

 University of Groningen

Run-time Reconfiguration of Service-Centric Systems
Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P. (2006). Run-time Reconfiguration of Service-Centric Systems. In EPRINTS-BOOK-TITLE
University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/b30896cf-66c8-4288-b9c9-d557a6afb30c

Run-time Reconfiguration of Service-Centric Systems

Paris Avgeriou
Department of Mathematics and Computing Science

University of Groningen, the Netherlands
 paris@cs.rug.nl

Abstract

Service-centric systems are driven more and more towards self-adaptation in order to satisfy
QoS in highly dynamic environments. However, the young age and immaturity of this do-
main, combined with the increasing size and complexity of these systems, hinder the archi-
tects from designing effectively self-adaptive systems. This paper addresses the process of
run-time reconfiguration with respect to high level issues such as monitoring, evaluation of
QoS, reconfiguring and structuring the service-centric system. All patterns relate their solu-
tions partially to well-established architectural patterns, adapted to the domain of service-
centric systems. The aim is to compose a unified framework in the form of a pattern language
that will help architects in taking the major design decisions.

1 Introduction

One of the most promising emerging trends in software engineering is that of service-centric
systems [5,15,16]: systems consisting of multiple services, possibly from different service
providers, working together to perform some functionality. The key notion in this paradigm is
that of a service composition [2], the process of synthesizing several services into a single
composite one, which satisfies a set of functional and quality requirements. The greatest ad-
vantage that service-centric computing advocates, is runtime reconfiguration1: services are
located, bound, and executed at runtime using standard protocols such as UDDI, WSDL, and
SOAP [25]. Because services are loosely-coupled and have an explicit interface, this para-
digm facilitates the integration of third-party services, and the substitution of one service for
another at runtime.

In fact, runtime reconfiguration is better said than done, since highly demanding QoS re-
quirements must be satisfied in constantly changing dynamic contexts. On the one hand the
QoS that the service-centric system has to deliver is often formalized in a Service Level
Agreement (SLA), i.e. the QoS requirements are legally and financially binding. On the other
hand, most service-centric systems operate in highly dynamic environments: they depend on
third-party services which are out of their control; user demands may change arbitrarily (e.g.
due to change of the physical location of a mobile device); networks may present congestions
or other unpredictable behavior; local nodes that execute services have variable workloads

1 Run-time reconfiguration is not new but has already been supported in component-based
systems and earlier. In fact, service-centric systems are considered as an extension of object-
oriented and component-based systems. The differences and similarities between these three
categories of systems and their respective paradigms are a subject of great debate and out of
the scope of this paper, which merely focuses on services.

etc. Therefore the service configuration must be adaptable at all times, so that the systems can
meet the constant changes of the dynamic environment and thus deliver the QoS, they have
committed themselves to. This problem is exceptionally difficult from the architectural point
of view as it involves balancing quality attributes at runtime.

In theory, runtime adaptation of a service-centric system can be initiated by the service
users, by the service providers, or by the system itself. In practice however, the first two par-
ties can not realistically perform successful adaptation. First, the majority of the service users
are interested only in the result, i.e. the offered functionality and not the underlying service
composition. Second, the service providers cannot manually perform the runtime adaptation
themselves, since the potential increase of service users would pose serious scalability prob-
lems. Therefore the only viable solution for runtime adaptation lies on the service-centric sys-
tem itself as a form of self-adaptation: the system can evaluate its current situation and if nec-
essary adapt itself by reconfiguring the service composition to better meet its QoS require-
ments.

Unfortunately there are no standard approaches for creating such self-adaptive service-
centric systems. Current standardization approaches mainly focus on fundamental implemen-
tation-level web services technology, such as message exchange protocols and service de-
scription and orchestration languages. Moreover current approaches have mainly dealt with
static service composition and not dynamic, runtime composition. Therefore architects of ser-
vice-centric systems usually provide domain-specific, piecemeal, ad-hoc solutions that focus
mostly on the implementation level. This paper attempts to provide some architectural design
guidance in this domain in the form of patterns. It contains four patterns for performing the
process of run-time reconfiguration in the domain of service-centric systems. The reconfigu-
ration process has the form of a feedback loop: monitoring the system, evaluating the QoS,
reconfiguring and structuring the services. The solutions of these four process patterns are
partially achieved through the employment of well-established architectural patterns. Also,
great emphasis is put on establishing the relations between the patterns as to illustrate as com-
plete a picture as possible of the solution space in this domain. This pattern language does not
deal with lower level issues such as service description, discovery, selection and composition.
Finally, the paper pinpoints future directions in the form of future patterns, for significant ar-
eas that should be explored such as variability and transaction management.

