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Abstract— The sensor network localization problem with
distance information is to determine the positions of all sensors
in a network given the positions of some sensors and the dis-
tances between some pairs of sensors. We present a specialized
localization algorithm and identify the graph properties of some
classes of networks that can be localized by the algorithm. We
also give an important application of our algorithm in creating
formations in multi-agent systems.

I. INTRODUCTION

Determining the positions of sensors is essential in many
network applications such as geographic routing, coverage
and creating formations. Equipping each sensor in a network
with GPS is not feasible in many cases because of the large
number of sensors and the cost associated with a GPS unit.
Hence, we attack this problem by exploiting the connectivity
of a sensor network and some common capabilities of
sensors. More specifically, we assume a sensor can measure
its distances to and communicate with certain other sensors
in the network.

The sensor network localization problem with distance
information is to determine the positions of all sensors in
a network given the positions of some sensors and the
distances between some pairs of sensors. A sensor whose
position is given is called an anchor. The sensor network
localization problem is solvable if and only if the network
is “localizable.” A network in R

d is said to be localizable if
there exists exactly one position in R

d corresponding to each
non-anchor sensor such that the given inter-sensor distances
are satisfied. The authors of [1] use rigidity theory to give
the necessary and sufficient conditions for a network to be
localizable. However, the process of localizing a network has
been shown to be NP-hard even when the network is known
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to be localizable [2]. This leaves us with the more refined
questions of how should we go about localizing networks,
and what kinds of networks can we efficiently localize? This
has been investigated in [3] and we extend the results of
that paper. While some ingenious heuristics-based schemes
have been proposed ([4], [5], [6], [7]), we are interested
in provably correct localization algorithms and the kinds of
networks that can be efficiently localized by them. In the
following we will give a localization algorithm that consists
of a finite number of steps to be carried out sequentially.

We first give some terms and definitions from graph rigid-
ity theory in section 2. We present a localization algorithm
in section 3, and identify some classes of networks that
can be localized by the algorithm in section 4. We discuss
the computational efficiency of the algorithm in section 5,
and then give an application of the algorithm in creating
formations in section 6.

II. TERMS AND DEFINITIONS

We begin by giving some terms and definitions to be
used in the exposition which follows. A multi-point p =
{p1, . . . , pn} in d-dimensional space is a set of n points in
R

d labelled p1, . . . , pn. Two multi-points p = {p1, . . . , pn}
and q = {q1, . . . , qn} of n points are congruent if for all
i, j ∈ {1, . . . , n}, the distance between pi and pj is equal
to the distance between qi and qj . A point formation of n
points at a multi-point p = {p1, . . . , pn} consists of p and a
simple undirected graph G with vertex set V = {1, . . . , n},
and is denoted by (G, p). If (i, j) is an edge in G, then we
say the length of edge (i, j) in the point formation (G, p) is
the distance between pi and pj .

A point formation (G, p) is globally rigid in R
d if p and q

are congruent multi-points in R
d whenever (G, p) and (G, q)

have the same edge lengths. A point formation (G, p) of n
points is generically globally rigid in R

d if there exists ε > 0
such that (G, q) is globally rigid in R

d for all multi-points
q = {q1, . . . , qn} where |qi − pi| < ε ∀i ∈ {1, . . . , n}. A
graph G is said to be generically globally rigid in R

2 if
(G, p) is generically globally rigid for some multi-point p.
There are a number of efficient algorithms for determining
if a graph is generically globally rigid in R

2. If graph G is
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generically globally rigid in R
2, then (G, p) is guaranteed

to be globally rigid for all multi-points p in R
2 where

the coordinates of p are algebraically independent over the
rationals. A graph that is generically globally rigid in R

2 is
said to be minimally generically globally rigid in R

2 if the
removal of any edge causes the graph to not be generically
globally rigid in R

