
 

 

 University of Groningen

Architecture-Centric Evolution
Zdun, Uwe; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zdun, U., & Avgeriou, P. (2006). Architecture-Centric Evolution. In EPRINTS-BOOK-TITLE University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/7891096c-7ebc-4f99-a55e-ebbc3f9fca82


Architecture-Centric Evolution

Uwe Zdun1 and Paris Avgeriou2

1 Department of Information Systems,
Vienna University of Economics, Austria

zdun@acm.org
2 Department of Mathematics and Computing Science,

University of Groningen, the Netherlands
paris@cs.rug.nl

Abstract Despite the general acceptance of software architecture as a pivotal
player in software engineering, software evolution techniques have been tradi-
tionally concentrated on the code level. The state-of-the-practice is comprised of
refactoring and re-engineering techniques that focus on code artefacts. However,
recent advances have shifted the focus of evolution from the code level towards
higher levels of abstraction and particularly the architectural level. The grounds
behind this trend is that architecture captures the architectural knowledge (and
particularly the design decisions and their rationale) for the whole system. Ar-
chitecture can thus facilitate making new design decisions during evolution cy-
cles, having full knowledge of past decisions. Furthermore the revision of non-
functional requirements and especially cross-cutting issues can only be managed
efficiently at an architectural level. The Workshop on Architecture-Centric Evo-
lution (ACE 2005) attempted to explore the evolution of software systems based
on their architecture. The workshop delved into this field, by presenting the latest
research advances and by facilitating discussions between experts.

1 Introduction

Industry and academia have reached consensus that investing on architecture in the
early phases of the lifecycle is of paramount importance to object-oriented software
systems. Moreover, there is an undoubted tendency to create an engineering discipline
on the field of software architecture if we consider the published textbooks, the interna-
tional conferences devoted to it, and recognition of architecting software systems as a
professional practice. Evidently, there have been advances in the field, especially con-
cerning design and evaluation methods, as well as reusable architectural artefacts such
as architectural patterns and frameworks. And there is growing consensus nowadays
about certain aspects of the task of software architecture description, such as the satis-
faction of stakeholders’ concerns through multiple views, and the use of UML for mod-
elling architecture. Software architecture has become a key issue in the object-oriented
community, as architecture is praised for facilitating effective communication between
stakeholders, early analysis of the system, support of qualities and successful evolution
of the system.

However, the evolution of software systems largely takes place at the code level.
For example, a substantial part of industrial practice of software evolution concerns



storing code artefacts in configuration management systems and applying refactoring
techniques on them. This hinders the development team from having an overview of the
“big picture” and grasping the significant design decisions that can only appear at the
architectural level. As a result, the new design decisions that are taken during evolution
may compromise or even contradict fundamental principles of the system’s architec-
ture. Moreover, the most substantial properties of the system are its non-functional re-
quirements, the so-called “quality attributes”, and the evolution of such properties can
only be tackled at the level of architecture. To make matters worse, the more complex
and sizeable the systems get, the more severe the problem gets. In a product line for
example, where domain-specific variation and evolution of the various products is re-
quired, software evolution is too complex to be dealt with at the code level, due to the
higher level of interdependency between the various software assets in a product-line.
In essence, software architecture is the best means for facilitating the synchronization
of the system requirements and its implementation during the evolution cycles.

The theme of architecture-centric evolution is complex and multi-faceted, both in
its core and in its relevance to other advances of software engineering. In overall, it
involves at least the following topics:

– Software engineering processes and methods for architecture-centric evolution
– Theoretical aspects of architecture-centric evolution, e.g. causes of architectural

changes
– Configuration management techniques for architectural artefacts
– Modelling Architectures to support evolution of software systems (e.g. through

ADLs or UML)
– Synchronizing requirements, architecture and code during evolution
– Architecture-centric evolution in the context of Model-Driven Engineering
– Tools that support and enforce architecture-centric evolution
– Architecture-centric Evolution of Aspects in the Aspect-Oriented paradigm
– Evolution of quality attributes through architectural evaluation
– Software architecture patterns that support evolution
– Evolution of legacy software through its architecture
– Evolution in product lines and system families

The rest of this workshop report is organized as follows: Section 2 presents the
theme of the keynote speech, which discussed the metaphors from buildings and biology
with respect to architecture and evolution. Section 3 outlines the contents of the papers
that were presented in the workshop, as well as some of the discussion they raised.
Section 4 describes the findings of the dialogue triggered by the previous sessions and
the conclusions reached by the participants. Finally Section 5 concludes with a brief
synopsis of the state-of-the-art and future trends.

