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Abstract

We classify the geometry of all supersymmetric IIB backgrounds which admit the maximal number of
G-invariant Killing spinors. For compact stability subgroups G = G2,SU(3) and SU(2), the spacetime
is locally isometric to a product Xn × Y10−n with n = 3,4,6, where Xn is a maximally supersymmetric
solution of a n-dimensional supergravity theory and Y10−n is a Riemannian manifold with holonomy G.
For non-compact stability subgroups, G = K � R

8, K = Spin(7), SU(4), Sp(2), SU(2) × SU(2) and {1},
the spacetime is a pp-wave propagating in an eight-dimensional manifold with holonomy K . We find new
supersymmetric pp-wave solutions of IIB supergravity.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Supersymmetric backgrounds in supergravity theories can be characterized by the number of
Killing spinors N and their stability subgroup G in an appropriate spin group [1]. For a given sta-
bility subgroup G, it has been shown in [2,3] that the Killing spinor equations of IIB supergravity
[4–6] simplify for two classes of backgrounds: (i) the backgrounds that admit the maximal num-
ber of G-invariant Killing spinors, and (ii) the backgrounds that admit half the maximal number
of G-invariant Killing spinors. In particular the Killing spinors for the former case, the maxi-
mally supersymmetric G-backgrounds which can be thought of as the vacua of IIB strings, can
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be written as

(1.1)εi =
N∑

j=1

fij ηj , j = 1, . . . ,N = 2m,

where ηp , p = 1, . . . ,m is a basis of G-invariant Majorana–Weyl spinors, ηm+p = iηp , and
(fij ) is a N × N matrix with real spacetime functions as entries. In addition, the Killing spinor
equations and their integrability conditions factorize, see also Appendix A.

The IIB Killing spinors are invariant under the stability subgroups Spin(7) � R
8 (N = 2),

SU(4) � R
8 (N = 4), Sp(2) � R

8 (N = 6), (SU(2) × SU(2)) � R
8 (N = 8), R

8 (N = 16),
G2 (N = 4), SU(3) (N = 8), SU(2) (N = 16) and {1} (N = 32), where N denotes the (maxi-
mal) number of invariant spinors in each case. The maximally supersymmetric IIB backgrounds,
{1}(N = 32), have been classified in [7], where it was found that they are locally isometric to
Minkowski spacetime R

9,1, AdS5 × S5 [5] and the maximally supersymmetric Hpp-wave [8].
In addition, the geometry of the maximally supersymmetric Spin(7) � R

8-, SU(4) � R
8- and

G2-backgrounds has already been investigated [2,3] using the spinorial geometry method of [10].
Here we shall use the same method to investigate the remaining cases. There are two classes
of maximally supersymmetric G-backgrounds depending on whether G is a compact or non-
compact subgroup of Spin(9,1). The geometry of the backgrounds in the two cases is distinct.
To outline our results we denote with ds2(Sk) the metric of the round k-dimensional sphere Sk ,
with ds2(AdSk) the metric of k-dimensional anti-de Sitter space AdSk and with ds2(CWk(A))

the metric1 of the k-dimensional Cahen–Wallach space CWk(A) associated with the (constant)
quadratic form A. The metric and fluxes are expressed in terms of orthonormal or null frame
bases which arise from the description of the spinors in terms of forms. Our spinor conventions
can be found in [3].

1.1. Backgrounds with compact stability subgroups

The geometry of the maximally supersymmetric G-backgrounds, where G is a compact sub-
group of Spin(9,1), is as follows:

• G2: The spacetime is locally isometric to the product R
2,1 ×Y7, where Y7 is a G2 holonomy

manifold. The metric and fluxes are

(1.2)ds2(M) = ds2(
R

2,1) + ds2(Y7), G = P = F = 0,

i.e. the fluxes vanish.
• SU(3): The spacetime M is locally isometric to a product of a four-dimensional symmetric

Lorentzian space and a six-dimensional Calabi–Yau manifold Y6. In particular, the spacetime is
– M = AdS2 × S2 × Y6, and the metric and fluxes are

ds2(M) = ds2(AdS2) + ds2(S2) + ds2(Y6),

ds2(AdS2) = −(
e0)2 + (

e1)2
, ds2(S2) = (

e5)2 + (
e6)2

,

F = 1

2
√

2

[
H 1 ∧ Reχ − H 2 ∧ Imχ

]
, χ = (

e2 + ie7) ∧ (
e3 + ie8) ∧ (

e4 + ie9),
1 The metric is ds2(CWk(A)) = 2dx−(dx+ + 1 Aij xixj dx−) + (dxi )2, see [9].
2
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H 1 = λ1e
0 ∧ e1 + λ2e

5 ∧ e6, H 2 = −λ1e
5 ∧ e6 + λ2e

0 ∧ e1,

(1.3)G = P = 0,

where the scalar curvature of AdS2 and S2 are RAdS2 = −RS2 = −4(λ2
1 + λ2

2).
– M = CW4(−2μ21) × Y6, and the metric and fluxes are

ds2(M) = ds2(CW4) + ds2(Y6),

F = 1

2
√

2

[
H 1 ∧ Reχ − H 2 ∧ Imχ

]
,

(1.4)H 1 = μe− ∧ e1, H 2 = μe− ∧ e6,

G = P = 0.

– M = R
3,1 × Y6, and the metric and fluxes are

ds2(M) = ds2(
R

3,1) + ds2(Y6),

(1.5)F = G = P = 0.

• SU(2): The spacetime M is locally isometric to a product of a six-dimensional symmetric
Lorentzian space and a four-dimensional hyper-Kähler manifold Y4. In particular, the spacetime
is

– M = AdS3 × S3 × Y4, and the metric and fluxes are

ds2(M) = ds2(AdS3) + ds2(S3) + ds2(Y4),

ds2(AdS3) = −(
e0)2 + (

e1)2 + (
e2)2

, ds2(S3) = (
e3)2 + (

e4)2 + (
e5)2

,

F = 1

4
v · ω̂ ∧ H,

G = (
v4 + iv5)H, H = λe0 ∧ e1 ∧ e2 + λe3 ∧ e4 ∧ e5,

(1.6)P = 0,

where v · ω̂ = v1ω̂I + v2ω̂J + v3ω̂K is a linear superposition of the Kähler forms ω̂I , ω̂J and ω̂K

of the hyper-Kähler manifold Y4, v2 = 1 and the scalar curvature RAdS3 = −RS3 = − 3
2λ2.

– M = CW6(− 1
4μ21) × Y4, and the metric and fluxes are

ds2(M) = ds2(CW6) + ds2(Y4),

F = 1

4
v · ω̂ ∧ H,

(1.7)G = (
v4 + iv5)H, H = μe− ∧ e1 ∧ e2 − μe− ∧ e6 ∧ e7,

P = 0.

– M = R
5,1 × Y4, and the metric and fluxes are

ds2(M) = ds2(
R

5,1) + ds2(Y4),

(1.8)F = G = P = 0.