2.
A sensor network with n sensors is modelled by a point

formation (G, p), where each sensor corresponds to exactly
one vertex of G, and vice versa, with (i, j) being an edge
of G if i and j are distinct and the distance between the
corresponding sensors is known, and p = {p1, . . . , pn}
where pi is the position of the sensor corresponding to
vertex i. We say that G is the graph of the network, and p
is the multi-point of the network. Vertex v of G is called
an anchor vertex if the sensor corresponding to v is an
anchor, and a sensor vertex otherwise. It is known that if
the coordinates of the multi-point of a network in R

2 are
algebraically independent over the rationals, then the network
is localizable if and only if it has at least 3 non-collinear
anchors and the graph of the network is generically globally
rigid in R

2.
Let G be a graph with vertex set V and edge set E , which

we denote by G = (V, E). The second power of G, written
G

2, is the graph with vertex set V and edge set E∪E2, where
(i, j) ∈ E2 just in case i, j ∈ V and there exists k ∈ V
such that (i, k), (k, j) ∈ E . Define a ring graph as a graph
whose vertices can be labelled as {1, . . . , n} so that vertex
i, 1 < i < n, is adjacent to only vertices i − 1 and i + 1,
vertex 1 is adjacent to only vertices 2 and n, and vertex n
is adjacent to only vertices n − 1 and 1.

III. THE SWEEPS ALGORITHM

In the following, we will describe a localization algorithm
in R

2 that consists of a finite number of steps to be carried
out sequentially. We will subsequently give examples where
the number of steps is at most 2, and separately, at most n.

Let N be a network of n sensors labelled 1 through
n where sensor i is positioned at π(i), and π(1), π(2),
. . . , π(n) are distinct points in R

2. Suppose that 1, 2, . . . , m
are the labels of N’s anchors and that m ≥ 3. Let G = (V, E)
be the graph of N. Without loss of generality, suppose that
for each i ∈ {1, 2, . . . , n}, vertex i of G corresponds to
sensor i and vice versa. For each v ∈ V , let N (v) denote
the set consisting of all vertices u where (u, v) ∈ E , and for
each u ∈ N (v) write duv for the distance between sensors
u and v. By an assignment for N is meant any function
α : {1, 2, . . . , n} → R

2. An assignment for N is consistent
if for all v ∈ {1, 2, . . . , n}, ||α(u) − α(v)|| = duv for all
u ∈ N (v), and α(v) = π(v) whenever sensor v is an anchor,
i.e. v ∈ {1, 2, . . . , m}. Hence, N is localizable if and only if
there is exactly one consistent assignment for N.

Let 2R
2

be the power set of R
2 and write R+ for the set

of positive real numbers. Let f : 2R
2 × R+ → 2R

2
denote

the function (S, d) �−→ S ′ where S ′ is the set of p ∈ R
2

such that ||p − q|| = d for some q ∈ S. If S is not empty,
then geometrically f(S, d) is the union of all points in the

plane which lie on circles with the same radius d centered at
the points in S. Of course if S is empty then so is f(S, d)
and conversely. We will be especially interested in the case
when S is a non-empty “finite set” and d > 0, where by
finite set we mean a set with a finite number of points in R

2.
In this case f(S, d) is simply the union of a finite number
of circles in the plane which all have radius d. An easily
verified property of f is that if u ∈ N (v), and S(u) is a set
for which π(u) ∈ S(u), then π(v) ∈ f(S(u), duv). We call
this the position keeping property of f .

Let S denote the set of all non-empty subsets of R
2

with finitely many elements. Let q be a positive integer
no smaller than 2 and write S

q for the q-fold Cartesian
product of S with itself. Similarly, let (R+)q denote the q-
fold Cartesian product of R+ with itself. Our aim is to define
a function gq : S

q × (R+)q → 2R
2

in such a way so that for
each {S1,S2, . . . ,Sq} ∈ S

q and {d1, d2, . . . , dq} ∈ (R+)q ,
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite set. Fur-
thermore, we shall require the definition of gq to be such that
whenever there are distinct points ui ∈ Si, i ∈ {1, 2, . . . , q},
if v ∈ R

2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q},
then v must be a point in gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq).
Defining gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) in the most ob-
vious way as the intersection of the sets f(Si, di), i ∈
{1, 2, . . . , q}, will not be adequate for it may be the case
that the resulting intersection is a continuous circle of points
in the plane rather than a finite set.