2 Architecture and Evolution / Building and Biology: A Tale of
Two Metaphors

In his keynote, Brian Foote1 highlighted the importance of metaphors in the field of
computer science, their usefulness in some situations, and their weaknesses in others.

1 More information on Brian Foote can be found on http://www.laputan.org/



During the talk, emphasis was given on comparing the architectural metaphor to other
metaphors inspired from biology, like evolution – the topic of the workshop.

Foote initially presented different metaphors that come from the early days of com-
puter science and are still in use today, such as understanding software development
as a special branch of mathematics or physics. He argued that these metaphors are
strongly influenced by an inferiority complex of early programmers, comparing them-
selves to people working in these established sciences. In the following years, other
metaphors arose, such as the “software engineer” or the “analyst”, which also primarily
describe a stronger organizational position than a “simple” programmer. The architec-
ture metaphor can also be seen as a part of this tradition.

Foote argued that none of these metaphors really holds, and gave the example of the
waterfall model, a common metaphor for the software development process. This model
was rarely used in reality – the systems that were finally implemented were quite differ-
ent to the upfront designs and analyses dictated by a waterfall process. Foote claimed
that in the waterfall era, engineers, analysts, and managers only rarely looked at the
code because working with the code was seen as lower-class work. Change came with
concepts like Design Patterns [6] and Extreme Programming (XP) [2], which raised the
attention for the code and low-level design concepts, and resulted generally to the em-
powerment of the programmer in the software development process. In this sense, Foote
proposed that “Craftsmen and Tradesmen” might be better metaphors for programmers
than the ones named before.

Next, Foote compared the ideal metaphor of architecting a system with what hap-
pens in practice: many systems actually look rather like a Big Ball of Mud [5] than a
neatly architected structure. He then asked the question: why is the gap between what
we preach and what we practice so large? He gave further evidence by illustrating the
problems of masterplans – both in building architecture and software architecture –
leading to boomtowns, ghost towns, urban sprawl, etc. The pioneer of patterns in urban
architecture, Christopher Alexander, instead sees a city as an organically growing en-
tity, and argues that you cannot impose structure via a masterplan on a city and expect
this to work. Similarly, in software engineering, Brooks [3] claims that software is so
entangled that it is not possible to impose a structure on it. Foote draws the conclusion
that a software system should rather be seen as a body with sub-systems such as the
nervous, lymphatic or digestive sub-system, because for both kinds of systems it is hard
to apply strict architectural planning (e.g. layering, decomposition) in a mathematical
sense. Foote sees the success of glue languages and reusable components as an evi-
dence for the usefulness of this metaphor. He called systems built following the gluing
approach “Big Buckets of Glue”.

Architectural evolution should thus follow a similar path as biological evolution:
systems should grow incrementally and “learn”, designs should facilitate change,
frameworks should be used, and monocultures should be avoided. In other words, the
designs should emerge without a designer, following a process of piecemeal growth
[1]. Designs do not have to follow a “glamorous” or clean approach; in biology the
genome also makes use of what it can, it uses a lot of duplication, etc. Foote claims that
XP has implicitly rediscovered many of these principles. He gave the examples of cut-



and-paste code – which might be a useful technique for a wide range of applications:
from initially developing frameworks and trying things out, to the MIR space station!

In conclusion, we need to address the biological nature of our software architectures
better: our tools are at the moment too primitive and our metaphors are out-of-date.
Refactoring techniques need to take place in richer and higher level descriptions, than
just programs. Architecture-Centric Evolution must be two-way: the descriptions must
be richer than the actual code (descriptions at the meta-level) and round-trip engineering
must be better supported (e.g. to visualize the architecture). Useful approaches for these
goals, in turn, can only be found by an evolutionary approach.

3 Issues in Architecture-Centric Evolution

The paper reviewing process was rigorous, assigning at least three program committee
members per submitted paper. After the selection process, six papers were accepted,
of which five papers were presented in the workshop. The presentations provided a
range of interesting research topics, which lead to lively discussions. The essence of
each paper as well as the key points of the raised discussions are summarized in the
sub-sections below. The heading of each sub-sections is the title of the corresponding
paper.

