

 University of Groningen

First Workshop on Sharing and Reusing Architectural Knowledge
Lago, Patricia; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lago, P., & Avgeriou, P. (2006). First Workshop on Sharing and Reusing Architectural Knowledge. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-10-2022

https://research.rug.nl/en/publications/d49dcd20-756b-4350-a2ab-1aed2ca6cf1c

• Contacting any of the organizers and authors of the SELMAS
papers for more information.

Finally, a high-quality set of workshop and invited papers is going
to appear in the fifth edition of the book Software Engineering for
Multi-Agent Systems (LNCS, Springer, 2007). In addition, this
book will include several invited papers. The SELMAS 2007
workshop is planned for the next year at ICSE 2007, and we look
forward to an excellent program also in the next year.

Acknowledgements
The organizers would like to thank all those who contributed with
submissions to the workshop and the program committee members
who invested many hours reviewing such submissions. In addi-
tion, we thank the session chairs for the fine work in coordinating
the sessions and the keynote speakers for the interesting talks.
Finally, we would sincerely like to thank again the SELMAS 2006
participants for their active involvement in the meeting and the
level of their contributions to the debate.

References
[1] Choren, R., A. Garcia, H. Giese, H-f. Leung, C. Lucena, A.
Romanovsky (Eds.). Proceedings of the 5th Workshop on Soft-
ware Engineering for Large-Scale Multi-Agent Systems. Interna-
tional Conference on Software Engineering (ICSE 2006),
Shanghai, China, 2006.

[2] Choren, R., A. Garcia, C. Lucena, A. Romanovsky (2005).
Software Engineering for Multi-Agent Systems III, Research Is-
sues and Practical Applications. Lecture Notes in Computer Sci-
ence, State-of-the-Art Survey, Vol. 3390, Springer, 2005.

[3] Cristian, F. A Recovery Mechanism for Modular Software. In:
Proceedings of the Fourth International Conference on Software
Engineering (ICSE 1979), p. 42-50, 1979.

[4] Garcia, A., R. Choren, C. Lucena, P. Giorgini, T. Holvoet, A.
Romanovsky (2006): Software Engineering for Multi-Agent Sys-
tems IV, Research Issues and Practical Applications. Lecture
Notes in Computer Science, State-of-the-Art Survey, Vol. 3914,
Springer, 2006.

[5] Garcia, A., C. Lucena, J. Castro, F. Zambonelli, A. Omicini
(2003): Software Engineering for Large-Scale Multi-Agent Sys-
tems, Research Issues and Practical Applications. Lecture Notes in
Computer Science, State-of-the-Art Survey, Vol. 2603, Springer,
2003.

[6] Lucena, C., A. Garcia, A. Romanovsky, J. Castro, and P.
Alencar (2004): Software Engineering for Multi-Agent Systems II,
Research Issues and Practical Applications. Lecture Notes in
Computer Science, State-of-the-Art Survey, Vol. 2940, Springer,
2004.

[7] Parnas, D., H. Würges. Response to Undesired Events in Soft-
ware Systems. In: Proceedings of the Second International Con-
ference on Software engineering (ICSE 1976), p. 437-446, 1976.

First Workshop on Sharing and
Reusing Architectural

Knowledge
Patricia Lago
Vrije Universiteit

Amsterdam, The Netherlands
patricia@cs.vu.n

Paris Avgeriou
University of Groningen

 Groningen, the Netherlands
<paris@cs.rug.nl>

Abstract
The first SHARK (SHAring and Reusing architectural Knowledge)
workshop, attempted to explore the state of the art as well as the state of
the practice in this emerging field. This workshop report presents the
themes of the workshop, it summarizes the results of the discussions held
about various topics, and suggests some research topics that are
worthwhile to pursue in the future.

Keywords
Architectural knowledge, Architectural decisions, Software Architecture,
Software Reuse.

