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TOWARDS POWER-BASED CONTROL

STRATEGIES FOR A CLASS OF NONLINEAR

MECHANICAL SYSTEMS
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∗ Lab. des Signaux et Systmes, CNRS-SUPELEC,

Gif–sur–Yvette 91192, FR
∗∗ Delft Center for Systems and Control, Delft University

of Technology, Mekelweg 2, 2628 CD Delft, NL

Abstract: In the present work we are interested on the derivation of power-based

passivity properties for a certain class of non-linear mechanical systems. While for

(non)-linear mechanical systems, it is of common use to adopt a storage function

related to the system’s energy in order to show passivity and stabilize the system

on a desired equilibrium point(e.g., IDA-PBC (Ortega et al., 1998)), we want

here to obtain similar properties related to the system’s power. The motivation

arises from the idea that in some engineering applications(satellite orbit motion,

aircraft dynamic,etc...)seems more sensible to cope with the power flowing into the

system instead of the energy that for stabilization purposes, means to consider the

systems’s equilibrium the state for which the energy flow-rate(i.e.,system’s power)is

minimal. In this respect, we recall first the power-based description for a certain

class of (non)-linear mechanical systems given in (de Rinaldis and Scherpen, 2005)

and then we give sufficient conditions to obtain power-based passivity properties,

provided a suitable choice of port-variables. We conclude with the example of the

inverted pendulum on the cart.Copyright c©2006 IFAC

Keywords: Nonlinear systems, Passivity-based control, Brayton-Moser equations,

Lagrangian equations.

1. INTRODUCTION

In a previous work of the authors (de Rinaldis and

Scherpen, 2005) an electrical interpretation of the

motion equations of mechanical systems moving

in a plane has been provided via the Brayton-

Moser equations. In particular, it is proved that

under certain generic assumptions the system’s

behavior derived from its Lagrangian function

can be alternatively described through a power-

based representation in an electrical fashion. It

can be viewed as an extension of the well-

known analogy mass/inductor, spring/capacitor

and damper/resistor for linear mechanical sys-

tems to a larger class of (possibly) nonlinear sys-

tems. The double pendulum and the inverted pen-

dulum on the cart are the illustrative examples

which have been studied and electrically inter-

preted as nonlinear RLC circuits.

We are here interested on exploiting this power-

based description for such mechanical system class

in order to achieve a new passivity property using

3rd IFAC Workshop on Lagrangian and Hamiltonian
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as port variables the external forces/torques and

the linear/angular acceleration,and with the stor-

age function being related to the system’s power.

In section 2 we will first recall the fundamentals

of Euler-Lagrange(EL) and Brayton-Moser(BM)

equations in the standard form. Via the introduc-

tion of the pseudo-inductor the Brayton-Moser

equations can be extended to a large class of

non-linear mechanical systems, (de Rinaldis and

Scherpen, 2005). This is reviewed in Section 3, and

followed by the presentation of the main result.

Taking inspiration from (Jeltsema et al., 2003)

we provide a method to generate storage function

candidates based on the power. We give suffi-

cient conditions to show the power-based passivity

properties. We conclude the paper in section 4

with the example of the the inverted pendulum on

the cart for which our passivity conditions have a

clear physical meaning.

2. PRELIMINARIES

2.1 Euler-Lagrange systems (EL)

The standard Euler-Lagrange equations (e.g.,

(Ortega et al., 1998)) for an r degrees of freedom

mechanical system with generalized coordinates

q ∈ R
r and external forces τ ∈ R

r are given by

d

dt

(
∂L(q, q̇)

∂q̇

)
−

∂L(q, q̇)

∂q
= τ (1)

where

L(q, q̇) � T (q, q̇)− V(q) (2)

is the so-called Lagrangian function, T (q, q̇) is the

kinetic energy which is of the form

T (q, q̇) =
1

2
q̇TD(q)q̇, (3)

where D(q) ∈ R
r×r is a symmetric positive def-

inite matrix, and V(q) is the potential function

which is assumed to be bounded from below. Fur-

thermore, dissipative elements can be included via

the Rayleigh dissipation function as part of the

external forces.