3.1 Architecture-Centric Evolution in Software Product Lines

Hassan Gomaa introduced his notion of evolution based on Model-Driven Engineering,
product line architectures and UML 2. The approach follows the model-driven par-
adigm, and introduces a process model of several steps. The process model, Gomaa
claims, is evolutionary, because there are feedback loops between all steps, and there
is a continuous evolution of the product line (the artefacts in the product line reuse
library) alongside the creation of applications that derive from the product line archi-
tecture. Gomaa uses a kernel-first approach, meaning that first a stable product line
kernel is designed, and feature-based evolution is applied to this kernel (like artefacts
being tagged with optional features). The result is a map of feature/class-dependencies,
which can be mapped onto distributed UML 2 components. Different architectural pat-
terns are applied during this process: layered structures (Layers, Kernel), client/server
structures (Client/Server, Client/Broker/Server, Client/Agent/Server), and control struc-
tures (Centralized, Distributed, Hierarchical Control).

The difference between Gomaa’s approach and some of the issues raised in Foote’s
keynote, raised some interesting discussion points between the workshop participants:

– How does the team size affect the architecture evolution process? On the one hand,
Gomaa’s approach is clearly aimed at a large team size of at least 10-100 developers
and on programming-in-the-large. On the other hand numerous other architecture
evolution approaches (e.g. those based on agile approaches) are rather assuming
smaller team sizes. The size of the development team is often an implicit assump-
tion in both heavy-weight and light-weight processes. Furthermore, another signif-
icant issue in evolution processes is the expected skills/competencies/experience of
the developers, which is also left implicit in most cases.



– Can layered structures (and similarly hierarchical structures) really serve as a pri-
mary structure for a software system? Or do we have a tendency to use hierarchical
structuring, but it is not always appropriate? The question was raised because of
Foote’s claim that many real systems rather resemble a Big Ball of Mud, rather than
a neatly architected structure. This was enforced by the fact that Gomaa showed an
example of a layered structure during his presentation, in which layers where by-
passed (i.e. it was not a pure layered architecture). In many cases it is hard or even
inappropriate to structure systems according to a strict layered/hierarchical struc-
ture (see the discussion of masterplans above).

– Does Gomaa’s approach allow for round-trip engineering? As a model-driven ap-
proach it allows to have code entities synchronized with the models. But it does
have difficulties dealing with code changes to entities generated from models.

3.2 Towards a Formal Foundation for Dynamic Evolutionary Systems

Andreas Rausch focused on dynamic (i.e. runtime) system evolution of active compo-
nents. He claims that in the context of dynamic system evolution, formal techniques
for modelling system configurations are required in order to be able to check their cor-
rectness. Furthermore, Rausch proposes to map these formal descriptions to description
techniques, executable at runtime. Application areas, envisioned by Rausch, are ambient
systems, e.g. a PDA which is dynamically introduced into the system of a car. The run-
ning toy example of his talk assigns jobs to robots and automatically detects conflicts
in job assignments, according to the composition constraints given in UML/OCL. In
his motivating example, Rausch shows that these description techniques do not clearly
show what a class requires and thus changes can have unwanted side-effects.

To solve this problem, Rausch proposed that components should declare both their
required and provided interfaces, and he mapped the UML/OCL examples to the formal
component model, introduced in his paper. Unfortunately, it is not possible to prove at
runtime that there are no conflicts (a theorem prover would be needed). Instead, Rausch
proposed a solution based on constructive composition validation, which is essentially
based on a “replay” of a (similar) proof done by a human being before.

Rausch’s talk also raised a number of discussion points. A major issue that was
brought up concerned whether it is really necessary to have more explicit component
dependencies or would a component manager (having all necessary information) solve
the issue of conflict detection. Another related discussion topic, concerned the degree
of transparency (black-box vs. white-box) components should have in order to support
evolution. In some cases, we might require to look inside a component (e.g. when the
component has side-effects in its constraints) in order to safely support evolution.

3.3 A Systematic Approach for the Evolution of Reusable Software Components

Fernando Castor Filho presented the next paper co-authored by Ana Elisa C. Lobo,
Paulo Asterio C. Guerra, Fernando Castor Filho, and Cecilia Mary Fischer Rubira.
The paper is focused on software configuration management for the so-called “eter-
nal” systems, e.g. enterprise systems that are of a large size and have a long lifespan.



The approach introduces a component version model, based on the component defi-
nition by Szyperski (see [8]), which uses a component meta-model similar to UML
2. An interesting issue in the version model is that interfaces are not versioned. Filho
explained this design decision with practical project experiences in which generating
new interfaces was less difficult than providing version changes of interfaces. Other
questions that arose were: Why are ports needed in the meta-model? Why is the meta-
model slightly different to the UML 2 meta-model? Why are ports and interfaces both
connected to Abstract Component? The discussion showed that there are many ways to
design a component meta-model, and its still unclear which meta-models are best suited
for supporting architectural evolution.