1. INTRODUCTION
Part or most of software systems is provided through COTS components,
outsourcing, open source, multi-party collaboration and distributed devel-
opment teams. Software architecture plays an increasingly important role
to manage the complex interactions and dependencies between the stake-
holders and to provide a central artifact that can be used for reference by
them. Existing notational and documentation approaches to software ar-
chitecture typically focus on the components and connectors and fail to
document the design decisions that resulted in the architecture as well as
the organizational, process and business rationale underlying the design
decisions. This results in high maintenance cost, high degrees of design
erosion and lack of information and documentation of relevant architec-
tural knowledge.

The workshop focuses on current approaches, tackling this problem:
methods, languages, notations, tools to extract, represent, share, use and
re-use architectural knowledge. Architectural Knowledge (AK) is defined
as the integrated representation of the software architecture of a software-
intensive system (or a family of systems), the architectural design deci-
sions, and the external context/environment.

The theme of sharing and reusing architectural knowledge is com-
plex and multi-faceted, both in its core and in its relevance to other ad-
vances of software engineering. Overall, it involves at least the following
topics:

- Notations to model architectural knowledge

- Ontologies, domain models and meta-models for architectural
knowledge

- Communicating, sharing and using architectural knowledge

- Case studies for sharing and reusing architectural knowledge

- Tools to extract, represent, share or use architectural knowledge

- Knowledge grids for sharing architectural knowledge

- Methods and tools to master the evolution of architectural
knowledge

ACM SIGSOFT Software Engineering Notes Page 32 September 2006 Volume 31 Number 5

mailto:patricia@cs.vu.n

- Software patterns as a form of architectural knowledge

- Sharing architectural knowledge in the context of service-oriented
architectures (SOA) or Model-Driven Engineering (MDE)

- Communicating architectural knowledge in open, inner and private
communities

- Traceability between requirements, architectural design decisions
and architectural models

The workshop was organized in two parts: in the morning session,
the accepted papers were presented, followed by short discussions regard-
ing each paper; in the afternoon session, first a set of discussion topics
was defined among the participants and afterwards two parallel discussion
groups elaborated on those topics.

The rest of this workshop report is organized as follows: Section 2
describes the results of the discussion that took place during the two par-
allel discussion groups and the conclusions reached by the participants.
Section 3 outlines the publication plans for the research and position pa-
pers, presented in the workshop, while Section 4 concludes with a brief
epilogue.

2. DISCUSSION OUTCOME
The presentation of the position and technical papers and the sub-
sequent discussion for each paper formed a set of essential topics
for further dialogue among the workshop participants. These top-
ics can be grouped into two categories:

- Architectural Knowledge as a product, which concerns
architectural knowledge per se, and includes the following topics:

o Architectural design decisions, architectural solutions (e.g.
patterns, tactics, reference architectures) and the mutual
influence between decisions, solutions and the system quality
attributes.

o Meta-models, domain models, and conceptual models of
architectural knowledge.

o Notations, languages and views for describing and
documenting architectural knowledge.

- Architectural Knowledge as a process, which deals with using
architectural knowledge during the software development
lifecycle, and includes the following topics:

o Use cases (or goals) of architectural knowledge.

o Tools, services, and application-generic infrastructure for
supporting the use of architectural knowledge.

o Methods for discovery and reuse of architectural knowledge.

o Mechanisms combining architectural knowledge with other
fields/disciplines (e.g. variability, aspect-oriented paradigm,
versioning).

It is noted that these two categories have overlapping themes which
makes it rather difficult to separate them in a discussion. For example a
language must be supported by a tool, or the concepts defined in a meta-
model must participate in use cases.

The workshop participants split into two discussion groups, each one
dealing with one of the above two groups of topics. The discussions
within the two groups are summarized in the following subsections.