Therefore, we have shown that the maximally supersymmetric G2-, SU(3)-, and SU(2)-
backgrounds for G compact are the maximally supersymmetric solutions of N = 1, N = 2 and
(2,0)-supergravities in three, four and six dimensions, respectively, lifted to IIB supergravity.
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The maximally supersymmetric solutions for the N = 2 four-dimensional supergravity have been
found in [11], see [12] for a more recent account. In six dimensions, the maximally supersym-
metric solutions of (1,0) supergravity have been classified in [13] and of the (2,0) supergravity
in [14]. In three dimensions, it is straightforward to show that the only maximally supersymmet-
ric solution is locally isometric to Minkowski spacetime.

1.2. Backgrounds with non-compact stability subgroups

Next we turn to investigate the geometry of maximally supersymmetric G = K � R
8-

backgrounds for K = Spin(7),SU(4),Sp(2),SU(2) × SU(2) and {1}. It turns out that the space-
time M always admits a null parallel vector field X and the holonomy of the Levi-Civita
connection of spacetime is contained in K � R

8, i.e.

(1.9)∇AX = 0, hol(∇) ⊆ K � R
8.

Therefore, the spacetime is a pp-wave propagating in an eight-dimensional Riemannian mani-
fold Y8 such that hol(∇̃) ⊆ K , where ∇̃ is the Levi-Civita connection of Y8. Alternatively, the
spacetime is a two-parameter Lorentzian deformation family of Y8. Adapting coordinates along
the parallel vector field X = ∂/∂u, the metric can be written as

(1.10)ds2 = 2dv (du + V dv + n) + ds2(Y8) = 2dv (du + V dv + n) + γIJ dyI dyJ ,

where the metric γIJ = δij e
i
I e

j
J of Y8 may also depend on the coordinate v. The requirement that

hol(∇̃) ⊆ K implies that the components eAΩA,ij of the connection one-form take values in the
Lie algebra of K , k.

In all cases, the fluxes are null, i.e.

(1.11)P = P−(v)e−, G = e− ∧ L, F = e− ∧ M,

and the Bianchi identities give dP = dG = dF = 0, where L and M are a two- and a self-dual
four-form, respectively, of Y8. In particular, one finds that P− = P−(v). The most convenient
way to give the conditions that the Killing spinor equations impose on the fluxes is to decompose
L ∈ Λ2(R8) ⊗ C and M ∈ Λ4+(R8) in irreducible representations of K . In particular, one finds
that

(1.12)L = Lk + Linv, M = M inv + M̃,

where Lk is the Lie algebra valued component of L in the decomposition Λ2(R8) = k + k⊥,
and Linv and M inv are K-invariant two- and four-forms, respectively. M inv decomposes further
as M inv = m0 + M̂ inv, where m0 has the property that the associated Clifford algebra element
satisfies m0ε = gε, g 
= 0 a spacetime function, for all Killing spinors ε. In a particular gauge, the
Killing spinor equations imply that g is proportional to Q− and restrict the spacetime dependence
of Linv and M inv. Furthermore, M̃ takes values in a representation of K in Λ4+(R8) with the
property that the associated Clifford algebra element satisfies M̃ε = 0 for all Killing spinors ε. Lk

and M̃ are not determined by the Killing spinor equations. In particular, one finds2 the following:

2 To solve all conditions that arise from the Killing spinor equations, we present our results in a particular gauge.
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• Spin(7) � R
8:

(1.13)G = e− ∧ Lspin(7), F = e− ∧
(

1

14
Q−(v)ψ + M27

)
,

where ψ is the invariant Spin(7) four-form, Q− depends only on v, and Lspin(7) and M̃ = M27

are not determined in terms of the geometry.
• SU(4) � R8:

G = e− ∧ (
Lsu(4) + (v)ω

)
,

(1.14)F = e− ∧
(

− 1

12
Q−(v)ω ∧ ω + Re

(
m(v)χ

) + M̃2,2
)

,

where χ is the SU(4)-invariant (4,0)-form, , m and Q− depend only on v as indicated, and
M̃ = M̃2,2 is a traceless (2,2)-form.

• Sp(2) � R
8:

G = e− ∧ (
Lsp(2) + r(v)ωr

)
,

(1.15)F = e− ∧
(

− 1

20
Q−(v)ψ + mrs(v)ωr ∧ ωs + M14

)
,

where ωI = ω1, ωJ = ω2 and ωK = ω3 are the Hermitian forms of the quaternionic endomor-
phisms I , J and K , ψ = ∑3

r=1 ωr ∧ ωr , mrs is a symmetric traceless 3 × 3-matrix that depends
only on v, r = (v), and M̃ = M14.

• (SU(2) × SU(2)) � R
8:

G = e− ∧ (
Lsu(2)⊕su(2) + 1(v)ω1 + 2(v)ω2 + 3(v)χ1

+ 4(v)χ2 + 5(v)χ̄1 + 6(v)χ̄2
)
,

(1.16)

F = e− ∧
(

−1

4
Q−(v)[ω1 ∧ ω1 + ω2 ∧ ω2] + m1(v)ω1 ∧ ω2 + Re

[
m2(v)ω1 ∧ χ2

+ m3(v)ω2 ∧ χ1 + m4(v)χ1 ∧ χ2 + m5(v)χ1 ∧ χ̄2
] + M(3,3)

)
,

where the pairs (ω1, χ1) and (ω2, χ2) are the Hermitian (1,1)- and holomorphic (2,0)-forms
associated with the (SU(2) × SU(2)) � R

8-structure, ,m depend only on v, and M̃ = M(3,3).
• R8:

(1.17)G = e− ∧ L(v), F = e− ∧ M(v),

where L and M are a two- and a self-dual four-form on R
8, respectively, and depend only on v.

The integrability conditions of the Killing spinor equations and the Bianchi identities imply
that all field equations are satisfied provided that E−− = 0, where E−− denotes the ‘−−’ com-
ponent of the Einstein equations. This in turn gives

−(
∂i + Ωj,

ji
)(

∂iV − ∂vnI e
I
i

) + 1

4
(dn)ij (dn)ij − 1

2
γ IJ ∂v

2γIJ − 1

4
∂vγ

IJ ∂vγIJ

(1.18)− 1

6
F−i1...i4F−i1...i4 − 1

4
G−i1i2G∗−i1i2

− 2P−P ∗− = 0,
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where γ IJ is the inverse of the metric γIJ defined in (1.10). For the special case of fields inde-
pendent of v, this equation becomes

(1.19)−�8V + 1

4
(dn)ij (dn)ij − 1

6
F−i1...i4F−i1...i4 − 1

4
G−i1i2G∗−i1i2

− 2P−P ∗− = 0,

where �8 is the Laplacian on the eight-dimensional space Y8 and dn takes values in k.
The backgrounds that we have found can be thought of as vacua of IIB string theory. This

particulary applies to compact stability subgroups. The backgrounds R
9−n,1 × Yn are vacua of

IIB compactifications on G2 for n = 7, and on Calabi–Yau manifolds for n = 6 and n = 4. The
backgrounds AdS5−n/2 × S5−n/2 × Yn can be thought either of as the vacua of the Calabi–Yau
or S5−n/2 × Yn compactifications with fluxes. For a recent application of the latter see [19]. For
non-compact stability subgroups, the situation is different. If one views the solutions as vacua
of compactifications and so insists to be invariant under lower-dimensional Poincaré symmetry,
then the only solutions are R

9−n,1 × Yn. In particular all the fluxes vanish because of the field
equations.