A second element in the approach concerned evolution rules, which were applied
to measure the substitution impact of the three change operations: modification, addi-
tion, or subtraction. A table connects the attribute or relationship to be changed and the
change operations. After applying the rules (perhaps multiple times), a substitution im-
pact that is either low, medium, or high can be inferred from the table. The question was
then raised, whether the three change operations (modification, addition, or subtraction)
are enough because simple type changes were modelled by a subtraction of the changed
attribute followed by an addition. A richer evolution model might be helpful here, but
of course it would result in increased complexity.

Finally, the authors propose a versioning scheme with a meaning defined on basis
of the calculated substitution impact:major implies changes with a high substitution
impact,minor if a medium substitution impact occurs, andupdate by changes with
low substitution impact.

3.4 Architecture-Centric Software Migration for the Evolution of Web-based
Systems

Martti Jeenicke presented his paper on software migration in which experiences from
two language migration projects are discussed: in both cases, a Web-based System
was migrated from the PHP scripting language to Java. The motivation behind the
two migrations stems from the poor quality that the two web-based systems suffered
from. Users of these systems demanded higher quality and quicker version updates,
yet a complete rewrite was not possible due to the code size and the limited develop-
ment resources. The goal in both projects was thus a gradual replacement which lever-
ages architecture-centric evolution. There was a short discussion between the workshop
participants that highlighted the differences of different scripting languages and Web
framework architectures: the quality problems in these specific PHP applications can
hardly be generalized for scripting applications in general.

Next, two gradual language migration strategies were presented: horizontal migra-
tion (layer by layer) and vertical migration (functionality by functionality). The hor-
izontal migration seemed infeasible because this would have required a lot of effort
for integrating the languages, so instead vertical migration was used. The question was
raised, whether this strategy can be generalized. It turned out that the individual PHP
components communicated only over the database and no session data was held in PHP.
Thus a Java component could take over seamlessly. This strategy might be impossible or
difficult for other (more well-structured) Web applications. Nonetheless, the approach



is applicable as a piecemeal migration strategy for many simple Web applications, in
which it is possible that the old system components can evolve, while the new system
components are developed.

3.5 Use case maps as an extension of UML for system integration and
verification

Czeslaw Jedrzejek gave the final presentation of the workshop. He presented a paper au-
thored by Arkadiusz Rys, Czeslaw Jedrzejek and Andrzej Figaj. The paper discusses a
model-driven architecture approach, that supports integration and verification, in a large
research project (350 people, 150 developers) with a lot of feature inter-dependencies
and constant change. The domain of the project is telecommunications, which is well-
understood, but it also involved many research ideas from multiple other domains (such
as mobility, IPv6, pervasive computing, user profiles, etc.). The author presented an
initial architecture with a huge number of components, which required integration and
verification. The author explained that the general architecture originated from earlier
architectures (e.g. from the UMTS area), and then grew uncontrolled because there was
no general evolution plan for the different research sub-projects.

To integrate this system, object models, sequence diagrams, and state charts were
developed. Unfortunately, the sequence diagrams and state charts were on a much too
detailed level leading to two problems: first, an overall overview was impossible, and
second many changes meant that the sequence diagrams needed to be completely re-
drawn, which meant a lot of overhead.

The proposed solution to these problems is to base the architecture development
on views, similar to the 4+1 model of Kruchten [7], and then to apply scenario-based
integration and testing. The author proposes to start with use case maps, build coarse-
grained sequence diagrams next, and refine them with use case maps, which are more
convenient as a general overview and for making changes. The authors’ goal is to for-
malize the model later on. A discussion followed that involved whether use case maps
are really needed here, or if coarse-grained sequence diagrams could be enough to do
the job. This discussion showed that the level of detail in models used for architecture
evolution is crucial: too detailed models tend to impose complexity and unnecessary
overheads, whereas too general models might mean that we miss important aspects. An
optimal trade-off needs to be achieved, and it is mostly dependent of the specific project
at hand.

4 Discussion and Outcomes

The last part of the workshop was a discussion session, in which we summarized the
participants’ insights into architecture-centric evolution gained from the presentations
and discussions, and discussed the different concerns that arose.

Firstly, the participants agreed that if the architectural metaphor is indeed under-
stood as a static, top-down approach, including a masterplan produced by the architect,
the terms architecture and evolution seem to be oxymorons or at least contradictory. In



many practical approaches, such as those taken in agile software development meth-
ods, this is not the case. Also, Christopher Alexander’s notion of piecemeal growth [1],
which has gained much attention and for which we find many analogies in software
architecture research and practice approaches, describes an evolutionary approach to
building architecture: Alexander’s views on architecture strongly refute the idea of an
architectural masterplan.