2 The Patterns

Figure 1 depicts an overview of the patterns as well as the main relationships between them
and other related architectural patterns. The rest of the relationships as well as names of the
shown relationships have been suppressed in order not to clutter the diagram.

The patterns attempt to tackle the complex problem of dynamic reconfiguration of service-
centric systems, focusing on the higher application-general layers. The intended audience for
these patterns is software architects that are designing systems in this domain. The patterns do
not imply a waterfall-like, up-front architecture design approach, but rather support iterative
and incremental approaches, where the patterns are applied iteratively in cycles, each time
refining and fine-tuning.

The process patterns tackle four major issues in the dynamic reconfiguration of service-
centric systems:

• MONITOR THE SYSTEM, specifies what needs to be monitored in order to ascertain the
status of the service-centric system.

• EVALUATE QOS, focuses on analyzing the monitoring information combined with the
service configuration to infer the QoS values of the running system.

• RECONFIGURE THE SERVICES AT RUNTIME, takes care of adapting the system at run-
time in order to satisfy its QoS requirements at all times.

• STRUCTURE THE SERVICES, deals with how the services should be actually structured,
for the reconfiguration to take place.

The first three patterns form the feedback loop of the reconfiguration process: the monitoring
information is used as input to the QoS evaluation, which in turns is used to reconfigure the
system if necessary. The fourth pattern is more horizontal as it deals with the general structure
of the services, another valuable input to the reconfiguration process.
The following patterns have been referenced in this paper from third-party sources:

- ACID TRANSACTION [7], ensures that a transaction will never have any unexpected or
inconsistent outcome, i.e. the transaction will have the ACID properties: atomicity,
consistency, isolation and durability.

- OPTIMISTIC TRANSACTION [9], allows for concurrent accesses to happen but detects
them and repairs conflicts.

- TWO-WAY LOCKING [9], does not allow for concurrent access by locking the resources,
while on the same time trying to avoid deadlocks.

The following patterns complete the big picture in this domain and are not completed yet but
are considered as future work:

- VARIABILITY MODEL, defines explicitly all the possible variation points in a configura-
tion, their constraints, as well as all possible variants of those variation points and their
corresponding QoS values.

- VARIANT CONFIGURATION, considers a service configuration as a choice of specific
variants for all the variation points of the VARIABILITY MODEL

- UPDATE THE VARIANTS, makes sure that when specific variants are chosen as part of
the VARIANT CONFIGURATION, their QoS values in the VARIABILITY MODEL will be
updated according to the actual values derived from EVALUATING THE QOS.

- SECURE CONFIGURATION, make a configuration of services inaccessible to third parties
that are unauthorized or not trusted.

Evaluate QoS

Reflection

Monitor the
Services

Re-Configure the
Services at Runtime

Variability
Model

Interceptor

Plugin

Microkernel

Client-Server

Peer-to-Peer

Implicit
Invocation

Explicit
Invocation

Publish-
Subscribe

Remote Procedure
Calls

Broker

Message Queueing

ACID Transaction

Layers

Indirection Layer

Secure
Configuration

Transaction
Management Security

Service
Communication

Service
Interaction

Service Structure

Adaptation
Infrastructure

VariabilityOptimistic
Transaction

Two-way
locking

Variant
Configuration

Update the
Variants

Structre the Services

Pipes and Filters

Blackboard

Model-View-
Controller

Presentation-
Abstraciton-Control

Pattern

1-to-1
relation

1-to-many
relation

Hub and Spoke

Reconfiguration
Process

Figure 1 - An overview of patterns and their relations for the domain of Adaptive Service-Centric Systems

2.1 MONITOR THE SYSTEM

Context You have a service-centric system at hand, running on a highly dynamic environ-
ment and you need to enforce some sort of a feedback loop into the system.

Problem How do you examine a highly dynamic Service-Centric System in order to un-
derstand its current status with respect to the QoS requirements?

Forces • A Service-Centric System needs to be looked upon from different viewpoints
and different levels to get the full picture.

• Monitoring a Service-Centric System is not a one-time task. As the system is
dynamic, its QoS is bound to change during run-time thus requiring continuous
monitoring serving a constant feedback loop.

• In a complex Service-Centric System, comprised of multiple aggregated ser-
vices, it can be overwhelmingly difficult to pinpoint what exactly needs to be
monitored and how exactly this monitoring can be performed.

• There is always an associated cost with monitoring a Service-Centric system, as
it implies an interference with its internal workings, probing its inputs and out-
puts. Such interference may pose additional overhead to the system’s non-
functional requirements and especially performance.