Let I =
⋂q

j=1 Sj , and let p1, p2, . . . , pk denote the
elements of I. For any set S ∈ S, and any subset T ⊂ S,
let S\T denote the complement of T in S. The following
definition of gq satisfies both of the requirements listed
above:

gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) =(
f(S1\I, d1) ∩ f(S2, d2) ∩ . . . ∩ f(Sq, dq)

) ⋃
( k⋃

i=1

f({pi}, d1) ∩ f(S2\{pi}, d2) ∩ . . .

. . . ∩ f(Sq\{pi}, dq)
)

(1)

An ordering v1, v2, . . . , vn of the vertices in V for which

vi = i, i ∈ {1, 2, . . . , m}

and at least one of the sets

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1},
i ∈ {m + 1,m + 2, . . . , n}

is non-empty is called a sweep of N and is denoted by [v].
Hence, if an ordering v1, v2, . . . , vn is a sweep, then there is
at least one vertex vi where i > m and vi is adjacent to at
least one vertex preceding it. We shall require the networks
we consider to have at least one “finite position generating”
sweep v1, v2, . . . , vn, where by finite position generating we
mean that each vertex vi, i > m, is adjacent to at least
two distinct vertices preceding it. If v1, v2, . . . , vn is a finite
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position generating sweep, then each of the M(vi), i > m,
is a set of at least two elements.

In the following, we will describe a recursive procedure for
computing a sequence of finite sets for each vertex v ∈ V ,
i.e. S(v, 1), S(v, 2), · · · S(v, i), · · · , such that each S(v, i)
is a finite set, π(v) ∈ S(v, i), and if i < j, then S(v, i) ⊃
S(v, j). We begin by choosing a finite position generating
sweep [v] of N. For i ∈ {m + 1,m + 2, . . . , n}, let

M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}

We denote the cardinality of M(vi) by qi and the elements of
M(vi) by ui1, ui2, . . . , uiqi

. We define the sets S(vi, 1), i ∈
{1, 2, . . . , n} as follows. For i ∈ {1, 2, . . . , m}, we define

S(vi, 1) = {π(vi)} (2)

and for i ∈ {m + 1, m + 2, . . . , n}, we define

S(vi, 1) = gqi
(S(ui1, 1),S(ui2, 1), . . . ,S(uiqi

, 1),
dui1vi , dui2vi , . . . , duiqi

vi) (3)

Note that since [v] is assumed to be a finite position gen-
erating sweep, each M(vi) has at least 2 elements and so
qi ≥ 2. Hence, for i ∈ {m+1,m+2, . . . , n}, gqi is defined
and S(vi, 1) is a finite set because the image of gqi consists
only of finite sets. Since S(vi, 1), i ∈ {1, 2, . . . , m}, are also
finite sets because of (2), we have that S(v, 1) is a finite set
for each v ∈ V . Note also that π(vi) ∈ S(vi, 1), vi ∈ V .
This is clearly true for i ∈ {1, 2, . . . , m} because of (2).
The assumption that π(v), v ∈ V , are distinct together with
the definition of gqi and the position keeping property of f
imply that π(vi) ∈ S(vi, 1) for i ∈ {m + 1,m + 2, . . . , n}.
We call the computation of S(v, 1), v ∈ V , the computation
of the initial sweep of N.