2.1 Architectural Knowledge as a product
The discussion begun with the topic of architectural decisions, architec-
tural solutions and the relationship between both of them and the quality
attributes. First, we argued that the requirements, both functional and non-

functional in the form of quality attributes must be explicit and linked to
the architectural decisions. The mapping between requirements and deci-
sions is not 1-to-1 but N-to-M. Second, the mapping between the deci-
sions and the architectural solutions, also has an N-to-M cardinality.
Figure 1 depicts these relations between the sets of requirements, deci-
sions and solutions. Even though each decision is the selection of one
among several alternative solutions, this is not depicted in Figure 1 in
order to keep it simple. In theory, the traceability between these three sets
would be highly desirable, as the bridge between requirements and archi-
tectural solutions would be established. In practice, this traceability is
difficult due to the lack of knowledge on how to explicitly and unambi-
guously relate the sets, as well as the effort required to do so. The way the
requirements, solutions and quality attributes can be related, could poten-
tially be resolved by introducing architectural viewpoints and views
(views and viewpoints are defined in [2]).

Figure 1 – Mapping between requirements, Architectural Decisions
and Architectural Solutions.

The topic of architectural views that describe architectural decisions was
debated between the participants. The approach by Capilla et al. [1], that
was presented earlier in the workshop was the starting point for relating
decisions with requirements and architectural solutions through the con-
cept of views. Specifically, the participants argued that architectural de-
sign decisions are horizontal and cross-cutting through the software
architecture and thus should be described in a view of their own rather
than be scattered in other views. This view can be called “Decision View”
and is seen as complementary to the Use Case view as described in [4],
which transcends the rest of the architectural views. The Decision View is
related to the Use Case view or any other view that describes the require-
ments: every decision should in fact satisfy partially or wholly one or
more requirements. This is in accord to the aforementioned relationship of
requirements and architectural design decisions as an N-to-M relation-
ship(see Figure 1). However, the participants stressed the importance of
having not only functional requirements (as in use cases) but also quality
attributes related to architectural design decisions. A rather large impedi-
ment is foreseen in this approach: it is difficult to provide a notation or
language in order to realize the mapping between the views. There is a
gap between the semantics of requirements, architectural design decisions
and architectural solutions, as they come from different paradigms and
abide to different metamodels. This is of course not a problem specific to
design decisions, but a general problem in software engineering.

The discussion group also addressed the potential tool support in depict-
ing views as well as the relation and traceability between requirements,
design decisions and architectural solutions. Since in practice, architec-
tural knowledge is seldom documented, tool support is viewed as the only
means to encourage this documentation systematically, if possible to
semi-automate it. The size and complexity of software development pro-
jects render tool support mandatory rather than desirable. The traceability
issue is also relevant here, as an appropriate tool must not only be able to

ACM SIGSOFT Software Engineering Notes Page 33 September 2006 Volume 31 Number 5

document architectural design decisions but also to link them to both the
requirements and the architectural solutions. Another important feature
that would bring added value to the software architect, would be to pro-
vide a “playback” of the decisions taken and their impact on the architec-
tural solutions and the quality attributes. In this way, the architect can
have an overview of the architecting process and thus be able to backtrack
or modify the architecture during the development lifecycle.

The discussion group went on to talk about metamodels, and conceptual
models of architectural knowledge. Though much discussion on architec-
tural decisions and knowledge can be found in the literature (for example
see [3][5][6]), we first needed to clarify the distinction between two dif-
ferent types of knowledge in order to avoid the ambiguity that is usually
associated with this term:

- The application-generic knowledge, that architects have
implicitly in their heads, from their former experience in working
in one or more domains. It is a form of a “library” of knowledge,
which consists of e.g. architectural patterns, tactics or reference
architectures or even other software engineering techniques, e.g. in
requirements engineering. This type of knowledge can be generally
applied in several applications independently of the domain.

- The application-specific knowledge, of a specific application
during the initial development or evolution of that application.
This involves all the decisions that were taken during the
architecting process of a particular system and the architectural
solutions that implemented the decisions.

These two types of knowledge are related in the sense that application-
generic knowledge is used in order to take decisions for a single applica-
tion and thus construct application-specific knowledge. We could simply
claim that reusing application-generic knowledge results in the creation of
application-specific knowledge.