Solution Therefore: Monitor the service-centric system continuously from three differ-
ent aspects: the individual services, the execution environment of the system,
and the context of the application user.
The type of the information that must be monitored depends on the application do-
main and QoS requirements. However the monitoring information itself can in-
variably be classified in three categories: a) information about the services per se
(e.g. response times, failure rates, and exceptions thrown), b) information about the
execution environment (network bandwidth, runtime platform, processor load) and
c) information about the application users (user device GPS coordinates).

The collection of the monitoring information with respect to the individual services
can be achieved by intercepting and subsequently inspecting system services. It is
usually enough to inspect merely the inputs and outputs of the services, because
most third-party services are “black boxes” but also for reasons of performance.
The LAYERS architectural pattern provides a good solution by intermediating a
layer capturing service requests and responses. A relevant, more specialized pattern
is also the INDIRECTION LAYER [1] that hides the details of services by acting as an
ADAPTER or a FAÇADE, first inspecting and subsequently forwarding invocations of
services and responses. Finally, if a BROKER [3] is used for the interaction between
the services, then it can also be used as an observing mechanism by logging and
storing the service interaction information.

The execution environment of the system is usually defined by the network (serv-
ers, routers, topology, bandwidth etc.), the various distributed nodes that execute
the services locally and also the central platform of the service-centric system itself.
The reason for monitoring the execution environment and not only the services
themselves and their compositions, is that the execution environment may also pro-
vide critical information for evaluating the QoS. For example if a service that is

executed on server X, showed very good performance in the beginning and then it
slowed down, violating the SLA, we need to know the cause of the problem. If
there was temporary network congestion we can still use the same service from
server X by tolerating the passing congestion or requesting a different route. If
however the problem lies in the server throughput, then we should request this ser-
vice or a similar service from other servers.

On the other hand, the context of the application user is typically defined in a user
profile in the client device (e.g. a mobile phone). The user profile may, for instance,
contain user goals and preferences, usage data, user stereotype, demographic data
etc. [24]. The user profile needs to be monitored as it changes over time and subse-
quently affects the QoS requirements, e.g. when the user‘s physical location
changes or when the user changes her preferences.

The most efficient and least intrusive way to receive this monitoring information by
the execution environment or the application user, is by an IMPLICIT INVOCATION
[1] mechanism such as PUBLISH-SUBSCRIBE [3]: events generated by both the envi-
ronment and the user, are sent to the corresponding subscribers-monitors. Alterna-
tively EXPLICIT INVOCATION [1] can also be used by having the monitors probing
the system resources at regular time intervals.

Example Consider an e-learning service-centric system where the service user is a student
that needs to follow an e-course on mathematics. The system is comprised of a ser-
vice that provides multimedia reading material, a second service that offers video
conferencing and application sharing with a tutor and a third service that offers on-
line assessment. The monitoring information in this case focuses on the second ser-
vice as it may be a potential performance bottleneck for the system. The monitor
can measure the bit rate as well as the resolution of the video stream sent to the user
and the response time of the shared application.

Benefits

The application of the pattern entails the following positive and negative conse-
quences:

• All relevant information can be monitored in order to have the complete and cor-
rect status of the running system.

• The different types of monitoring information are separated and thus give a clear
picture of the different system aspects.

• Monitoring the system can sometimes be weaved into normal program flow, e.g.
by using INTERCEPTORS or BROKERS.

Liabilities

• Intercepting the services may prove to be extremely cumbersome since it dis-

rupts the normal application program flow.

• Monitoring arbitrary QoS attributes is not always an easy task, as some attributes
are not measurable or quantitative or merely easy to pinpoint.

• Monitoring information is too basic to actually derive QoS attributes. Further
processing needs to take place while EVALUATING THE QOS.

2.2 EVALUATE QOS

Context You have MONITORED THE SYSTEM, and thus acquired and stored data about the
system status.

Problem The QoS of the running system can not be evaluated merely by examining the
status of the system.

Forces • The actual QoS that the service-centric system delivers during runtime is vari-
able. The system must satisfy its QoS requirements at all times.

• Monitoring information cannot usually be directly related to QoS requirements.
The former concerns various low-level details of the state of the running system.
The latter is more high level and concerns generic non-functional properties of
the system.

Solution Therefore: Analyze the monitoring information in order to deduce QoS in-
formation that can be evaluated with respect to the fixed QoS requirements.
This analysis can be done by combining the monitoring information (i.e. in-
formation from individual services placed in the context of the execution envi-
ronment and the application user) with the service configuration.