Now suppose that the initial sweep of N has been com-
puted. The sets S(v, 2), v ∈ V , are computed as follows.
Let [u] = u1, u2, . . . , un be a sweep, and let M(ui) =
N (ui) ∩ {u1, u2, . . . , ui−1} for i ∈ {m + 1,m + 2, . . . , n}.
Note that [u] need not be a finite position generating sweep.
For i ∈ {1, 2, . . . , m} we define

S(ui, 2) = {π(ui)} (4)

and for i ∈ {m + 1, m + 2, . . . , n} we define

S(ui, 2) =

S(ui, 1)
⋂

w∈M(ui)

f(S(w, 2), dwui) if M(ui) �= ∅ (5)

S(ui, 2) = S(ui, 1) if M(ui) = ∅ (6)

For each ui, i ∈ {m + 1,m + 2, . . . , n}, (5) and (6) implies
that S(ui, 2) must be a finite set since S(ui, 1) is a finite
set. Moreover, since S(ui, 2), i ∈ {1, 2, . . . , m}, are all finite
sets because of (4), we have that S(v, 2) is a finite set for
each v ∈ V . Also, π(v) ∈ S(v, 2) for all v ∈ V . This is
clearly true for ui, i ∈ {1, 2, . . . , m} because of (4). For
i ∈ {m + 1,m + 2, . . . , n}, that π(ui) ∈ S(ui, 1) and the
position keeping property of f imply π(ui) ∈ S(ui, 2). We
call the computation of S(v, 2), v ∈ V , the computation of

the second sweep of N. It is obvious from (4), (5) and (6)
that S(v, 2) ⊂ S(v, 1) for all v ∈ V .

Now suppose the kth sweep of N has been computed,
and that for each v ∈ V , π(v) ∈ S(v, k) and S(v, k) is a
finite set. The (k + 1)th sweep is computed as follows. Let
[x] = x1, x2, . . . , xn be a sweep, and let M(xi) = N (xi)∩
{x1, x2, . . . , xi−1} for i ∈ {m + 1,m + 2, . . . , n}. For i ∈
{1, 2, . . . , m}, we define

S(xi, k + 1) = {π(xi)} (7)

and for i ∈ {m + 1,m + 2, . . . , n} we define

S(xi, k + 1) =

S(xi, k)
⋂

w∈M(xi)

f(S(w, k + 1), dwxi
)

if M(xi) �= ∅ (8)

S(xi, k + 1) = S(xi, k) if M(xi) = ∅ (9)

For each v ∈ V , we have that S(v, k + 1) is a finite set,
π(v) ∈ S(v, k + 1) and S(v, k + 1) ⊂ S(v, k) by the same
reasoning as before.

The preceding shows that if we compute a sequence of
sweeps starting with one which is finite position generating,
we can generate a sequence of finite sets for each v ∈ V , i.e.
S(v, 1), S(v, 2), · · · S(v, i) · · · , where each set is obtained
by means of a finite number of computations and

S(v, 1) ⊃ S(v, 2) ⊃ · · · ⊃ S(v, i) · · ·

and π(v) ∈ S(v, i) for each i. Thus if we can select a finite
number of sweeps, say k, such that for all v ∈ V , each
S(v, k) will contain just the position π(v) of sensor v, then
localization will be complete. We call this the sequential
localization of the network, and we say that the network
is sequentially localizable in k sweeps. Hence, sequential
localization of a network is carried out in a finite number
of steps, each of which is solvable in a straightforward
manner. This is in sharp contrast to a direct assault on the
localization problem by attempting to solve a large number
of simultaneous quadratic equations in 2(n − m) variables.
In the exposition which follows, we will give the graph
properties of some networks that are sequentially localizable
in just one or two sweeps. The sweeps are selected by con-
sidering properties of the network’s graph, hence localizing
the network in as few sweeps as possible.

