) is solved using a time step Δt. Assuming that the field is known at
time t and we wish to advance the solution at time step t+Δt, we resolve Eq. (3)
over the time step Δt in five steps. That is, the solution is found by composition
of transformations on the state, i.e., each transformation is a step that takes a
field as input and produces a new field as output.

Force application. The gradient magnitude of the regularized image (see Eq. (5))
is computed using the Sobel operator. It was chosen because it is a difference-
of-averages operator and because its response to diagonal edges is better than
that of other operators such as the Prewitt operator. The surface-tension force,
Fst = −κn, is computed based on the following result. If the location of the
interface at time t is given by a level set function S(x, t) = 0, then its temporal
evolution follows from

DS

Dt
≡ ∂S

∂t
+ (u · ∇)S = 0 , (11)



A Physically-Motivated Deformable Model Based on Fluid Dynamics 501

where DS/Dt is the material (advective) derivative. This equation simply states
that the interface propagates with the fluid velocity. Comparing this equation
with Eq. (4) it follows that the level sets S(x, t) can be tracked through the
motion of densities by considering the graph z = ρ(x, t) and defining the interface
in terms of level sets S as S(x, z, t) ≡ ρ(x, t) − z = 0. Then the normal to the
interface, n, can be computed by evaluating n ≡ ∇S

|∇S| , whereas the curvature is
computed using κ ≡ ∇ · n. Finally, the pressure force, Fct, is evaluated using
the previously computed normal, and the force application operator is given by

u(x, t + Δt) = u(x, t) + ΔtF(x, t) . (12)

Here we assume that the external force does not vary considerably during the
time step Δt. Also, since the application of boundary conditions (see Eq. (6))
does not amplify the magnitudes of the velocity vectors, a stability requirement
is that the total external force from Eq. (5) is bounded, which holds in our case.

Damping. Instead of solving the following equation ∂u
∂t = β ∇(∇·u), to account

for damping in Eq. (3), we simply consider the term β ∇(∇·u) as a damping force
and add its contribution to the velocity field as already done for the external
force in Eq. (12).

Advection. The trajectory of the particle is traced back in time from each grid
cell to its former position. Then the quantity q is copied from this position to
the starting grid cell using some interpolation scheme. More formally, to update
quantity q, the following equation is used

q(x, t + Δt) ← q(x − Δx, t) = q(x − u(x, t)Δt, t) . (13)

As shown by Stam [15], the advantage of this method is that it results in an
unconditionally stable advection solver.

Diffusion. The diffusion of velocity is modeled according to ∂u
∂t = ν∇2u. An

obvious approach for solving this equation is to formulate an explicit, discrete
form similar to Euler’s method for integration of ordinary differential equations,
see [20]. This method becomes unstable for large values of Δt and ν. Therefore,
we prefer to use Stam’s implicit method and solve the following equation

(I − νΔt∇2)u(x, t + Δt) = u(x, t) , (14)

where I is the identity matrix. This formulation is stable for arbitrary time steps
and viscosity coefficients.

2.4 Visualization

To steer the computations and to gain insight into the segmentation problem the
user can interact with the simulation, for example, by adding or removing dye
sources, adjusting parameters, etc., rendering the method suited for interactive
segmentation. On the other hand, if the very purpose is automated segmenta-
tion, we will show in Section 3 that simple automatic initializations are also
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possible. To enable performing interactive segmentation, some method is needed
to visualize either the concentration of the dye or the interfaces between different
fluids. Since densities are readily available and can be easily visualized, we will
only describe a method for tracing the interfaces between different fluids.

Using the density field ρ, for each grid cell Gi(xi, yi) a weighted sum is com-
puted at each corner of the current cell, i.e., at locations (xi, yi), (xi+1, yi),
(xi, yi+1), (xi+1, yi+1). At each of these corners, the sum is computed by adding
the densities of the (4-connected) neighbouring locations, weighted by forward
and backward finite absolute differences between the current location and its
neighbours; the resulting density value is normalized by dividing it by the sum
of weights. Then, the average of the four density values, obtained by weighted
summation at each corner of grid cell Gi(xi, yi), is computed to obtain an es-
timate for the variation of the density ρa,i inside the current cell. Finally, if
the resulting value, ρa,i, is greater than zero, meaning that there is an interface
between two fluids inside the current cell, it is traced using a 2-D polygoniza-
tion method similar to the Marching Cubes algorithm [21]. All contours (fluid
interfaces) found are then drawn superimposed on the input image.