The analysis of the Monitoring information can take three different paths, ranging
from simple to more complex:

1. If the QoS can be directly monitored, then the monitoring information
equals the QoS information and can be directly compared to the QoS re-
quirements. This is usually the case for simple service configurations and
quantitative QoS requirements.

2. If the QoS cannot be directly monitored and the monitoring information
contains contextual information about the execution environment and the
application user, then the monitoring information can be transformed into
QoS information by combining it with the current runtime service configu-
ration.

3. If the QoS cannot be directly monitored and the monitoring information
does not contain contextual information about the execution environment
and application user, then the evaluation of this contextual information is
also necessary. After the context is established, as in the second path, the
monitoring information must be combined with the current runtime service
configuration, in order to derive QoS information.

The runtime service configuration at any given time follows a specific structure,
according to which services interact with each other. There are several architectural
patterns that can be used to STRUCTURE THE SERVICES, according to the require-
ments and the Service Level Agreement at hand. The runtime service configuration
can be modelled according to the architectural patterns, and thus allow for evalua-
tion of complex quality attributes. For example the availability of a PIPES AND
FILTERS system depends on the availability on the ‘weakest link’ rather than the
sum of the availabilities of the different pipes and filters.

The context of the service-centric system, i.e. the execution environment and the
application user are usually specified in terms of a context model, based on a table
or ontology, by filling in the values according to the monitoring information. Natu-

rally, an ontology is more powerful than a table in terms of expressiveness and in-
ference abilities. On the other hand, the QoS information can be calculated accord-
ing to individual metrics. Such metrics vary according to the individual quality at-
tributes that are measured (e.g. performance, availability, reliability), the applica-
tion domain and the system per se.

Once the QoS information is established, it can be weighed against the QoS re-
quirements, in order to determine “where the application is at”. For each QoS re-
quirement an individual decision may be taken with a quantitative evaluation of
how well it is satisfied in the current application. Qualitative evaluation is also pos-
sible but it will lead to more uncertainty and risk when the system RECONFIGURES
THE SERVICES.

If the evaluated QoS does not satisfy the Service-Level Agreement, it can be used
as input in the next step of this process which is RECONFIGURING THE SERVICES AT
RUNTIME. A major problem that arises after the evaluation of each quality attribute
is that they cannot all be optimally satisfied in the system, and thus the architect
needs to perform some kind of trade-off analysis: which quality attributes to sup-
port and which ones to compromise. This is a cumbersome task to perform during
run-time as the well-known architecture evaluation methods, e.g. Architecture
Trade-Off Analysis Method (ATAM) [12], Cost-Benefit Analysis Method (CBAM)
[13], are design-time methods. The architect needs to set domain-specific trade-off
rules in place that are based on the interactions among quality attributes and the
STRUCTURE OF THE SERVICES. The trade-off decisions must always be taken in ac-
cordance to the Service-Level Agreement, in order to ensure that compromised
quality attributes do not cause a breach in the latter.

Example In the same e-learning application as in the previous pattern, consider that the
shared application is a whiteboard that both the student and the tutor can draw on.
The QoS requirement is that the synchronization of the shared whiteboard in the
two screens should not exceed 0.5 sec. Our system thus periodically checks the
monitoring information, in specific the response time, based on the timestamp of
the packets and expresses the time delay for each package as a QoS value.

Benefits

The application of the pattern entails the following positive and negative conse-
quences:

• The monitoring information is translated into concrete QoS information that can
be evaluated with respect to the requirements of the Service-Level Agreement. A
context model of the system and user is also formulated during the process.

• Separating the analysis of the monitoring information and the evaluation with
respect to the QoS requirements decouples the corresponding components that
will implement these activities, thus increasing flexibility.

Liabilities

• The context model may become overly too complex resulting in miscalculated

QoS information.

• Calculating QoS information from monitoring data brings additional overhead to
the system responsiveness to QoS failure.

• Designing the ontology for the context model of system and user is usually done
by experiments on the domain and is prone to errors.

2.3 RECONFIGURE THE SERVICES AT RUNTIME

Context You have EVALUATED THE QOS of a service-centric system and you need to make
the system adaptive in case it fails to satisfy some of the QoS attributes.

Problem The service-centric system may satisfy its QoS requirements at design-time,
but due to its dynamic nature it may eventually fall short in specific QoS re-
quirements during runtime. This will lead to a breach of the Service-Level
Agreement (SLA) between service providers and service consumers.

Forces • The QoS requirements are specified in a Service-Level Agreement which may be
legally binding for the Service Provider.

• The system needs to satisfy the QoS requirements not only at design time but
most importantly at run-time.