2.2 RLC-circuits: The Brayton-Moser equations

(BM)

The electrical circuits considered in this paper are

complete RLC-circuits in which all the elements

can be nonlinear. The standard definitions of

respectively inductance and capacitance matrices

are given by

L(iρ) =
∂φρ(iρ)

∂iρ
, C(vσ) =

∂qσ(vσ)

∂vσ

where iρ ∈ R
r represents the currents flowing

through the inductors and φρ(iρ) ∈ R
r is the

related magnetic flux vector. On the other hand

vσ ∈ R
s defines the voltages across the capaci-

tors and the vector qσ(vσ) ∈ R
s represents the

charges stored in the capacitors. From (Brayton

and Moser, 1964) we know that the differential

equations of such electrical circuits have the spe-

cial form

Q(x)ẋ = ∇P (x) (4)

where x = (iρ, vσ) ∈ R
r+s, ∇ = (∂/∂iρ, ∂/∂vσ)

T ,

and

Q(x) =

[
−L(iρ) 0

0 C(vσ)

]
(5)

Furthermore the mixed potential function P (x)

which contains the interconnection and resistive

structure of the circuit is defined as

P (x) = F (iρ)−G(vσ)− iρ
TΛvσ. (6)

F : R
r → R and G : R

s → R being the cur-

rent potential (content) related with the current-

controlled resistors (R) and the voltage potential

(co-content) related with the voltage-controlled

resistors (i.e., conductors, G), respectively. More

specifically, the content and co-content are defined

by the integrals
∫ iρ

0

v̂R(i
′

ρ)di
′

ρ,

∫ vσ

0

îG(v
′

σ)dv
′

σ,

where v̂R(iρ) and îG(vσ) are the characteristic

functions of the (current-controlled) resistors and

conductors (voltage-controlled resistors), respec-

tively. The r × s matrix Λ is given by the inter-

connection of the inductors and capacitors, and

the elements of Λ are in {−1, 0, 1}.

2.3 Definitions

In order to introduce the electrical counter part

of the position dependent mass we introduce the

so-called pseudo-inductor. This is an inductor, but

now relating the magnetic flux linkages to current

and the voltage, which differs from the “usual”

electrical case, i.e.,

φ = fφ(x). (7)
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where φ ∈ R
r is the flux related to the inductors.

This definition lead to the following implicit rela-

tion between voltage and current

vρ =
dφ

dt
=

∂fφ
∂iρ

diρ
dt

+
∂fφ
∂vσ

dvσ
dt

. (8)

Now, define the pseudo-inductance matrix and the

co-pseudo-inductance matrix as

L̃(x) =
∂fφ
∂iρ

, M̃(x) =
∂fφ
∂vσ

respectively, then (8) can be written as

vρ = L̃(x)
diρ
dt

+ M̃(x)
dvσ
dt

. (9)

Similarly, we will consider a capacitor as a func-

tion relating the charge and the voltage, i.e.,

qσj = f j
v (vσj) , j = 1, . . . , s. (10)

By defining the non-negative capacitance matrix

C(vσ) = diag

(
∂f j

v (vσj)

∂vσj

)
, j = 1, . . . , s,

we have from differentiation of (10) that

iσ = C(vσ)
dvσ
dt

. (11)

3. POWER-BASED DESCRIPTION FOR A

CLASS OF MECHANICAL SYSTEMS

In (de Rinaldis and Scherpen, 2005) the authors

enlarged the class of mechanical systems for which

an electrical interpretation can be provided re-

placing the generalized coordinates vector (q̇, q) ∈

R
2r by the electrical states vector (iρ, vσ) ∈ R

r+s.

In order to make the following relation a one-to-

one mapping the equivalent circuit has to present

a number of inductors r equal to the capacitors

s. Moreover, all conservative forces acting on the

masses should be (locally) invertible functions of

its angular or linear position. The main result of

(de Rinaldis and Scherpen, 2005) is as follows.

Theorem 1. Consider the general Lagrangian func-

tion (2). Assume that:

A1 (interconnection) iρ = iσ,
1

A2 (force-position link) qσj = f j
v (vσj) ∈ C

1 with

j = 1, . . . , r is a set of invertible functions

such that:

1 Implying that s = r and Λ = I. See Remark 4 of (de Ri-

naldis and Scherpen, 2005) for the physical implications.

•
∂fj

v(vσj)

∂vσj
= Cj(vσj),

• f j
q (qσj) = vσj .