In [8], an extension to the Sweeps algorithm is proposed
that results in significant reductions in the computational
complexity of using Sweeps to localize certain networks.
More specifically, suppose [x] is the kth sweep. For xi, i ≤
m, let D(xi, k) = {xi}. For xi, i > m, define D(xi, 0) =
{xi} and let D(xi, k) =

⋃
u∈M(xi)

D(u, k) ∪ D(xi, k − 1).
For xi, i ≤ m, define S(xi, k) as in (7). For xi, i > m,
first let S(xi, k) be as defined in (3) if k = 1, or (8) and
(9) if k > 1. For p ∈ S(xi, k), we say that p is a consistent
position if there is a consistent assignment ᾱ for the sub-
network of N corresponding to the subgraph of G induced by
vertices in D(xi, k), where ᾱ(xi) = p and ᾱ(xj) ∈ S(xj , k)
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for xj ∈ D(xi, k), j < i, and ᾱ(xj) ∈ S(xj , k − 1) for
xj ∈ D(xi, k), j > i. In the extension to Sweeps, all points
in S(xi, k) that are not consistent positions are removed from
S(xi, k) before computing any S(xj , k), j > i.

IV. GRAPHICAL PROPERTIES OF SEQUENTIALLY

LOCALIZABLE NETWORKS

A graph is a bilateration graph with bilateration ordering
v1, . . . , vn if its vertices can be relabelled as v1, . . . , vn so
that the subgraph induced by v1 and v2 is complete, and
each vi, 2 < i, is adjacent to at least two distinct vertices
vj which “precede” it in the ordering, where by precede
we mean j < i. A necessary condition for a network to
be sequentially localizable is that its graph is a bilateration
graph. A graph is k-connected if the graph remains connected
after removing any k − 1 vertices and the edges incident on
those vertices. It is easy to see that bilateration graphs are
2-connected.

All the networks referred to below are in R
2 and the coor-

dinates of their multi-points are assumed to be algebraically
independent over the rationals. We note that for any positive
integer d, the coordinates of almost all multi-points in R

d

are algebraically independent over the rationals.

A. Networks Sequentially Localizable in One and Two
Sweeps

A graph is said to be a trilateration graph with trilat-
eration ordering v1, . . . , vn if its vertices can be relabelled
as v1, . . . , vn so that the subgraph induced by v1, v2, v3 is
complete and each vi with i > 3 is adjacent to at least three
distinct vertices vj which precede it in the ordering ([1]). It is
shown in [1] that trilateration graphs are generically globally
rigid in R

2.
A network is said to be easily localizable if its sensors

can be relabelled as v1, . . . , vn so that the distance between
vi and vj is known when i, j ≤ 3, and the position of sensor
vi, i > 3, can be uniquely determined from just the positions
of sensors vj where j < i and the distance between vj and
vi is known, together with the distances from those sensors
to vi ([1], [3]). It is easy to see that a network with at least
three anchors is easily localizable if and only if its graph is
a trilateration graph.

Suppose N has at least three anchors and the graph of N is
a trilateration graph with trilateration ordering v1, . . . , vn. If
v1, v2 and v3 are anchor vertices, then N is sequentially
localizable in one sweep. Otherwise, N can be localized
using one sweep of the Sweeps algorithm in combination
with a simple Euclidean transformation. For complete details,
please see the full length version of the paper.

Let G be the graph of a network. We define the maximal
anchor-free subgraph of G to be the maximal subgraph of
G containing only sensor vertices. We say that G is partially
acyclic if its maximal anchor-free subgraph is acyclic.

Lemma 1: Let G be the graph of a network. If G is
generically globally rigid in R

2 and partially acyclic, then

G is a bilateration graph.

Remark 1: A stronger version of lemma 1 also holds.
If each sensor vertex of G has degree at least three and
G is partially acyclic, then G is a bilateration graph. This
is stronger since each vertex of a graph that is generically
globally rigid in R

2 must have degree at least three.

Theorem 1: A network with at least three anchors is
sequentially localizable in two sweeps if its graph is
generically globally rigid in R

2 and partially acyclic.