3 Results

We will show several results on binary and grey-scale images obtained using the
proposed deformable model. In particular, we will show that the new deformable
model is (i) robust with respect to boundary leakage, (ii) insensitive to initial-
ization, (iii) robust against noisy conditions, and (iv) can be used to perform
automated segmentation.

Boundary leakage. The behaviour with respect to boundary leakage can be con-
trolled by adjusting the viscosity parameter, ν, from Eq. (3), see Fig. 1. When
setting ν = 1, the fluid does not penetrate the thinner gaps of the object present
in the image. In the remainder, we fix this value to ν = 0.1.

Robustness to initialization. An important advantage of the proposed method
over active contours is that it allows simple initializations, see Fig. 2. The ini-
tializations in Fig. 2 are very difficult (if not impossible) to handle by most snake
methods, because some sources are placed inside objects, while others are out-
side. Besides, level-set snakes only accept closed contours. These initializations

Fig. 1. Left : Initialization superimposed on the initial image; center : no viscosity, ν =
0; right : ν = 1.0
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Fig. 2. Left : Initializations; segmentation results: center – dye regions with superim-
posed interfaces (boundaries), right – original images with superimposed contours

Fig. 3. Segmentation results on noisy images. Left : Initializations; segmentation results:
center – dye regions with superimposed interfaces (boundaries), right – original images
with superimposed contours.

pose also problems for the watershed method. As the number of markers does
not change during the watershed evolution, a marker region lost during marker
selection cannot be recovered later. Alternatively, more markers in one object
result in over-segmentation.

Robustness to noise. The results in Fig. 3 show that the method copes quite
well with respect to noisy images. As observed, the method is able to recover
correctly the major shapes of the objects present in these noisy images.

Segmentation of medical images Results on several medical images are shown
in Figs. 4 and 5. Although the image shown in the first figure (angiogram) is
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Fig. 4. Left-to-right : input image and initialization (a dot), velocity field u, detected
regions, contours superimposed on the original image

Fig. 5. First row : initializations (left, center : white segments, right : black segments);
second row : results (regions)

quite noisy and difficult because of the thin and elongated structures, the method
yields quite a good result, being able to recover the whole artery. Most important
structures have been also correctly recovered for the objects in Fig. 5.

Automated segmentation. Our next experiment is automatic segmentation using
a trivial automated method for initialization. To contrast our method to the
watershed from markers, we placed dye sources at all local minima of the gradient
magnitude image. This type of initialization usually results in over-segmentation
using watershed from markers. However, this initialization poses no problem for
our method, see Figs. 6 and 7. Since weak gradients do not stop the fluid from
flowing, fluids with different densities will mix, but near equilibrium, different
objects/regions reach different yet homogeneous densities. Note that, all major
structures present in these images were correctly identified.

Missing and fuzzy boundaries. Although the proposed method can segment ob-
jectswithmissing boundaries (as shown inFig. 1), the fluidmayflow through larger
gaps.A solution to this problemwould be to integrate region-based energy terms in
our model, similar to the minimal-variance term proposed by Chan and Vese [22];
such extensions are the subject of ongoing research. Our method can segment ob-
jects with fuzzy boundaries, provided that fluid sources are placed both inside and
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Fig. 6. Left-to-right, top-to-bottom: Successive snapshots

Fig. 7. Left-to-right, top-to-bottom: Successive snapshots

outside the object, see Fig. 8. However, when fluid sources are placed only outside
(or inside) the object, the method may fail. We also performed experiments using
the geodesic snake [6,7] augmented by the GVF field [16] to attract the contour to-
wards the object boundaries, see Fig. 8, second row. Note that the geodesic snake
fails to detect the boundary of the object even when the GVF field is used.

Parameter settings. In all our experiments we used the following parameter
values: α = 0.2, β = 1.0, γ = 2.0. Only the value of the viscosity parameter ν was
adjusted when performing the boundary-leakage experiment. For the remaining
experiments we also fixed the value of this parameter to ν = 0.1. This indicates
that the parameter setting of the proposed method is not critical.



506 A.C. Jalba and J.B.T.M. Roerdink

Fig. 8. Fuzzy boundaries. First row : Two different initializations and results by the
proposed method; second row : results by the geodesic snake w/o attractive GVF field.

4 Conclusions

We have introduced a novel, physically-motivated deformable model for image
segmentation, and demonstrated its flexibility and potential for shape recovery
using manual initializations as well as automated segmentation. The proposed
deformable model exhibits several important characteristics: (i) insensitivity to
initialization, as opposed to snakes and watersheds, (ii) increased capture range
of the attractive vector field, (iii) handling of topological changes, and (iv) good
behaviour on noisy images. An important advantage is that the method can be
used to perform automatic segmentation, with trivial initializations.
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