Then: the Euler-Lagrange (1) equations can be

rewritten in terms of the Brayton-Moser frame-

work as follows



−D̃(vσ) −(D̄(x)− D̂(x))C(vσ)

0 C(vσ)


 ẋ = ∇P (x)

with

P (x) = −F (iρ) +G(vσ) + iρ
T vσ,

being the mixed potential function and where

D̂(iρ, vσ) =




1

2
iρ

T ∂D(qρ)

∂qρ1
|qρ=fv(vσ)

. . .
1

2
iρ

T ∂D(qρ)

∂qρr
|qρ=−fv(vσ)




(12)

C(vσ) = diag

(
∂f j

v (vσj)

∂vσj
, j = 1, . . . , r

)
(13)

D̃(vσ) =D(qρ)|qρ=fv(vσ) (14)

D̄(iρ, vσ) =




a11(iρ, vσ) · · · a1r(iρ, vσ)

...
. . .

...

ar1(iρ, vσ) · · · arr(iρ, vσ)


 (15)

with aij(iρ, vσ) = iρ
TC−1(vσ)∇vσD̃ij(vσ) for

i, j ∈ {1, r}.

Corollary 1. As a consequence of Theorem 1, re-

calling the definitions of the pseudo-inductor and

the capacitor adopted in (9) and (11) respectively,

the B-M equations can be then re-written in the

following more compact form

Q̃(x)ẋ = ∇P (x) (16)

with

Q̃(x) =



−L̃(vσ) −M̃(iρ, vσ)

0 C(vσ)




and where L̃(vσ) = D̃(vσ), M̃(iρ, vσ) = (
˙̃
D(vσ)−

D̂(iρ, vσ)).

Remark 1. The former result can been inter-

preted in two ways. From one side we established

under which conditions–A1 and A2–a mechani-

cal systems described by EL equations, through

derivation of an energy-based function called La-

grangian, has a clear electrical counterpart based
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on the classical states analogy force/voltage and

speed/current. On the other side, we state that

this class of mechanical systems that can be elec-

trically interpretable yields a power-based descrip-

tion in the BM framework. Under this second

perspective we will present, in the further section,

our main result.

3.1 Power-based passivity properties

This section is dedicated to the derivation of

passivity sufficient conditions for that class of

mechanical systems that admits the power-based

description given in (16). For that we have to find

a storage function candidate and a corresponding

set of port variables. It is then instrumental for

the derivation of the next theorem to re-define

the mixed-potential function P (x) extracting the

voltage sources vs ∈ R
l with l ≤ r, from the

content term F (iρ) as follows

P (x) = P̃ (x)− xTBvs (17)

with B = (Bs, 0)
T and Bs ∈ R

r×l.

Remark 2. In equation (4) we restricted our anal-

ysis to circuits having only voltage sources in

series with inductors. This choice seems to be sen-

sible considering that the mechanical counterpart

of a current source is a velocity source which have

no clear sense from a physical view point.

3.1.1. Storage function candidate Following the

procedure of (Jeltsema et al., 2003), we can pre-

multiply (16) by ẋT obtaining

ẋT Q̃(x)ẋ = ẋT∇xP̃ (x)− ẋTBvs

that can be re-arranged as follows

dP̃

dt
(x) = ẋTBvs + ẋT Q̃(x)ẋ (18)

which consists of the sum of two terms. The first

one represents the inner product of the source

variables in the suited form ẋTBvs = vTs
˙̂
is, where

we assume the vector is ∈ R
l indicating the corre-

spondent current terms flowing from each induc-

tor series-connected voltage source. The second

one is a quadratic term. In general Q̃(x) is not

symmetric and its symmetric part is sign indefi-

nite making difficult the derivation of the power-

balance inequality we are looking for. In order to

overcome this drawback we follow the same proce-

dure exploited in (Jeltsema et al., 2003),(Brayton

and Moser, 1964),(Ortega et al., 2003) that ba-

sically provides a method to describe the system

(16) by another admissible pair, say Q̃a(x) and

Pa(x). For instance, if the new pair fulfills the

following conditions:

C1 Q̃T
a (x) + Q̃a(x) ≤ 0

C2 P̃a(x) : R
s+r → R is positive semi-definite

scalar function

we may state that

dP̃a

dt
(x) ≤ ẋTBvs (19)

being P̃a(x) the storage function candidate related

to Pa(x) by (17), the pair (vs,
˙̂
is) is a passive pair

and can serve as port-variables.