Remark 2: The network’s graph must be generically
globally rigid in R

2 in order for theorem 1 to hold. This is
because the network cannot be localizable if its graph is not
generically globally rigid in R

2, and it is straightforward to
show that a sequentially localizable network must also be
localizable.

A number of partially acyclic graphs that are generically
globally rigid in R

2 are also minimally generically globally
rigid in R

2. This and theorem 1 implies there are localizable
networks with just enough edges to ensure localizability that
are also sequentially localizable.

Many practical networks are such that the distance
between two sensors is known if the sensors are within
sensing radius of each other. Suppose N̄ is such a network,
and let Ḡ be the graph of N̄.

Theorem 2: Suppose there exists a subgraph Gr of Ḡ

with the same vertex set as Ḡ, and Gr is a ring graph with
at least three anchor vertices i, j and k where j is adjacent
to both i and k. Then N̄ is sequentially localizable in two
sweeps after doubling the sensing radius of each sensor.

Remark 3: Theorem 2 can be used to show the following.
Suppose there exists a subgraph Gr of Ḡ with the same
vertex set as Ḡ, and Gr is a ring graph. If N̄ has at least
three anchors, then after doubling the sensing radius of
each sensor, N̄ is either sequentially localizable in two
sweeps or N̄ can be localized using two sweeps of the
Sweeps algorithm in combination with a simple Euclidean
transformation. For the complete details, see the full length
version of the paper.

A graph is edge 2-connected if there exists two paths
with no edge in common between any two vertices. It
is known that the second power of an edge 2-connected
graph is generically globally rigid in R

2 ([3]). An important
consequence of this and theorem 2 is that if the graph of
a network is edge 2-connected with at least three anchor
vertices, and the network is such that the distance between
two sensors is known if the sensors are within sensing radius,
then the network is sequentially localizable after doubling the
sensing radius of all the sensors.
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B. Networks Sequentially Localizable in at most n Sweeps

Let N be a network of n sensors labelled 1 through
n where sensor i is positioned at π(i), and π(1), π(2),
. . . , π(n) are distinct points in R

2. Let G = (V, E) denote
the graph of N, and suppose A = {1, . . . , m} is the set
of N’s anchors. Without loss of generality, suppose that for
each i ∈ {1, 2, . . . , n}, vertex i of G corresponds to sensor
i and vice versa. For each v ∈ V , let N (v) denote the set
consisting of all vertices u where (u, v) ∈ E , and for each
u ∈ N (v) write duv for the distance between sensors u
and v. A sensor v of N is said to be localizable if for all
consistent assignments α for N, we have that α(v) = π(v)
([9]). Note that if sensor v ∈ A, then v is localizable by
definition. While all sensors in a localizable network are
localizable, it is possible to have localizable sensors in a
non-localizable network. Using the notions of localizable
sensors and partially acyclic graphs, we will define the
graph properties of a class of networks that are sequentially
localizable in at most n sweeps, where n is the number of
sensors in the network.

We say that G is recursively acyclic if its vertices
can be ordered as v1, v2, . . . , vn so that for each vk,
k ∈ {1, 2, . . . , n}, there is a subgraph Gk = (Vk, Ek)
of G that satisfies the following conditions. Before
stating the conditions, we give some definitions. For each
k ∈ {1, . . . , n}, define VA

k = {vi ∈ Vk | i < k or vi ∈ A}.
For each k ∈ {1, . . . , n}, let Nk be the network with sensor
set Vk where the position of sensor v ∈ Vk is π(v). Also,
if v ∈ VA

k , then the position of sensor v in Nk is given,
and the distance between sensors u and w in Nk is given
whenever (u,w) ∈ Ek. The conditions are:

1) Each vertex in Vk\VA
k has degree at least three in Gk.

2) The maximal subgraph of Gk containing only vertices
in Vk\VA

k is acyclic.

3) Sensor vk is a localizable sensor of the network Nk.