This paper is organized as follows: In Sections 2 and 3, we describe the geometry of
maximally supersymmetric SU(3)- and SU(2)-backgrounds, respectively. In Sections 4–6, we
give present the maximally supersymmetric Sp(2) � R

8-, (SU(2) × SU(2)) � R
8- and R

8-
backgrounds, respectively. In Section 7, we describe solutions of maximally supersymmetric
G-backgrounds, for a non-compact G. In Appendix A, we summarize the Killing spinor equa-
tions and some of their integrability conditions.

2. Maximal SU(3)-backgrounds

2.1. Supersymmetry conditions

As we have mentioned in the introduction to solve the Killing spinor equations and the inte-
grability conditions of maximally supersymmetric SU(3)-backgrounds, one may use a basis in
the Majorana–Weyl SU(3)-invariant spinors of IIB supergravity. Such a basis3 is

(2.1)
η1 = 1 + e1234, η2 = i(1 − e1234),

η3 = e15 + e2345, η4 = i(e15 − e2345).

To proceed, it is convenient to introduce the notation A = (a,m). Here a = (α, ᾱ), α = (−,1)

and ᾱ = (+, 1̄) are the ‘world-volume’ labels and m = (μ, μ̄), μ = (2,3,4) and μ̄ = (2̄, 3̄, 4̄)

denote those of the ‘transverse space’. Due to the null directions, Xᾱ 
= (Xα)∗ for a real vector
field X.

The algebraic Killing spinor equations (A.2) imply that all components of the P -flux vanish.
In addition, the same equation requires that

Gμ1μ2μ3 = Gμ1μ2
μ2 = Gμ̄1μ2

μ2 = Gμ̄1μ̄2μ̄3 = 0,

Gαμ1μ2 = Gα1μ
μ − Gα1α2

α2 = Gαμ̄1μ̄2 = 0,

Gᾱμ1μ2 = Gᾱ1μ
μ + Gᾱ1α2

α2 = Gᾱμ̄1μ̄2 = 0,

(2.2)Gα1ᾱ2μ − 1

2
gα1ᾱ2Gμα3

α3 = Gα1α2μ̄ = Gμ̄α
α = Gᾱ1ᾱ2μ̄ = 0.

3 Note that the SU(3)-invariant spinors are annihilated by Γ μ1μ̄2 , where μ1 
= μ2: indeed this gives rise to two
independent projection operators, allowing for eight supersymmetries.
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The gravitino Killing spinor equations (A.3) involving G imply

(2.3)GAbm = GAμ1μ2 = GAμ̄1μ̄1 = 0.

Combining the above results from the gravitino and algebraic Killing spinor equations, one finds
that

(2.4)P = G = 0,

i.e. all the P and G fluxes vanish.
The gravitino Killing spinor equations require that F satisfies

FAμ1μ2μ3
μ3 = 0,

FAα1μ1α2
α2 − FAα1μ1μ2

μ2 = FAᾱ1μ1α2
α2 + FAᾱ1μ1μ2

μ2 = 0,

(2.5)FAμ1μ2α1ᾱ2 − 1

2
gα1ᾱ2FAμ1μ2α3

α3 = 0,

from which follows that

(2.6)Fμ1μ2μ3μ̄4μ̄5 = Faμ1μ2μ3μ̄4 = Fa1a2a3μ1μ2 = 0.

Subsequently, the self-duality constraint on F implies that

(2.7)Faμ1μ2μ̄3μ̄4 = Fa1a2μ1μ2μ̄3 = Fa1a2a3μ1μ̄2 = Fa1...a4μ = 0.

Therefore the non-vanishing components of F are

(2.8)Fα1α2234, Fα
α

234, Fᾱ1ᾱ2234, F̃α1ᾱ22̄3̄4̄,

and their complex conjugates, where tilde denotes the traceless part. These are all singlets under
self-duality.

Next turn to the conditions on the geometry, Eq. (A.3) implies the constraints

(2.9)ΩA,bm = ΩA,μ1μ2 = 0,

for the spin connection.
The remaining components of the spin connection and fluxes give rise to the following parallel

transport equation:

∂Aε − 1

2
iQAε + 1

2
ΩA,μ

μΓ 22̄ε + 1

4
ΩA,b1b2Γ

b1b2ε + 1

2
iFAb234Γ

b234ε

(2.10)+ 1

2
iFAb2̄3̄4̄Γ

b2̄3̄4̄ε = 0.

The generators 1, Γ 22̄ and Γ b1b2 span a u(1)2 ⊕ so(3,1) algebra inside u(1) ⊕ spin(9,1).
However, for A = a there are also the generators iΓ b234 and iΓ b2̄3̄4̄ in this connection due
to the non-vanishing flux components (2.8). Note that these generators satisfy the same al-
gebra as 1, Γ 22̄, Γ b1b2 , Γ b2 and Γ b2̄; therefore the connection in (2.10) takes values in a
u(1)⊕ so(5,1) ≡ u(1)⊕ sl(2,H) algebra4 which is not embedded in the u(1)⊕ spin(9,1) gauge

4 Note that the holonomy of the supercovariant connection of N = 2 ungauged supergravity in four dimensions is
SL(2,H) [16].
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symmetry. Because of this, one cannot set the connection to zero by a suitable gauge trans-
formation. Observe that the traceless part of ΩA,μ1μ̄2 does not appear in the parallel transport
equations.

The vanishing of the curvature of the connection appearing in (2.10) gives rise to the following
equations:

∂[AQB] = 0, RAB,μ
μ − 8F[A|c234FB]c 2̄3̄4̄ = 0,

(2.11)RAB,c1c2 − 8F[A|c1234FB]c22̄3̄4̄ + 8F[A|c2234FB]c12̄3̄4̄ = 0, ∇[AFB]c234 = 0.

It will be important in the following that the flux bilinear terms in the first line vanish due to
the conditions (2.8) on F . The conditions (2.4), (2.9), (2.8) and (2.11) impose restrictions on the
geometry of spacetime which we shall investigate.