• The service-centric system is dynamic in its nature due to e.g. failure of third-
party services, network problems, adjustable user demands or variable node
workloads. Another aspect of this dynamic nature is that some QoS requirements
may change during run-time or they may not be known until the run-time.

• Due to the dynamic nature of service-centric systems, their QoS may deteriorate
during run-time, probably also violating the SLA.

Therefore: Provide a special infrastructure or mechanisms in the system ar-
chitecture that allow for runtime self-reconfiguration of the service-centric
system in order to resume a state where QoS requirements are satisfied.

Solution

The reconfiguration should take place, at any given time, by choosing one among
alternative configurations and enacting that configuration in the system at run-time.
The reconfiguration will not be performed by the service user or the service pro-
vider but by the service-centric system itself, since it is the one that MONITORS THE
SYSTEM and EVALUATES THE QOS and thus knows when, what and how must be
reconfigured [21].

A service-centric system can perform the run-time reconfiguration with the help of
a special adaptation infrastructure, by separating the main core of the application
from the parts that change in specific variation points. The adaptation infrastructure
is part of the run-time platform of a service-centric system and it can be designed
according to a few architectural patterns from the Adaptation Infrastructure View
[1]. A first option is to use a MICROKERNEL [3], which realizes invariant core ser-
vices, as well as a way to plug in variant internal services. Another option is to use
REFLECTION [3], which hides all structural and behavioural aspects into modifiable
meta-objects, and thus separates them from application-logic services. Furthermore
a third solution can be an INTERCEPTOR [17] infrastructure, where services can be
updated or new services can be added, by registering any number of interceptors
that implement those services. Finally a PLUGIN [6] infrastructure can solve the
problem of runtime reconfiguration by providing a centralized point of plugging in
new or updated services without rebuilding or redeployment.

An alternative or complementary to having a special adaptation infrastructure is to
change the STRUCTURE OF THE SERVICES itself at runtime. Of course, modifying the
system architecture at runtime may impose severe overhead and discontinuation of
the normal system functionality. Also, restoring a failed QoS to the values set by

the SLA, usually requires smaller-scale modifications rather than a substantial re-
engineering of the system. But there are cases where architectural patterns of simi-
lar scope can be used as alternatives, for example CLIENT SERVER and PEER TO
PEER, or SHARED REPOSITORY and ACTIVE REPOSITORY.

In order to change the service configuration, knowledge about what can change is
required. This can be achieved by creating and maintaining a VARIABILITY MODEL
of the system [22], where the variation points and all possible variants of those
variation points are specifically documented. In these terms a service configuration
is a VARIANT CONFIGURATION where a set of specific variants are chosen for all the
different variation points. Therefore the set of variation points and their variants is
sufficient to formulate all possible service configurations and estimated QoS for
each configuration. Each variant of a variation point is also associated with specific
QoS values in order to be able to choose the appropriate variants that will satisfy
the QOS for the whole system. While the variation points are mainly fixed at design
time (with few exceptions), the variants can be specified in both design time and
the run time. Constant UPDATING OF THE VARIANTS after EVALUATING THE QOS is
of paramount importance in order to ensure that the QoS values of each variant in
the VARIABILITY MODEL are up to date. Finally, the possible configurations must be
able to be validated before they can be enacted in the running system. The correct-
ness of a specific configuration can be defined in terms of presence of deadlocks, or
variability constraints.

Another important aspect of service composition reconfiguration, is the high-level
strategy that can be applied. In specific, there are four generic strategies that archi-
tects can choose from: a) they can continuously try to choose the optimal configu-
ration, reacting to each evaluation of the system state with respect to the QoS re-
quirements; b), they can perform the reconfiguration proactively, when there are
signs or threats of potential QoS failure; c) they can perform reconfiguration as a
remedy, by instantly reacting when QoS has indeed failed; d) they can act as in c)
but delay the reconfiguration for a short while, in case the QoS is restored rapidly.

The transition from the existing configuration to the new one may be implemented
by substituting a bound service for an alternative service or by changing the struc-
ture and the flow of the service composition. The enactment of the configuration
itself is achieved, e.g. by deploying a new orchestration in the BPEL engine of the
application system or by reconfiguring a service proxy.

Example In the same e-learning application as in the previous patterns, consider that the
shared whiteboard is not synchronized well leading to a confusing interaction be-
tween the student and the tutor. A variability point of this system is the communi-
cation mechanism between the services. The configurator chooses to override the
BROKER that was previously used with REMOTE PROCEDURE CALLS in order to im-
prove the performance by coupling the student’s component with the tutor service.
Before this reconfiguration can take place the system’s transaction manager ensures
that the state of the whiteboard (i.e. what has been drawn) is consistent between the
two remote components.