We then adopted the position that software architecting can be regarded
as a decision-making activity: architects consider a number of alternative
solutions that could solve the problem statement, and select the one that is
deemed as the optimal. We proposed to take this one step further, and
consider this decision-making process as a problem-solving activity: the
stakeholders define the problem to be solved and the architect selects the
optimal solution from a set of alternative solutions.
Figure 2 gives an overview of this process.

Figure 2 – The architecting process as a problem-solving activity

We propose the following elements as the core concepts in the problem
statement:

- The functional requirements and the non-functional requirements,
or quality attributes.

- The domain or business model that sets the space where the
application exists in.

- The constraints that shape the selection of the solution (e.g.
organizational constraints such as processes and resources)

- The technologies, practices or standards that are important and can
be used in this application.

All the elements of the problem statement are set by one or more of the
stakeholders, including the architect who is a special kind of a stake-
holder.

The architect then takes the problem statement as input and tries to iden-
tify a set of alternative solutions that could solve it. In order to achieve
that, the architect uses the application-generic knowledge as discussed
above, for example architectural patterns, architectural tactics or reference
architectures. Each alternative solution that the architect finds is accom-
panied with at least a rationale, as well as both positive and negative con-
sequences on the system and its quality attributes. The architect
subsequently chooses one of the alternative solutions that optimally ad-
dresses the problem statement. This choice is in fact an architectural deci-
sion and it is a result of a tradeoff among the alternative solutions.

Figure 3 – The architectural design funnel

The solutions chosen, or in other words the decisions taken, are subse-
quently used through a feedback loop for the next iteration of the archi-
tecting process until the architecture of the system is considered stable.
The iterative nature of the decision-making process is depicted in Figure
3. The solution space is in the beginning wide and unconstrained and is
gradually constrained while the architect finalizes more and more of the
architectural decisions. In each decisions set, the existing decisions may
be optimized and more decisions may be added. Eventually, the solution
space is constrained to a minimum by the final decisions set, that consti-
tutes the application-specific knowledge.

The discussion group further clarified that in practice, architects find only
one solution and not multiple alternatives to choose from. This is due to
the hard constraints in industrial practice (e.g. time to market or budget)
that forces architects to intuitively come up with a single solution based
on their existing application-generic knowledge. In effect, this results in
the architects not exploring the solution space and potentially missing
optimal solutions.

2.2 Architectural Knowledge as a process
As a start the group tried to get a common understanding of the four sub-
topics around AK usage. As a first result, all the topics have been better
defined and refined (see Figure 4). From their experience, the participants
identified two types of use cases: basic use cases, which are general pur-
pose and provide the building blocks to define special purpose use cases;
and composite use cases which correspond to special purpose use cases
aiming at the achievement of a well defined result. The second topic
(tools, services and infrastructure) identifies technologies supporting AK

ACM SIGSOFT Software Engineering Notes Page 34 September 2006 Volume 31 Number 5

usage in general. They 'implement' use cases, as well as methods and
mechanisms to their realization. The term 'method' (corresponding to the
third topic) has been defined as a number of process steps, and the term
'mechanism” (fourth topic) as smaller means or technical solutions to be
used in combination with others.

Figure 4 – Topics in Architectural Knowledge usage

The second result of this discussion around terminology is that we could
not completely decouple the four topics: composite use cases are always
explained in terms of basic use cases, tools always aid a certain (set of)
composite use cases, mechanisms vary depending on tools or composite
use cases, and methods support a specific AK usage. We think that AK
usage can be explained in terms of the four topics, and that they together
can characterize AK usage from multiple perspectives. Therefore we used
a table to identify first the list of composite use cases in using AK, and
then for each composite use case define the required elements for each of
the other topics. We obtained a table with the following columns:

[basic use cases]-[composite use cases]-[tools]-[meth]-[mech]

The discussion led to four major composite use cases:

• AK quality assessment (i.e. architecture assessments based on AK
usage),

• learning AK, both positive and negative (like bad decisions or
inconsistencies),

• architecting (defined as creating and checking AK),
• sharing AK (defined as making AK available to others).

We agreed that these composite use cases seem exhaustive in defining
AK usage.