2.2. Geometry of spacetime

We write the spacetime metric as ds2 = ηabe
aeb +δmne

men. The torsion free condition for the
frame ea, em and the condition ΩA,bm = 0 in (2.9) imply that the spacetime admits an integrable
bi-distribution of co-dimensions four or six, i.e. both {ea} and {em} span an integrable distrib-
ution. Therefore the spacetime M is locally a topological product, M = X4 × Y6. Furthermore,
ΩA,bm = 0 in (2.9) implies that the metric compatible product structure π = ηabe

aeb − δmne
men

is parallel with respect to the Levi-Civita connection. This in turn implies that π is integrable and
in the coordinate system that π is diagonal, the metric is a product. In particular,

ds2(M) = ds2(X4) + ds2(Y6), ds2(X4) = ηabe
aeb,

(2.12)ds2(Y6) = δmne
men,

i.e. ds2(X4) does not depend on the coordinates of Y6 and vice versa. The geometry of X4 and
Y6 can be separately investigated. First consider the geometry of Y6. The condition Ωm,μ1μ2 = 0
in (2.9) and Ωm,μ

μ = 0, which can be easily derived from (2.11) after a suitable choice of gauge,
imply that Y6 is Calabi–Yau. There are no additional conditions on Y6.

Next let us turn to investigate the geometry of X4. For this, observe that the five form can be
written as

(2.13)F = 1

2
√

2

[
H 1 ∧ Reχ − H 2 ∧ Imχ

]
,

where χ is the parallel (3,0)-form on the Calabi–Yau manifold Y6, and H 1 and H 2 are two-forms
on Y4. In addition the Bianchi identity of F together with the last equation of (2.11) imply that
H 1,H 2 are independent of the coordinates of X6 and are parallel forms on X4. The remaining
conditions can now be written as restrictions on the geometry of X4. In particular, one has

Ra1a2,b1b2 − 4H 1[a1|b1|H
1
a2]b2

− 4H 2[a1|b1|H
2
a2]b2

= 0,

(2.14)∇aH
1
bc = 0, ∇aH

2
bc = 0, H 1[a|c|H 2

b]c = 0, �H 1 = H 2,

where the last condition is implied by the self-duality of F . Since H 1 and H 2 are parallel, the
first equation implies that the Riemann curvature R of X4 is also parallel. Therefore X4 is a
Lorentzian symmetric space. The fields H 1 and H 2 are uniquely determined by their values
at the origin of the symmetric space up to rigid SO(3,1) transformations. Since H 1 and H 2 are
related by the Hodge star operator in X4, it suffices to find H 1. It turns out that H 1 can be chosen
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as, see, e.g., [7,17],

(2.15)λ1e
0 ∧ e1 + λ2e

5 ∧ e6, μe− ∧ e1,

and so H 2 is

(2.16)−λ1e
5 ∧ e6 + λ2e

0 ∧ e1, μe− ∧ e6,

where μ,λ1 and λ2 are real constants. Therefore H 1 defines a two-plane at the origin of the
symmetric space Y4 which is either time-like and/or space-like, or null. Moreover H 1 commutes
with H 2. It is straightforward to see that in the case of the time-like and/or spacelike plane, X4 =
AdS2 × S2, where both factors have the same radius and scalar curvature RAdS2 = −4(λ2

1 + λ2
2)

and RS2 = 4(λ2
1 + λ2

2), respectively. In the case that the plane is null X4 = CW4(−2μ21). Note
that the three different geometries of X4 are related by Penrose limits of AdS2 × S2 [18]. These
are the maximally supersymmetric solutions of four-dimensional N = 2 supergravity [11]. This
completes the proof for the maximally supersymmetric SU(3)-backgrounds. The result is sum-
marized in the introduction.

3. Maximal SU(2)-backgrounds

3.1. Supersymmetry conditions

A basis in the space of the SU(2)-invariant Majorana–Weyl spinors is

(3.1)

η1 = 1 + e1234, η2 = i(1 − e1234), η3 = e12 − e34, η4 = i(e12 + e34),

η5 = e15 + e2345, η6 = i(e15 − e2345), η7 = e52 + e1345, η8 = i(e52 − e1345).

To find the conditions that the Killing spinor equations of Appendix A impose on the geometry
of spacetime, it is convenient to split up the ten-dimensional frame indices into A = (a,m),
where a = (α, ᾱ), with α = (−,1,2) and ᾱ = (+, 1̄, 2̄), and m = (μ, μ̄), with μ = (3,4) and
μ̄ = (3̄, 4̄).

The algebraic Killing spinor equations (A.2) imply that

(3.2)P = 0.

In addition, G is constrained as

Ga1a2μ = Ga1a2μ̄ = Gaμ1μ2 = Gaμ
μ = Gaμ̄1μ̄2 = Gμ1μ2μ̄3 = Gμ1μ̄2μ̄3 = 0,

(3.3)G̃α1α2ᾱ3 = Gᾱ1α2
α2 = Gᾱ1ᾱ2ᾱ3 = 0,

where tilde denotes the traceless component. The gravitino Killing spinor equations (A.3) imply
that

(3.4)GAbm = 0.

Due to these constraints, the components Gaμ1μ̄2 also vanish and one is only left with Ga1a2a3

components, subject to (3.3). Incidentally, G∗ satisfy the same conditions as it can be seen by
taking the complex conjugate of those for G.

The gravitino Killing spinor equations (A.3) together with the self-duality of F imply that the
only non-vanishing components are

(3.5)Fb1b2b3μ1μ2, Fb1b2b3μ
μ, Fb1b2b3μ̄1μ̄2,
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subject to the conditions

(3.6)F̃α1α2ᾱ3μ1μ2 = Fᾱ1α2
α2

μ1μ2 = Fᾱ1ᾱ2ᾱ3μ1μ2 = 0

and similarly for the remaining two components. In addition, (A.3) requires that the component

(3.7)ΩA,bm = 0,

of the spin connection.
Using the above conditions on the fluxes, the parallel transport equation becomes

∂Aε − 1

2
iQAε + 1

4
ΩA,b1b2Γ

b1b2ε + 1

2
ΩA,34Γ

34ε + 1

2
ΩA,μ

μΓ 33̄ε + 1

2
ΩA,3̄4̄Γ

3̄4̄ε

(3.8)+ i

8
FAb1b2m1m2Γ

b1b2m1m2ε + 1

8
GAb1b2Γ

b1b2C ∗ ε = 0.

A necessary condition for the existence of solutions to this parallel transport equation is the
vanishing of the curvature. This leads to the conditions

∂[AQB] − 1

16
iG[A|c1c2G

∗
B]c1c2 = 0,

RAB,34 − F[A|b1b23QFB]b1b2
4
Q = 0,

RAB,μ
μ − F[A|b1b2μnFB]b1b2μn = 0,

RAB,b1b2 − 1

4
G[A|b1cG

∗
B]b2

c + 1

4
G[A|b2cG

∗
B]b1

c − 2F[A|b1cm1m2FB]b2
cm1m2 = 0,

∇[AFB]b1b2m1m2 = (∇[A − iQ[A)GB]b1b2 = 0,

F [A
m1n[b1b2F

B]
b3b4]m2

n − F [A
m2n[b1b2F

B]
b3b4]m1

n = 0,

(3.9)F [A
m1m2[b1b2G

B]
b3b4] = G[A[b1b2(G

∗)B]
b3b4] = 0.