Furthermore, there are many important factors and assumptions to be made, be-
fore an architecture-centric evolution approach can be described or understood, and
depending on these factors and assumptions, the “optimal” architecture-centric evolu-
tion approach may substantially vary. For instance, the workshop participants identified
the team size, the project size, and the individual skills of the team members (are they
good architects?) as strong influences. Large-scale evolution is a “different game”, es-
pecially because of the many influences apart from technical problems (e.g. social and
political issues) and the sheer complexity of the projects. The participants agreed that
in all discussed projects, either small scale or large scale, a lasting architecture emerges
late (another reason to refute masterplanning). This is also a reason why it is a good
tactic for large-scale projects to strongly base the initial architecture on how it has been
done before – by questioning the existing domain experts.

It is also important at which binding time the architecture evolution takes place (e.g.
compile time, load time, runtime). The later the binding time, the more difficult it is to
make assumptions and to rely on the outcomes of the architecture evolution.

The means to express the architecture-centric evolution also strongly influence the
chosen solutions. In the workshop, programming language techniques (e.g. reflection),
models (like use case maps and UML 2.0 models), model-driven software develop-
ment, product lines, formal models, and tools (like Eclipse) were presented as means
to express the architecture-centric evolution – all with quite different properties. Also,
additional means like verification, testing, validation, etc. of the architecture-centric
evolution need to be considered.

In addition, we can learn from how evolution takes place in nature and try to adapt
these techniques in software system evolution. We should not make a masterplan for the
architecture and its evolution. We should not evolve the architecture inx directions at
the same time, but only one at a time. We should try out how different potential evolu-
tion schemes would turn out and adopt the successful ones (“survival of the fittest”). In
any case we need the right tools to tackle the problem of architecture-centric evolution
efficiently.

Finally, a central lesson learned from the workshop discussions is thatconsistency
is central: all architectural artefacts (code, documentation, design documents) should
at any time reflect the same information. This gets even more important for larger
projects, and is important for product lines, round-trip engineering, and model-driven
approaches. If maintained independently, they will quickly get inconsistent, especially
when rigid processes (like the waterfall model) are used. Thus some means should be
provided to ensure consistency (examples are automatically documenting from the code
base or generating from a model).



5 Epilogue

In light of the outcomes of this workshop, the main question is not whether it is useful
to base the evolution of software systems on their architecture, but how to do it. The
workshop raised awareness about the invalidity of current metaphors since they not only
lead to false practices, but they also hinder the discovery of more effective ones. It also
indicated a slow but steady trend: to think of software systems not as calculated static
structures but as living organisms. This paradigm has also been proposed by Clements
et al. [4], where the architecture of physiological systems was considered more apt
than building architecture. In this sense, a software system should be able to evolve as
a living organism: through natural selection, which means to facilitate change and to
select the best of alternative options, iteratively and incrementally.

References

1. C. Alexander.The Timeless Way of Building. Oxford Univ. Press, 1979.
2. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
3. F. P. Brooks. No silver bullet, essence and accidents of software engineering.Computer

Magazine, April 1987.
4. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.

Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2002.
5. B. Foote and J. W. Yoder. Big ball of mud. InFourth Conference on Patterns Languages of

Programs (PLoP ’97/EuroPLoP ’97), Technical Report # WUCS-97-34 (PLoP ’97/EuroPLoP
’97), Monticello, Illinois, September 1997.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

7. P. Kruchten. The 4+1 view model of architecture.IEEE Softw., 12(6):42–50, 1995.
8. C. Szyperski. Component Software – Beyond Object-Oriented Programming. ACM Press

Books. Addison-Wesley, 1997.

Appendix: Acknowledgement

We extend our thanks to all those who have participated in the organization of this
workshop, particularly to the program committee, which is comprised of:

– Bosch Jan, Nokia Research, Finland
– Goedicke Michael, University of Essen, Germany
– Guelfi Nicolas, University of Luxembourg, Luxembourg
– Heckel Reiko, University of Leicester, UK
– Kniesel Guenter, University of Bonn, Germany
– Koschke Rainer, University of Bremen, Germany
– Laemmel Ralf, Microsoft Corporation, USA
– Medvidovic Nenad, University of Southern California, USA
– Oberleitner Joe, Technical University of Vienna, Austria
– Riehle Dirk, independent consultant, Germany
– Tandler Peter, Fraunhofer IPSI, Germany
– Wermelinger Michel, Open University, UK