Benefits

The application of the pattern entails the following positive and negative conse-
quences:

• The Service-Centric System is reconfigurable at runtime, following the changes

of the dynamic system context.

• A feedback loop is used to ensure that the system does not fall short on the QoS
requirements. The Service-Level Agreement will not be compromised.

Liabilities • The verification of a chosen configuration is bound to the specific verification
technique used. It may prove that it will not meet the QoS requirements, just like
the previous configuration.

• A reconfiguration that modifies a number of services may end up having services
that contradict each other with respect to the desired QoS requirements.

• Having a service reconfiguration mechanism may bring severe overhead to the
whole service-centric system, as it may become intrusive to the normal workflow
of the system, both in the client side and within the various services.

• The services in a service composition may have numerous and complex depend-
encies between each other, that can not easily be modeled in the variability
model.

• The variability model may become too complex thus causing problems in speci-
fying effective service compositions.

• There are several alternative service configurations that have a different impact
on the QoS. Making an architectural evaluation, possibly including a trade-off
analysis, for all the configurations is very resource-consuming.

2.4 STRUCTURE THE SERVICES

Context You are architecting a service-centric system, that needs to run on a highly dynamic
environment and at the same time satisfy hard QoS requirements.

Problem The services need to be structured in such a way that they provide the re-
quired functionality and satisfy the QoS.

Forces • The QoS requirements are specified in a Service-Level Agreement which is le-
gally binding for the Service Provider.

• Reusing architectural design experience is always essential in software develop-
ment, saving time and money and preventing from re-inventing the wheel. There
are a number of architectural patterns that solve recurrent problems in architec-
tural design and can be reused in different contexts.

• Several issues need to be resolved by the service structure, and especially distri-
bution, communication, message exchange, security and transaction manage-
ment.

Therefore: Structure the services by addressing different areas of concern,
with the following being a standard minimum: the overall partitioning and
control mechanism, the message exchange, the distributed communication, the
transaction management and the security.

Solution

A service composition structured in LAYERS [3], is horizontally partitioned into in-
teracting parts, that perform a specific level of functionality and still remain de-
coupled from each other. In a service-centric system, there should exist a control

mechanism that maintains an overall organization scheme by orchestrating the
various services. In case of data flowing through different processing nodes, PIPES
AND FILTERS [3] are more appropriate (or variants such as BATCH
SEQUENTIAL[20]): different services connected in order to successively process
streams of data. On the other hand, if the system is heavily data-centric, or does not
follow a deterministic processing or interaction model, a BLACKBOARD [3]] can be
used (or its variants such as SHARED REPOSITORY [1] or ACTIVE REPOSITORY [1]):
one of the services acts as central repository of data, that can be accessed by the
rest of the services. The service acting as the data store may be active or passive,
and it is possible that there are more than one data stores. Service-centric systems
that are highly interactive with the users may benefit from a MODEL-VIEW-
CONTROLLER (MVC) [3] or a PRESENTATION-ABSTRACTION-CONTROL (PAC) [3]
structure, where the user interface logic is decoupled from application logic and
data. In MVC terms, there may be multiple services as Views, presenting data to
the user, multiple services as Controllers of the Views, and a service acting as the
Model. In PAC terms, the services may be structured into a tree-like hierarchy,
where each level of the tree aggregates functionality from the lower level.

The configuration of the services needs to determine the mechanism for message
exchange by the independent services in order to satisfy the QoS requirements.
Several architectural patterns from the Component Interaction View [1] can be used
to define how the services interact by exchanging messages and thus deliver spe-
cific QoS. By using EXPLICIT INVOCATION (called “Communicating Processes” in
[4,20]) the services are tightly coupled in various aspects (e.g. network location,
service name and parameters) in order to improve performance or have an immuta-
ble topology or force a client always to initiate the invocation etc. CLIENT-SERVER
[4] and PEER-TO-PEER [4] are two patterns that use mostly EXPLICIT INVOCATIONS:
in the former a distinction is made between producers and consumer services, while
in the latter all services may play both roles. On the other hand, IMPLICIT
INVOCATION [19, 20] provides temporal, spatial, functional or other forms of de-
coupling between the services. In this case performance can be compromised in
order to increase adaptivity, flexibility, availability, interoperability etc. PUBLISH-
SUBSCRIBE [4] is a pattern heavily based on IMPLICIT INVOCATIONS: it allows ser-
vice consumers to register for specific events and event producers to publish spe-
cific events that reach a specified number of consumers. It thus support flexibility,
locality of changes and optimized performance of the subscribers.