The flux bilinear terms in the first three lines vanish due to the conditions (3.3) and (3.6). It
remains to solve these conditions and find the geometry of spacetime.

3.2. Geometry of spacetime

The metric of the spacetime can be written as ds2 = ηabe
aeb + δmne

men. In addition (3.7)
implies that the spacetime M admits an integrable bi-distribution of co-dimension six and a
metric compatible parallel product structure π . As in the SU(3) case previously, M = X6 × Y4,
where X6 is a Lorentzian manifold and Y4 is a Riemannian manifold. In addition, the metric is a
product, i.e.

(3.10)
ds2(M) = ds2(X6) + ds2(Y4), ds2(X6) = ηabe

aeb, ds2(Y4) = δmne
men,

where ds2(X6) does not dependent on the coordinates of Y4 and vice versa. First let us examine
the geometry of Y4. It is straightforward to observe from (3.9) that the components Rmn,μ

μ and
Rmn,34 of the Riemann curvature vanish. These curvature components span an su(2) subalge-
bra in so(4) = su(2) ⊕ su(2) ⊂ spin(9,1). This implies that the holonomy of the Levi-Civita
connection of Y4 is contained in SU(2) and so Y4 is hyper-Kähler.

Next let us turn to examine the geometry of X6. Using (3.9), one can see that the Riemann
curvature of X6 is

(3.11)Ra1a2,b1b2 = 1
G[a1|b1cG

∗
a2]b2

c − 1
G[a1|b2cG

∗
a2]b1

c + 2F[a1|b1cm1m2Fa2]b2
cm1m2 .
4 4
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Moreover, (3.9) and the Bianchi identities imply that F and G are parallel

(3.12)∇AFb1b2b3m1m2 = ∇AGb1b2b3 = 0.

This in particular implies that the curvature of X6 is parallel and so X6 is a symmetric space.
Next observe that the fluxes can be written as

F = 1

4

[
H 1 ∧ ω̂I + H 2 ∧ ω̂J + H 3 ∧ ω̂K

]
,

(3.13)G = ReG + i ImG = H 4 + iH 5,

where Hs , s = 1, . . . ,5, are parallel 3-forms on X6 and ω̂I , ω̂J and ω̂K are the Kähler forms
associated with the hyper-complex structure on Y4. Furthermore, the conditions (3.3) and (3.6)
imply that Hs are anti-self-dual three-forms on X6. The remaining conditions conditions in terms
of Hs can now be written as

(3.14)Ra1a2,a3a4 − 1

2

∑
s

H s[a1|a3b|H
s
a2]a4

b = 0, ∇a1H
s
a2a3a4

= H
[s
a1[b1b2

H
r]
b3b4]a2

= 0.

These conditions are precisely those that one finds for the maximally supersymmetric solutions
of (2,0) supergravity in six dimensions [14] and the SU(2)-invariant Killing spinor case of the
heterotic string [15]. In particular X6 is a six-dimensional Lorentzian Lie group with anti-self-
dual structure constants. These groups have been classified in [14] and they are locally isometric
to R

5,1, AdS3 × S3 and CW6(λ1), and

(3.15)Hs = vsH,

where H are the structure constants of X6 and v, v2 = 1, is a constant vector. The maximally
supersymmetric IIB SU(2)-backgrounds have been summarized in the introduction.

4. Maximal Sp(2) � R
8-backgrounds

4.1. Supersymmetry conditions

A basis in the space of the Sp(2) � R8-invariant Majorana–Weyl spinors is

(4.1)η1 = 1 + e1234, η2 = i(1 − e1234), η3 = i(e12 + e34).

To find the conditions that the Killing spinor equations of Appendix A impose on the geometry
of spacetime, it is convenient to split up the ten-dimensional frame indices into A = (−,+, i),
where i = (α, ᾱ) and α = (1, . . . ,4).

The algebraic Killing spinor equations (A.2) imply that

(4.2)P+ = Pi = 0,

i.e. only P− is non-vanishing. In addition, the algebraic and the gravitino Killing spinor equations
imply that

(4.3)G−+i = G+ij = Gijk = 0,

i.e. the only non-vanishing components are G = e− ∧ L, where L = 1
2Lij e

i ∧ ej . These compo-
nents are in addition constrained as

(4.4)L5 = 0,
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where we have used the decomposition of the space of two-forms, Λ2(R8) = sp(2)⊕3Λ2
5 ⊕3Λ2

1,
under Sp(2) = Spin(5). Therefore, one can write that

(4.5)G = e− ∧ (
Lsp(2) + rωr

)
,

where

ω1 = ωI = −iδαβ̄eα ∧ eβ̄ ,

(4.6)ω2 = ωJ = Re
(
εαβeα ∧ eβ

)
, ω3 = ωK = − Im

(
εαβeα ∧ eβ

)
,

are the Hermitian forms generated by the quaternionic endomorphisms I, J and K , and r are
spacetime functions. We follow the notation of [15].

Next let us turn to the conditions on the F fluxes. The gravitino Killing spinor equations (A.3)
together with the self-duality of F imply that

(4.7)Fi1...i5 = F+i1...i4 = F−+i1i2i3 = 0.

Therefore one can write

(4.8)F = e− ∧ M, M = 1

4!Mi1...i4e
i1 ∧ · · · ∧ ei4 .

In addition, the Killing spinor equations imply that

(4.9)M5 = 0,

where we have used the decomposition of self-dual 4-forms, Λ4+(R8) = Λ4+
14 ⊕ 3Λ4+

5 ⊕ 6Λ4+
1 ,

under Sp(2) representations.5 Therefore, one can write

(4.10)F = e− ∧ (
M14 + mrsωr ∧ ωs

)
,

where (mrs) is a symmetric matrix of spacetime functions.
Furthermore, the gravitino Killing spinor equation (A.3) imposes the conditions

(4.11)ΩA,+i = 0, Ω5
A,ij = 0,

on the geometry of spacetime, where the restriction to the five-dimensional Sp(2) representation
is made in the i, j indices. Therefore, one can write that

(4.12)ΩA,ij = Ω
sp(2)
A,ij + Ωr

A(ωr)ij .

Using the above expressions for the fluxes and the geometry, the parallel transport equation
becomes

∂Aε − 1

2
iQAε + 1

2
ΩA,−+ε + 1

4
Ωr

A(ωr)ijΓ
ij ε = 0, A 
= −,

∂−ε − 1

2
iQ−ε + 1

2
Ω−,−+ε + 1

4
Ωr−(ωr)ijΓ

ij ε + i

8
mrs(ωr)ij (ωs)klΓ

ijklε

(4.13)+ 1

8
r(ωr)ijΓ

ijC∗ε = 0.