We could make the following observations:

1. Some direct relations cannot be drawn. We are not always
able to draw the correspondence between topics not placed in
adjacent columns. For example, “learning AK” (composite use
case) can be composed of at least “browsing” and “navigation”
(composite use case), and learning can be achieved by
“training” (method). If we consider the method “training” we are
not able to link it directly in terms of “browsing” and
“navigation”: to do that we need to use the composite use case
“learning AK” as intermediate key reading concept. This
suggests a kind of hierarchy in the topics.

2. It is difficult to draw boundaries. Almost all participants used
or are using a use case driven approach in researching AK
usage. This is very intuitive, and it is also effective in industrial
investigations and experimentations. Nonetheless, it is less
effective if we aim at drawing the boundaries between e.g.
composite use cases. For example, architecting AK and sharing
AK could be supported by the same tools, and it is difficult to
decouple the features aimed at one or at the other. After some
discussion we opted for a consumer/producer approach as
drawn in Figure 5. In this way we naturally split the composite
use cases among the two types of stakeholders: producers
architect AK and thereafter make it available; consumers use
the available AK to either learn from it or carry out some
quality assessment.

Figure 5 - Boundary between AK producers and consumers

A third concluding observation is the following: the four topics (or as-
pects) described above are rather straightforward but still they seem very
effective in defining AK usage. The workshop working sessions have
been too short to be able to discuss extensively the various topics for all
composite use cases. In any case, we think that this represents a pragmatic
way to rationalize about the use cases and their building blocks with the
aim to define what is required whenever AK usage must be engineered.
The complete table has been distributed to all workshop participants.
Future work is needed in this respect. Possible collaborations have been
also discussed.

3. PUBLICATION ACTIVITIES
The papers accepted and presented in the workshop are available on the
ACM Digital Library. The paper abstracts and this report are also being
published in the ACM SIGSOFT Software Engineering Notes. Some of
the workshop papers will be also considered for an extended version to be
submitted to the section on Software Architecture of the Journal of Sys-
tems and Software.

4. EPILOGUE
In addition to the presented papers and the discussion they raised, the

workshop resulted in deeper insights about the open research issues in
sharing and reusing architectural knowledge. This report gives a summary
of these insights, and a starting point for future research efforts. The
workshop has verified the increasing interest on architectural knowledge
within the software engineering and architecture community. It also
helped to strengthen the links in this small but growing community. The
successful output of this workshop has encouraged the organizers to con-
tinue with a sequel in the near future.

5. ACKNOWLEDGMENTS
This workshop is part of the dissemination activities of the Dutch

Joint Academic and Commercial Quality Research & Development (Jac-
quard) program on Software Engineering Research via contract
638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural
knowledge.

We extend our thanks to all those who have participated in the or-
ganization of this workshop, particularly to the program committee,
which is comprised of: Jan Bosch, Nokia Research Center, Finland,
Rafael Capilla, Universidad Rey Juan Carlos, Spain, Torgeir Dingsoyr,
Sintef, Trondheim, Norway, Dieter Hammer, University of Groningen,
The Netherlands. Paola Inverardi, University of L'Aquila, Italy, Philippe
Kruchten, University of British Columbia, Canada, Eltjo Poort, Logi-
caCMG, The Netherlands, Antony Tang, Swinburne University of Tech-
nology, Australia, Hans van Vliet, Vrije Universiteit, The Netherlands,
Uwe Zdun, Vienna University of Economics, Austria

We also wish to thank the ACM SIGSOFT for granting the in-
cooperation support.

ACM SIGSOFT Software Engineering Notes Page 35 September 2006 Volume 31 Number 5

6. REFERENCES
[1] R. Capilla, F. Nava, S. Pérez, J.C. Duenas. A Web-based Tool for

Managing Architectural Design Decisions, Proceedings of the
Workshop on Sharing and Reusing Architectural Knowledge, co-
located at the International Conference on Software Reuse, 11-15
June, 2006, Torino, Italy.

[2] IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, IEEE Std. 1471-2000 (2000).

[3] A. G. J. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In Proceedings of WICSA 5, pages
109–119, November 2005.