Another parameter in service structuring and also that can be modified during ser-
vice reconfiguration is the communication of the distributed services. There exist
several architectural patterns from the Distributed Communication View [1], that
determine the QoS and specifically performance, interoperability, scalability, loca-
tion transparency etc. REMOTE PROCEDURE CALLS [23] extend the well-known pro-
cedure call abstraction to distributed systems (remote services are invoked as if
they were local) and ensure fast performance. Furthermore, the BROKER pattern [3],
or its specialization, the HUB AND SPOKE pattern [15] is a typical way to separate
the communication mechanism from the application logic in a distributed environ-
ment, by hiding and mediating all communication between the services, thus add-
ing flexibility but compromising performance. Alternatively, MESSAGE QUEUING
[23] may be used to decouple the consumer and producer services by implementing
intermediate queues that store and forward messages appropriately. The availability

and reliability of the system is increased but with a cost on performance.

A precondition to enacting the configuration is to ensure the safe management of
transactions, i.e. to safeguard the system state. The starting point to tackle this
problem is to enforce ACID TRANSACTIONS [7] that preserve the classical ‘atomic-
ity, consistency, isolation and durability’ properties. There are several strategies to
follow when enacting a configuration, e.g. to finishing current transactions without
accepting new ones, or to interrupting current transactions and perform rollbacks.
Naturally classical transaction management techniques can be used in this case,
such as OPTIMISTIC TRANSACTION, TWO-WAY LOCKING or MULTIVERSION TWO-
WAY LOCKING [9].

An important aspect of the service configuration is to ensure SECURE
CONFIGURATIONS that cannot be accessed or tampered by unauthorized third par-
ties. Numerous security patterns can be used to achieve this purpose, e.g. SINGLE
ACCESS POINT, SECURE ACCESS LAYER [8, 18]. Finally the INTERCEPTOR architec-
tural pattern is often used to handle cross-cutting issues, such as security and trans-
action management.

The RECONFIGURATION OF THE SERVICES may change any of the above mecha-
nisms, in order to satisfy the QoS requirements. Also the STRUCTURE OF THE
SERVICES largely determines the service configuration, which is combined with the
monitoring information during the MONITORING OF THE SYSTEM.

Example In the same e-learning application as in the previous patterns, the student is con-
nected to a number of services through the HUB AND SPOKE pattern: the hub is a
central service that acts as a BROKER between the student and the rest of the third
party services. This is a specialization of the Broker pattern that extends it from bi-
lateral to multi-lateral interactions. The student and the hub play the roles of a cli-
ent and server respectively.

Benefits

The application of the pattern entails the following positive and negative conse-
quences:

• The Service-Centric System is structured according to specific architectural pat-
terns that solve problems pertinent to specific areas of concern.

• Architectural design experience in the form of architectural patterns is reused
saving precious resources.

• A common language is established among stakeholders for the description of the
system architecture using patterns.

Liabilities • The combination of more than one architectural patterns makes it necessary to
perform trade-offs in quality attributes as the latter are supported or opposed by
the different patterns.

• The dynamic nature of service-centric systems entails a risk that the patterns
chosen for the service configuration may become obsolete. RECONFIGURING THE
SERVICES AT RUNTIME by changing the service structure may prove to be a cum-
bersome process.

3 Epilogue

In order for service-centric systems to be self-adaptive, they must be able to self-detect when
and what to change and make this change autonomously. This ability includes several activi-
ties that take place at runtime: monitoring the system context, evaluating if the current QoS
fulfils the QoS requirements, and reconfiguring the service composition when necessary. In
essence this is a more general problem of balancing adaptivity and flexibility on one side and
keeping the rest of the quality attributes within acceptable boundaries on the other side. The
reconfiguration process patterns presented here build upon several existing and well-
established architectural patterns, setting them in the domain of service-centric systems and
correlating them. Even though, this paper is focused on the domain of Service-centric sys-
tems, these patterns could be applied in the more general context of reconfigurable distributed
systems. In the future, this pattern language is planned to be completed by customizing archi-
tectural patterns in this domain, and also by adding new patterns to tackle security and trans-
action management.

Acknowledgements

This research has been partially sponsored by the European Union funded project SeCSE
(Service-Centric System Engineering) under contract no. IST-511680. I would like to thank
Dieter Hammer, Ivor Bosloper, Johanneke Siljee, and Jos Nijhuis for providing valuable input
on Dynamic Service-Centric Architectures. Last but certainly not least, many thanks to my
shepherd Andy Longshaw, for his constructive feedback.