The components Lsp(2), Ω
sp(2)
A and M14 do not appear in the parallel transport equations and so

the Killing spinor equations do not constrain them further. The integrability condition of (4.13)

5 Using sp(2) = so(5), Λ14 can be identified with the traceless symmetric representation S̃2(R5).
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is the vanishing of the curvature of the associated connection which depends on the fluxes. This
leads to the flatness conditions

∂[AΩB],−+ = 0, Rr
AB = 0, ∂[AQ̂B] = 0,

(4.14)∇̂Ar = 0, ∇̂A

(
mrs − 1

3
δrs trm

)
= 0,

where ∇̂ is the connection and Rr
AB is the curvature of the sp(1) connection Ωr , respectively,

and

(4.15)Q̂A = QA, A 
= −, Q̂− = Q− + 20

3
trm.

Notice that in this case m0 = 1
3 trm

∑3
r=1 ωr ∧ ωr , i.e. it is proportional to the Sp(2) · Sp(1)-

invariant four-form. It turns out that the components ΩA,−+,Ωr
A, Q̂A of the connection can be

set to zero with a gauge transformation in U(1) × SO(1,1) × Sp(1) ⊂ U(1) × Spin(9,1). In this
gauge, one finds that the remaining conditions of (4.13) together with dP = 0 imply that

(4.16)r = r(v), mrs = mrs(v), trm = − 3

20
Q−(v).

The expressions for the fluxes are summarized in the introduction.

4.2. Geometry and field equations

In the lightcone frame (e−, e+, ei) which arises from the description of spinors in terms
of forms, the spacetime metric can be written as ds2 = 2e−e+ + δij e

iej . Choosing the gauge
ΩA,+− = 0 and using the conditions (4.11), one finds that ΩA,+B = 0. So the null vector field
X = e+ is parallel6

(4.17)∇X = 0.

The conditions (4.11), (4.12) and (4.14) imply that the holonomy of the Levi-Civita connection
of the spacetime is

(4.18)hol(∇) ⊆ Sp(2) � R
8.

Adapting coordinates along X = ∂
∂u

and using that X is rotation free, the spacetime metric can
be written as

ds2 = 2dv
(
du + V dv + nie

i
) + δij e

iej , e− = dv,

(4.19)e+ = du + V dv + nie
i,

where all the components of the metric are independent of u but they may depend on v and the
remaining coordinates. Clearly the spacetime is a pp-wave propagating on an eight-dimensional
manifold Y8 given by u,v = const. The metric of Y8 is ds̃2 = δij e

iej . It is straightforward to
see that the conditions on the geometry imply that the holonomy of the Levi-Civita connection,
∇̃ , of Y8 is contained in Sp(2), hol(∇̃) ⊆ Sp(2), i.e. Y8 is a hyper-Kähler manifold. Observe that

6 There is a parallel null vector field independent of the choice of gauge, i.e. if ΩA,+− = ∂Af , then X = ef e+ is
parallel.
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the metric of Y8 depends on v and so v can be thought of as a deformation parameter of the
Sp(2)-structure.

Furthermore, one can use the torsion free conditions to compute the Levi-Civita connection
of (4.19). The result has been presented in (7.1). In this case, the conditions on the geometry
imply that Ω−,ij take values in sp(2). The fluxes and conditions on the geometry are summarized
in the introduction. The remaining cases with non-compact stability subgroup can be analyzed
in a similar way. Because of this, we shall not present all the details.

It is well known that the Killing spinor equations impose some of the supergravity field equa-
tions. So it remains to find the field equations that are not satisfied as consequence of the Killing
spinor equations. Since the fluxes are null, the Bianchi identities reduce to dP = dG = dF = 0.
In addition after some investigation of the integrability equations of Appendix A, one finds that
if

(4.20)E−− = 0,

then all the field equations are satisfied. This is the case for all maximally supersymmetric G-
backgrounds for G non-compact. Because of this, we shall not repeat this analysis in the other
cases.

5. Maximal (SU(2) × SU(2)) � R
8-backgrounds

A basis in the space of the (SU(2) × SU(2)) � R
8-invariant Majorana–Weyl spinors is

(5.1)
η1 = 1 + e1234, η2 = i(1 − e1234),

η3 = e12 − e34, η4 = i(e12 + e34).

To find the conditions that the Killing spinor equations of Appendix A impose on the geom-
etry of spacetime, it is convenient to use light-cone frame indices A = (−,+, i) and split up
i = (a,m) according to embedding SO(4) × SO(4) ⊂ SO(8). In addition, we use holomorphic
and anti-holomorphic indices, U(2) × U(2) ⊂ SO(4) × SO(4), as a = (α, ᾱ), with α = (1,2),
and m = (μ, μ̄), with μ = (3,4).

The algebraic Killing spinor equations (A.2) imply that

(5.2)P+ = Pi = 0,

i.e. only P− is non-vanishing. In addition, the algebraic (A.2) and gravitino (A.3) Killing spinor
equations imply that

(5.3)G+A1A2 = Gijk = 0.

Therefore, the non-vanishing components of G are

(5.4)G = e− ∧ L, L = 1

2
Lij e

i ∧ ej .

The Killing spinor equations imply that

(5.5)G−am = 0.

Thus we find that

(5.6)L = 1

2

(
Labe

a ∧ eb + Lmne
m ∧ en

)
.
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Each of these components decomposes further under SU(2) ⊂ SO(4) as Λ2(R4) = 3Λ2
1 ⊕ su(2).

Therefore L can be written as

L = Lsu(2)⊕su(2) + Linv,

(5.7)Linv = 1ω1 + 2ω2 + 3χ1 + 4χ2 + 5χ̄1 + 6χ̄2,

where ω1 = −ie1 ∧ e1̄ − ie2 ∧ e2̄ and χ = 2e1 ∧ e2 are the Hermitian and holomorphic volume
forms associated with SU(2) × {1} ⊂ SU(2) × SU(2), respectively, and similarly for ω2 and χ2.
Furthermore, 1, . . . , 6 are spacetime functions and the first component of L takes values in
su(2) ⊕ su(2) as indicated.

Next, let us turn to the conditions on the F fluxes. Again, one can show using the Killing
spinor equations that the non-vanishing components of F can be written as

(5.8)F = e− ∧ M, M = 1

4!Mijkle
i ∧ ej ∧ ek ∧ el.

The gravitino Killing spinor equations (A.3) together with the self-duality of F imply additional
conditions on M . It turns out that M can be written as

(5.9)M = m0[ω1 ∧ ω1 + ω2 ∧ ω2] + 1

4
Ma1a2m1m2e

a1 ∧ ea2 ∧ em1 ∧ em2 .