[4] P. Kruchten. Architectural Blueprints. The “4+1” View Model of
Software Architecture, IEEE Software 12 (6), pp.42-50 (1995).

[5] P. Kruchten. An ontology of architectural design decisions in
software intensive systems. In 2nd Groningen Workshop on Software
Variability, pages 54–61, December 2004.

[6] J. Tyree and A. Akerman. Architecture decisions: Demystifying
architecture. IEEE Software, 22(2):19–27, 2005

Report on the International Workshop on
Service Oriented Software Engineering (IW-SOSE06)

Elisabetta Di Nitto

Politecnico di Milano
Milano, Italy

dinitto@elet.polimi.it

Robert J. Hall
AT&T Labs Research
Florham Park, USA

hall@research.att.com

Jun Han
Swinburne University of

Technology
Melbourne, Australia
jhan@ict.swin.edu.au

Yanbo Han
Chinese Academy of Sci-

ences
Beijing, China
yhan@ict.ac.cn

Andrea Polini
ISTI/CNR
Pisa, Italy

andrea.polini@isti.cnr.it

Kurt Sandkuhl

Jönköping University
Jönköping, Sweden

Kurt.Sandkuhl@ing.hj.se

Andrea Zisman
City University

London, UK
a.zisman@soi.city.ac.uk

Abstract
This paper presents a report of the International Workshop on
Service Oriented Software Engineering colocated with
ICSE2006. In particular, we shortly present the papers that
have been accepted for publication in the workshop proceed-
ings, the keynote speech, and the discussion topics that have
emerged during the workshop.

Introduction
 Software engineering practitioners and researchers continue to
face huge challenges in the development, maintenance, and use
of software systems. This has been even more prominent with
the new paradigm of service oriented computing in which ser-
vice integrators, developers, and providers need to create
methods, tools, and techniques to support cost-effective devel-
opment and use of dependable services and service oriented
applications. From a technological point of view, recent years
have seen the emergence of important standards enabling the
Service Oriented vision. However, the engineering of complex
and dependable service oriented software still lacks powerful,
effective methods and tools.

The International Workshop on Service Oriented Software
Engineering (IW-SOSE'06) took place on the the 27th and 28th
of May in Shanghai, China, together with the International
Conference on Software Engineering (ICSE 2006). The work-
shop focused on the presentations and discussions of a wide
range of topics related to the new paradigm of service oriented
software engineering and brought together researchers and
practitioners working in the areas of software system engineer-
ing and service-oriented.

The two-days workshop included (i) one invited key-note pres-
entation, (ii) presentations of 13 papers rigorously selected by
the Programme Committee, and (iii) open round table discus-
sions of the topics of the various papers presented in the work-
shop. The 13 papers included in the programme of the
workshop have been selected from a total of 27 submitted pa-
pers. Each submitted paper was reviewed by three members of
the Programme Committee.

The papers included in the programme of the workshop repre-
sent both industrial and academic perspectives of service ori-
ented software engineering and generated interesting
discussions. The papers have been organised into five sessions
covering a wide range of issues related to (a) service composi-
tion, (b) performance of service oriented systems, (c) service
description, (d) service discovery and binding, and (e) service
oriented system modelling and application. We present below a
brief description of the various sessions together with the titles,
author names, and abstract of each paper in the order that they
were presented in the workshop and a summary of the discus-
sions.

Program

Keynote Session – Supporting the Composition of Distrib-
uted Business Processes
The keynote speaker was Paolo Traverso, head of division at
ITC/IRST, Trento, Italy. His main research interests are in
automated planning, knowledge representation, meta-level rea-
soning, formal verification, and automated composition of web
services. In the following we report the abstract of his talk.

ACM SIGSOFT Software Engineering Notes Page 36 September 2006 Volume 31 Number 5

mailto:dinitto@elet.polimi.it
mailto:hall@research.att.com
mailto:jhan@ict.swin.edu.au
mailto:yhan@ict.ac.cn
mailto:andrea.polini@isti.cnr.it