References

1. P. Avgeriou and U. Zdun. Architectural patterns revisited – a pattern language. In 10th
European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, Ger-
many, July 2005.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services - Concepts, Architectures
and Applications, Springer Verlag, 2004.

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns, John Wiley & Sons, 1996.

4. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,
J., Documenting Software Architectures: Views and Beyond, Addison-Wesley, 2002.

5. J. Duggan, "Simplify your business with a SOA approach", Gartner, Report AV-18-6077,
2002.

6. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
7. M. Grand. Java Enterprise Design Patterns: Patterns in Java Volume 3, John Wiley &

Sons, 2001
8. Neil Harrison, Brian Foote, Hans Rohnert. Pattern Languages of Program Design 4, Addi-

son-Wesley, 1999.
9. K. Henrdikx, E. Duval, H. Olivie. Managing Shared Resources. In 5th European Confer-

ence on Pattern Languages of Programs (EuroPlop 2000), Irsee, Germany, July 2000.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Neil%20Harrison&rank=-relevance%2C%2Bavailability%2C-daterank/103-6769290-6803017
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Brian%20Foote&rank=-relevance%2C%2Bavailability%2C-daterank/103-6769290-6803017
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Hans%20Rohnert&rank=-relevance%2C%2Bavailability%2C-daterank/103-6769290-6803017

10. Hull, R., Christophides, V., Su, J., 2003. EServices: A Look Behind the Curtain. Proceed-
ings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 9-12, 2003, San Diego, CA.

11. Kazman, R., Bass, L., Abowd, G., & Webb, M. "SAAM: A Method for Analyzing the
Properties of Software Architectures", Proceedings of the 16th international conference on
Software engineering (ICSE 1994), Sorrento, Italy, pp. 81 - 90

12. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, "The Archi-
tecture Tradeoff Analysis Method," Proceedings of the Fourth International Conference
on Engineering of Complex Computer Systems (ICECCS98), August, 1998.

13. Rick Kazman , Jai Asundi , Mark Klein, Quantifying the costs and benefits of architec-
tural decisions, Proceedings of the 23rd International Conference on Software Engineer-
ing, p.297-306, May 12-19, 2001, Toronto, Ontario, Canada

14. Nico Lassing , Perlof Bengtsson , Hans van Vliet , Jan Bosch, Experiences with ALMA:
architecture-level modifiability analysis, Journal of Systems and Software, v.61 n.1, p.47-
57, March 2002

15. E. G. Nadhan, "Service-Oriented Architecture: Implementation Challenges", Microsoft
Architects Journal, MSDN, vol. 2, April 2004.

16. R. Schmelzer, "Service-Oriented Process Foundation Report", ZapThink, Report ZTR-
WS108, 2003.

17. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and Dis-
tributed Objects. Pattern-Oriented Software Architecture. J. Wiley and Sons Ltd., 2000.

18. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad Se-
curity Patterns Integrating Security and Systems Engineering, J. Wiley and Sons Ltd.,
2005.

19. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an emerging discipline.
Prentice Hall, 1996.

20. M. Shaw and P. Clements, A Field Guide to Boxology: Preliminary Classification of Ar-
chitectural Styles for Software Systems, Proceedings of the 21st International Computer
Software and Applications Conference (COMPSAC), pp. 6 – 13, 1997

21. Johanneke Siljee, Ivor Bosloper, Jos Nijhuis, Dieter Hammer, DySOA: making Service
Systems Self-Adaptive, The Third International Conference on Service Oriented Comput-
ing (ICSOC05), Amsterdam, The Netherlands, December 12-15, 2005.

22. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, "COVAMOF: A Framework for Mod-
eling Variability in Software Product Families", The Third Software Product Line Confer-
ence (SPLC 2004), Boston, USA, 2004.

23. M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns. Pattern Series. John Wiley and
Sons, 2004.

24. D. Vogiatzis, A. Tzanavari, S. Retalis, P. Avgeriou and A. Papasalouros. The Learner’s
Mirror - Designing a User Modelling Component in Adaptive Hypermedia Educational
Systems. In 9th European Conference on Pattern Languages of Programs (EuroPlop
2004), Irsee, Germany, July 2004.

25. W3C, "SOAP Version 1.2", Recommendation 2003.

	Abstract
	1 Introduction
	2 The Patterns
	2.1 Monitor the System
	2.2 Evaluate QoS
	2.3 Reconfigure the Services at Runtime
	2.4 Structure the Services

	3 Epilogue
	Acknowledgements
	References