The last component is further restricted. Decomposing the last components of M in SU(2) ×
SU(2) representations, one can write that

M = m0[ω1 ∧ ω1 + ω2 ∧ ω2] + M̂ inv + M(3,3),

M̂ inv = m1ω1 ∧ ω2 + Re
[
m2ω1 ∧ χ2 + m3ω2 ∧ χ1 + m4χ1 ∧ χ2 + m5χ1 ∧ χ̄2

]
,

(5.10)M(3,3) = 1

4
M̃αβ̄μν̄e

α ∧ eβ̄ ∧ eμ ∧ eν̄,

where we have used the decomposition Λ2(R4)⊗Λ2(R4) = 9Λ(1,1) ⊕3Λ(1,3) ⊕3Λ(3,1) ⊕Λ(3,3)

under SU(2) × SU(2), and M̃ traceless. Furthermore m0 and m1 are real and m2, . . . ,m5 are
complex functions of spacetime, respectively.

The Killing spinor equation (A.3) also restricts the geometry of spacetime. In particular, one
finds that

(5.11)ΩA,bm = ΩA,+i = 0.

The spin connection can be written as as

(5.12)ΩA,ij = Ω
su(2)⊕su(2)
A,ij + Ω inv

A,ij

in analogy with (5.7), where the decomposition is only in the i, j indices. Using this, the parallel
transport equation can be written as

∂Aε − 1

2
iQAε + 1

2
ΩA,−+ε + 1

4
Ω inv

A,ijΓ
ij ε = 0, A 
= −,

∂−ε − 1

2
iQ−ε + 1

2
Ω−,−+ε + 1

4
Ω inv

−,ijΓ
ij ε

(5.13)− 2im0ε + 1

48
iM̂ inv

ijklΓ
ijklε + 1

8
Linv

ij Γ ij (C∗)ε = 0.
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These parallel transport equations are independent of Ωsu(2)⊕su(2), Lsu(2)⊕su(2) and M(3,3). So
there are no further conditions on these components imposed by the Killing spinor equations. It
remains to solve the above parallel transport equations. For this observe that the connection Ω inv

takes values in su(2)⊥ ⊕ su(2)⊥ = su(2) ⊕ su(2). This is because so(4) = Λ2(R4) = su(2) ⊕
su(2). The vanishing of the curvature implies that

∂[AΩB],−+ = 0, Rinv = 0, ∂[AQ̂B] = 0,

(5.14)∇ inv
A M̂ inv = ∇ inv

A Linv = 0, A 
= −,

where

(5.15)Q̂A = QA, A 
= −, Q̂− = Q− + 4m0,

and ∇ inv is the covariant derivative and Rinv is the curvature of the connection Ω inv, respectively.
As in the previous case, there is a local U(1) × Spin(9,1) transformation to set ΩA,−+ = Q̂A =
Ω inv

A = 0. In this gauge and using dP = 0, we find that (5.14) imply that

(5.16)m0 = −1

4
Q−(v),

and that the spacetime functions in (5.7) and (5.10) that determine Linv and M inv depend only on
the v coordinate. The description of the geometry of spacetime is similar to that of the Sp(2)�R

8

case we have already investigated. In particular, there is a null parallel vector field X and the
holonomy of the Levi-Civita connection is contained in (SU(2) × SU(2)) � R

8. Therefore the
spacetime is a pp-wave propagating in an eight-dimensional space Y8 which has holonomy7

Spin(4) = SU(2)× SU(2). The results of our analysis have been summarized in the introduction.

6. Maximal R
8-backgrounds

To investigate the Killing spinor equations and the integrability conditions of the maximally
supersymmetric R

8-backgrounds, one needs the Majorana R
8-invariant spinors of IIB supergrav-

ity. A basis of the R
8-invariant spinors is

η1 = 1 + e1234, η2 = i(1 − e1234),

η3 = e12 − e34, η4 = i(e12 + e34),

η5 = e13 + e24, η6 = i(e13 − e24),

(6.1)η7 = e23 − e14, η8 = i(e23 + e14).

Observe that these spinors are characterized by the condition

(6.2)Γ −η = 0.

In this section we shall again use the the light-cone decomposition of the frame indices
A = (−,+, i). The algebraic Killing spinor equations (A.2) and (A.3) imply that the non-
vanishing components of P and G are

(6.3)P = P−e−, G = e− ∧ L, L = 1

2
Lij e

i ∧ ej .

7 If Y8 is compact and simply connected, then it is a product Y8 = M1 × M2, where M1 and M2 are four-dimensional
hyper-Kähler manifolds.
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There are no further restrictions on L. Similarly, (A.3) implies that the non-vanishing components
of F are

(6.4)F = e− ∧ M, M = 1

4!Mijkle
i ∧ ej ∧ ek ∧ el.

There are no further restrictions on M . The condition on the geometry in this case is

(6.5)ΩA,+i = 0

together with the parallel transport equations. The parallel transport equation for f now reads as
follows. For A 
= − we have

∂Aε − 1

2
iQAε + 1

2
ΩA,−+ε + 1

4
ΩA,ijΓ

ij ε = 0, A 
= −,

(6.6)

∂−ε − 1

2
iQ−ε + 1

2
Ω−,−+ε + 1

4
Ω−,ijΓ

ij ε + 1

8
LijΓ

ijC ∗ ε + 1

48
iMijklΓ

ijklε = 0.

The connection C, see Appendix A, takes values in gl(16,R) = gl(8,R) ⊗ H. The integrability
conditions of the above parallel transport equations imply that

∂[AΩB],−+ = 0, ∂[AQB] = 0, R
ij
AB = 0,

(6.7)∇̂ALij = 0, ∇̂AMijkl = 0, A 
= −,

where ∇̂ and Rij is the covariant derivative and the curvature of ΩA,ij , respectively. A simi-
lar analysis to the previous case reveals that in the gauge QA = ΩA,−+ = ΩA,ij = 0, L and
M depend only on v. Our solutions generalize those of [20] since they contain both G and F

fluxes. Compare also our result with the eleven-dimensional supergravity pp-wave solution of
[21]. Generic backgrounds preserve sixteen supersymmetries. However, for special choices of
fluxes the supersymmetry can be enhanced [8,22,23,25]. The results have been summarized in
the introduction.

7. pp-wave solutions with fluxes

We have identified all maximally supersymmetric G-backgrounds, for G compact, up to a
local isometry. It remains to extend this to the cases where G is non-compact. The torsion free
condition implies that

Ωi,j− = eI
(i∂vej)I + 1

2
(dn)ij , Ω−,−i = ∂iV − ∂vnI e

I
i ,

(7.1)Ω−,ij = eI [i∂vej ]I − 1

2
(dn)ij .