3.1.2. Power-balance inequality and passivity re-

quirements In the next theorem we will pro-

vide some conditions for passivity that may be

useful for control in the power-based framework.

In particular, we refer to a previous work of the

second author (Jeltsema et al., 2003) where the

storage function has the dimension of power and

is defined as a re-shaped mixed potential function

Pa(x). This new function is then related to a new

matrix Q̃a(x) and both, having common solutions

for (16), are related to the original pair Q̃(x), P (x)

by the following relations 2

Q̃a(x) =

[
1

2
∇2P (x)Π(x)

]
Q(x)

+

[
1

2
∇(∇TP (x)Π(x)) + λI

]
Q(x)

Pa(x) = λP (x) +
1

2
∇TP (x)Π(x)∇P (x)

with Π(x) ∈ R
r×r a symmetric matrix and λ ∈ R

any constant.

Theorem 2. Consider an electrical system for

which the dynamics is described by (16) and as-

sume A1 and A2 hold. Moreover, Assume that

A3 (positivity) pseudo-inductors and capacitors

matrices are positive definite

A4 (linearity in the content)

F (iρ) = −(1/2)iρ
TRρiρ > 0, i.e., the

current-controlled resistor matrix Rρ is con-

stant and positive definite

A5 (damping condition) 3∥∥∥2R−1
ρ M̃C−1 + M̃T L̃−1M̃C−1 + β

∥∥∥ ≤ 1

2 See (Ortega et al., 2003) for a detailed proof of this

statement.
3 For a matter of notation, from now on the arguments of

each matrix term will be missing in purpose. Anyway, we

remind that M̃ = M̃(x), L̃ = L̃(vσ) and C = C(vσ).
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with

β := β(x) =
∂

∂vσ

(
iρ

T L̃R−1
ρ C−1

)
.

A6 (technical assumption)

L̃R−1
ρ C−1 ≥ 0

then

∫ t

0

vTs (t
′)
dis
dt′

dt′ ≥ P̃a(x(t))− P̃a(x(0)). (20)

Proof. First, we set the matrix Π(x) and the scalar

λ in order to guarantee the semi-definite positivity

of the storage function Pa(x) and to satisfy the

following requirement 4

Q̃a(x)
T + Q̃a(x) ≤ 0 (21)

Define

λ=−1,

Π(x) = diag(2R−1
ρ , 2L̃R−1

ρ C−1).

Considering a mixed potential function P (x) fit-

ting the Assumption A4 and reminding that As-

sumption A1 ⇒ Λ = I, we obtain

Q̃a(x) =



−L̃ −M̃ − 2LR−1

ρ

2R−1
ρ L̃ −(I − β)C + 2R−1

ρ M̃




that, under Assumptions A3 and A5, satisfies

(21). We refer to the appendix for a detailed de-

velopment of the former statement. Furthermore,

the storage function candidate becomes

P̃a(x) =
1

2
(Rρiρ + vσ)

TR−1
ρ (Rρiρ + vσ) +

+
1

2
vσ

TR−1
ρ vσ + iρ

T L̃R−1
ρ C−1iρ (22)

which, under Assumption A6, is clearly positive

definite. A

Remark 3. Assumption A5 is an important condi-

tion that can be satisfied with small values of the

matrix R−1
ρ —which represent the LTI resistors

placed in series to each inductor— and/or with

a weak mutual-coupling action provided by the

presence of the matrix M̃(x). Since M̃(x) depends

linearly on the current vector iρ—see M̃(x) def-

inition provided in Theorem 1—, we can state

that for slow motion or well-damped dynamics,

A5 holds.

4 If these two conditions are matched the overall system,

for which the dynamics can be written as Q̃−1(x)∇P (x) =

−Q̃−1
a (x)∇Pa(x) = (diρ/dt, dvσ/dt)T , is then asymptoti-

cally stable.

4. THE INVERTED PENDULUM ON A CART

Fig. 1. Inverted pendulum on a cart.

An interesting example of mechanical system to

study is the inverted pendulum with rigid massless

rod (of length l) placed on a cart as shown if

Fig. 1. It is often used to test the performance of

controllers that stabilize the pendulum mass m2
to its natural unstable equilibrium point through

a force F acting just on the cart of mass m1.