Let N1 denote the class of networks with recursively
acyclic graphs. Let N2 denote the class of all networks
N where the graph of N is a trilateration graph and N is
sequentially localizable in one sweep. Let N3 denote the
class of all networks N where N has at least three anchors
and the graph of N is generically globally rigid in R

2 and
partially acyclic. From theorem 1, we have that networks
in N3 are sequentially localizable in two sweeps. It is also
straightforward to show that N2 and N3 are not disjoint,
N2 �⊂ N3 and N3 �⊂ N2.

Theorem 3: 1) If N ∈ N1, then N is sequentially
localizable in at most n sweeps, where n is the number
of sensors in N.

2) N2 ⊂ N1, and the containment is strict, so N1 contains
N2 as a proper subset.

3) N3 ⊂ N1, and the containment is strict, so N1

contains N3 as a proper subset.

Hence, N2 ∪ N3 ⊂ N1, and the class of networks with
recursively acyclic graphs gives us a larger and more com-
prehensive class of networks that are sequentially localizable.

V. SEQUENTIAL LOCALIZATION AND COMPUTATIONAL

EFFICIENCY

Sequential localization of a network is not always com-
putationally efficient. However, in some cases it is possible
to efficiently localize a network by localizing sections of
the network in sequence. For example, let N be a network,
and suppose there are subnetworks N1, N2. . . ND of N such
that each sensor of N is in at least one of the subnetworks.
Suppose N1 is sequentially localizable, and each Ni, i ∈
{2, . . . , D}, is sequentially localizable when each sensor v
of Ni is considered an anchor of Ni if v is in a subnetwork
Nj where j < i. The network N can be localized by first
sequentially localizing N1, and then sequentially localizing
each Ni, i ∈ {2, . . . , D}, once all Nj where j < i have
been sequentially localized. For each i ∈ {1, . . . , D}, let
Z(Ni) denote the computational complexity of sequentially
localizing Ni. Then the complexity of sequentially localizing
the entire network is determined by D and the Z(Ni)s.
If D and each Z(Ni) are acceptably bounded, then the
complexity of sequentially localizing the entire network is
rendered acceptable.

In the full length version of the paper, we identify the
relationship between the graph properties of networks and
the computational complexity of the sequential localization
of networks.

VI. APPLICATION OF SWEEPS

Consider a set of agents in the plane where each agent
can communicate with and measure its distance to any
other agent within sensing range. A formation is given by
specifying certain pairs of agents and the desired distance
between each specified pair of agents. The agents are said to
be in a formation if the distance between each pair of agents
specified by the formation is the desired distance. Given a
particular formation, the goal is for all the agents to position
themselves so that they are in the formation. We assume that
if the formation specifies a distance δ between agents i and
j, then δ is known to both agents i and j, and agents i and
j are initially within sensing range.

When the given formation satisfies certain conditions, the
Sweeps algorithm can be used to compute a target position
for each agent so that the agents will be in formation when
the agents are at their target positions. The target positions
are all relative positions in the local coordinate system of a
particular agent. The selection of this agent as well as the
computation of the Sweeps algorithm can be carried out by
the agents. Please see the full length paper for the details.

Currently, we are in the process of devising a control
strategy for each agent that will cause all of the agents
to move to their target positions. Note that the agents do
not have GPS and can only measure their distances to and
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communicate with other agents within sensing range. Hence,
one of the main challenges will be to ensure that each agent
remains within sensing range of certain other agents as the
agents are moving.

VII. CONCLUSION

We have presented the localization algorithm Sweeps and
identified several classes of networks that can be successfully
localized by the algorithm. The next step in our research
is to identify the graph properties of all networks that can
be efficiently localized by Sweeps. An important part of
our future works will also be to analyze the effects of
distance measurement errors on the Sweeps algorithm. In
this paper we have studied the sensor network localization
problem and the Sweeps algorithm in the absence of distance
measurement errors. This will help us greatly in pinpointing
key issues when we consider the localization problem with
distance measurement errors.
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