So to find the solutions in the non-compact case, one has to find the most general solution of
(1.18) and restrict eAΩA,ij to k. This is a rather challenging problem in the case that the fields
depend on the coordinate v. However, the problem is considerably simplified provided that the
fields are taken to be independent of v. In such a case, the field equation reduces to (1.19) and
dn is required to take values in k. This equation is a Laplacian equation on the eight-dimensional
transverse space Y8 for the function8 V with a source term reminiscent of that of resolved

8 The function α can remain an arbitrary function of v.
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branes in [24]. The source term depends on the fluxes and a rotation term depending on dβ .
The simplest case is whenever the fluxes F = G = 0 and dn = 0. In this case, V is a harmonic
function of Y8, �8V = 0. These are the standard type of pp-waves propagating on manifolds of
holonomy K . Many such solutions have been found by solving for α. In particular, in the case
Y8 = R

8, V = μ0 + ∑
i

μi

|y−yi |6 . A generalization of these solutions is to allow for the presence

of fluxes. In particular, one can take Lk = M̃ = 0 but Linv = M inv 
= 0. In this case, the equation
for α becomes

(7.2)�8V = −2λ2,

where λ is a constant that depends on the coefficients of the invariant terms. This equation can
be solved in a variety of cases. For example if Y8 = R

8, then one can write

(7.3)V = −Aijy
iyj + Biy

i + μ0 +
∑

i

μi

|y − yi |6 , trA = λ2.

The additional term modifies the asymptotic behavior of the solution as |y| → ∞ which is now
a plane wave instead of flat space.

One can also construct examples with dn 
= 0. In all these cases, dn takes values in k. Solutions
to these conditions are known in many cases. For example for Y8 = R

8, some solutions have been
summarized in [27].

It is also possible to obtain under certain conditions smooth solutions for Y8 compact without
boundary. Integrating (1.19) by parts and using (1.11), we find that

(7.4)
∫
Y8

d vol
[‖dn‖2 − 8‖M‖2 − ‖L‖2 − 4‖P‖2] = 0.

This equation can be read as a condition for the cancelation of field fluxes against angular mo-
mentum associated to the spacetime. If dn = 0 the above condition cannot be satisfied and
smooth solutions do not exist. The above condition can be written in various ways. In partic-
ular using (1.12) and the orthogonality in the decomposition of the fluxes, one finds that

(7.5)
∫
Y8

d vol
[‖dn‖2 − 8

(∥∥M inv
∥∥2 + ‖M̃‖2) − (∥∥Lk

∥∥2 + ∥∥Linv
∥∥2) − 4‖P‖2] = 0.

In addition, in many cases (7.5) depends on the cohomology class [dn] ∈ H 2(Y8,R) and not on
the representative chosen. For example, in the Calabi–Yau case (1.14), the condition (7.5) can be
written as∫

Y8

[
−1

2
dn ∧ dn ∧ ω2 − 8

(
M inv ∧ M inv + M̃ ∧ M̃

) + 1

2
L̄k ∧ Lk ∧ ω2

]

(7.6)− [4∗ + 4P ∗−P−]Vol(Y8) = 0.

To find a solution, it remains to specify dn, M̃ and Lk. The existence of these require additional
conditions, see, e.g., [26]. For example, in the Calabi–Yau case, the existence of dn and Lk

requires that

(7.7)
∫

dn ∧ ω3 = 0,

∫
Lsu(4) ∧ ω3 = 0.
Y8 Y8
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It is likely that similar conditions are required for the remaining cases. Many examples can be
constructed for Y8 non-compact. However, this may require case by case investigation.
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Appendix A. Killing spinor and integrability conditions for maximal G-backgrounds

The Killing spinors of maximally supersymmetric G-backgrounds can be written as

(A.1)εi =
∑
j

fij ηj , i, j = 1, . . . ,Nmax,

where ηp , p � m, are G-invariant Majorana spinors and ηm+p = iηp , Nmax = 2m, and f = (fij )

is a Nmax × Nmax invertible matrix with entries real spacetime functions. It has been shown in
[2,3] that the algebraic Killing spinor equations of IIB supergravity for the maximally supersym-
metric G-backgrounds can be written as

PAΓ Aηp = 0, p = 1, . . . ,m,

(A.2)Γ ABCGABCηp = 0, p = 1, . . . ,m.

Similarly, the gravitino Killing spinor equation can be expressed as

1

2

[
N∑

j=1

(
f −1DMf

)
pj

ηj − i

N∑
j=1

(
f −1DMf

)
m+pj

ηj

]
+ ∇Mηp

+ i

48
Γ N1...N4ηpFN1...N4M = 0,

(A.3)
N∑

j=1

(
f −1DMf

)
pj

ηj + i

N∑
j=1

(
f −1DMf

)
m+pj

ηj + 1

4
GMBCΓ BCηp = 0,

where we have set N = Nmax for simplicity. In turn, these equations can be rewritten as a set of
algebraic conditions on the fluxes and a parallel transport equation associated with the restriction
of the supercovariant derivative along the bundle of Killing spinors. The latter condition can be
written as f −1df + C = 0. This gives rise to the integrability condition dC − C ∧ C = 0.

Sometimes it is helpful to express (A.3) in terms of the Killing spinors ε. This gives

∂Aε − 1

2
iQAε + 1

4
ΩA,B1B2Γ

B1B2ε + 1

48
iFAB1...B4Γ

B1...B4ε

(A.4)+ 1

8
GAB1B2Γ

B1B2C ∗ ε = 0.

However in this form, the various terms that arise with different powers of gamma matrices are
not linearly independent. The integrability condition is
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−1

2
i

(
∂[AQB] − 1

16
iG[A|D1D2G

∗
B]D1D2

)
ε

+ 1

2

(
1

4
RABC1C2 − 1

12
F[A|C1D1...D3FB]C2

D1...D3 − 1

8
G[A|C1DG∗

B]C2
D

)
Γ C1C2ε

+ 1

8

(
∇[AGB]C1C2 − iQ[AGB]C1C2 − 1

2
iF[A|C1C2D1D2GB]D1D2

)
Γ C1C2C ∗ ε

+ 1

48
i

(
∇[AFB]C1...C4 − 3

4
iG[A|C1C2G

∗
B]C3C4

)
Γ C1...C4ε

+ 1

144
F[A|C1...C3DFB]C4...C6

DΓ C1...C6ε

(A.5)+ 1

192
iF[A|C1...C4GB]C5C5Γ

C1...C6C ∗ ε = 0.

As we have already mentioned, the linear system that determines the components of the field
equations that are implied from the Killing spinor equations simplifies for maximally supersym-
metric G-backgrounds [3]. In particular, one finds that[

1

2
Γ BEAB − iΓ B1B2B3 LFAB1B2B3

]
ηp = 0,

[
Γ BLGAB − ΓA

B1...B4BGB1...B4

]
ηp = 0,[

1

2
Γ ABLGAB + Γ A1...A4BGA1...A4

]
ηp = 0,

(A.6)
[
LP + Γ ABBPAB

]
ηp = 0, p = 1, . . . ,m,

where the expressions for the field equations and our notation is explained in [3]. We use this
linear system to find the field equations that must be imposed in addition to the Killing spinor
equations for a supersymmetric configuration to be a solution of the supergravity theory.
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