The equations describing the dynamics of the to

masses could be computed considering as state

variables the angular position of the row with the

vertical axis θ and the cart distance z − z0 to

a fixed reference (z0 = 0). The motion dynamic

of each mass can be determined via the Euler-

Lagrange equations

(m1 +m2)z̈ +m2l cos θθ̈ −m2l sin θθ̇
2 = F −R1ż

m2l
2θ̈ +m2l cos θz̈ −m2gl sin θ = −R2θ̇

(23)

where the generalized coordinates related to the

position of each mass are q = (z, θ)T and its

derivative q̇ = (ż, θ̇) representing the correspond-

ing velocities. Applying the following coordinates

transformation 5

[
z

θ

]
=




C1vσ1

fv
2 = arcsin

(vσ2
K

)


 , (24)

[
ż

θ̇

]
=



iρ1

iρ2


 (25)

withK = m2gl and considering that Assumptions

A1 and A2 are clearly satisfied we can express

the motion equations (23) via the Brayton-Moser

framework

5 The relation(q̇, q) ⇔ (iρ, vσ) is one-to-one only when θ

belongs to the open interval (−π

2
, π
2
).
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Q̃(x)ẋ = ∇P (x) (26)

with Q̃(x) easily obtained from (23) and C1 ∈

R+ an arbitrary constant. Now that we have

expressed the mechanical system model by (26)

we can use the Theorem 2 in order to get the

explicit passivity condition. By choosing

λ = −1 , Π(x) = diag(2R−1, 2L̃R−1C−1),

after some algebraic computations we get the final

local condition

∥∥∥∥∥∥∥∥∥∥

0
1

R1

2l sin fv2 iρ2

(l sin fv2 )2

m1

m2

+ 1− cos2 fv2
−
iρ1m2l sin f

2
vC2(vσ2)

iρ2R2

∥∥∥∥∥∥∥∥∥∥
≤ 1 (27)

achieved for C1 →∞. The former suitable choice

of C1 parameter is arbitrary because it depends

on the coordinates transformation we arbitrary

fixed. Of course, in order to apply theorem 2 we

have to verify, together with condition (27), that

Assumption 6 holds, that means

∥∥∥∥∥∥

0 m2l cos fv2

m2l cos fv2 m2l
2R−12 C

−1

2

∥∥∥∥∥∥
≥ 0 (28)

From the overlap of (27) and (28), we deduce a

local condition for which
∫ t

0

F
˙̂
iρ1(τ)dτ ≥ P̃a(t)− P̃a(0)

with P̃a(x) given by (22), holds.

5. CONCLUSION AND OUTLOOKS

Our main purpose in this document was to present

an alternative way to describe the dynamics of

a large class of (possibly non-)linear mechanical

systems within a framework–the Bryton-Moser

equations–that relates the power to the trajecto-

ries of the system instead of energy, and derive

from it sufficient conditions for passivity. This

should be consider as a preliminary step towards

stabilization of mechanical and electromechanical

systems using passivity arguments–as already sug-

gested in (Ortega et al., 2003))–.
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Appendix

Here, we show that given Assumptions A3 and

A5 of Theorem 2, the positivity of Qa(x) is

established, i.e., (21) holds. Indeed, computing the

symmetric part of Qa(x) we have

Ha(x) =



L̃ M̃

M̃T (I − β)C − 2R−1ρ M̃


 .

Then, provided the positivity of L̃(vσ) by A3, we

compute the Schur’s complement of Ha(x) and

imposing his positivity we obtain

(I − β)C − 2R−1ρ M̃ ≥ M̃T L̃−1M̃

Let’s re-write the above inequality as follows

I ≥ 2R−1ρ M̃C
−1 + M̃T L̃−1M̃C−1 + β,

as a consequence of Perron’s theorem 6 and re-

minding that the spectral norm applying on any

squared matrix A ∈ R
r×r is defined as

||A|| =
√
ρ(ATA)

we have

1 ≥
∥∥∥2R−1ρ M̃C

−1 + M̃T L̃−1M̃C−1 + β
∥∥∥

which is true by Assumption A5.

6 See lemma 8.4.2 of (Horn and Johnson, 1985).
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