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Minimizing the symmetric difference distance
in conic spline approximation

Sunayana Ghosh and Gert Vegter

Abstract. We show that the complexity (the number of elements) of an op-
timal parabolic or conic spline approximating a smooth curve with non-
vanishing curvature to within symmetric difference distance ε is c1 ε

−1/4 +
O(1), if the spline consists of parabolic arcs and c2 ε

−1/5 + O(1), if it is com-
posed of general conic arcs of varying type. The constants c1 and c2 are ex-
pressed in the affine curvature of the curve. We define an equisymmetric conic
arc tangent to a curve at its endpoints, to be the (unique) conic such that the
areas of the two moons formed by this conic and the given curve are equal,
and show that its complexity is asymptotically equal to the complexity of
an optimal conic spline. We also show that the symmetric difference distance
between a curve and an equisymmetric conic arc tangent at its endpoints is
increasing with affine arc length, provided the affine curvature along the arc is
monotone. This property yields a simple and an efficient bisection algorithm
for the computation of an optimal parabolic or equisymmetric conic spline.

1. Introduction

In computer aided geometric design one of the central topics of research is the ap-
proximation of complex geometric objects with simpler ones. An important part
of this field concerns the approximation of plane curves and the asymptotic anal-
ysis of the rate of convergence of approximation schemes with respect to different
metrics. In Ghosh, Petitjean and Vegter [3] we determined the complexity, i.e.,
the number of elements, of parabolic and conic splines approximating a smooth
planar curve to within a given Hausdorff distance. In this paper we extend this
work by focusing on the symmetric difference distance. Recall that the symmetric
difference distance of two closed curves is the total area of the set-theoretic sym-
metric difference of the regions enclosed by these curves. The symmetric difference
distance of two curves that are not closed, but have common endpoints, is the
total area of the regions enclosed by the two curves. See Figure 1.



2 Sunayana Ghosh and Gert Vegter

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 1. The symmetric difference of the two curves is the total
area of the shaded regions.

Various error bounds and convergence rates have been obtained for several
types of (low-degree) approximation primitives. For the approximation of plane
convex curves by polygons with n edges, the order of convergence is O(n−2) for
several metrics, including the symmetric difference metric [5, 7, 12]. For approxi-
mation by a tangent continuous conic spline, the order of convergence, for a strictly
convex curve is O(n−5), where n is the number of elements of the conic spline, with
respect to the Hausdorff distance [3, 10]. Ludwig [6] considers optimal parabolic
spline approximation of strictly convex curves having monotone affine curvature
with respect to the symmetric difference metric.

In this paper we not only study optimal approximation — with respect to
the symmetric difference metric — of a strictly convex smooth curve by parabolic
splines, but also by conic splines. As in [6] and our earlier paper [3] we consider
convex curves that are affine spirals, i.e., curves with monotone affine curvature.
(For a definition of affine curvature and an overview of related concepts from
differential geometry we refer to Section 2.) We present the first sharp asymptotic
bound on the approximation error in terms of the symmetric difference distance
(and, consequently a sharp bound on the complexity of the approximation). We
implemented the approximation algorithm, and our experiments corroborate this
sharp bound for optimal parabolic spline approximation and near optimal conic
spline approximation. This near-optimal approximation scheme will be explained
later in this section.

1.1. Related Work

McClure and Vitale [7] consider the problem of approximating a convex C2−curve
C in the plane by an inscribed n−gon with respect to the symmetric difference
metric δS . They prove that, with regard to the symmetric difference distance the
optimal n−gon Pn, satisfies

δS(C, Pn) = 1
12

(

∫ l

0

κ1/3(s) ds
)3 1

n2
+ O(

1

n4
).
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Ludwig [6] shows that the symmetric difference distance of an optimal parabolic
spline with n−knots and a convex C4−curve C in the plane satisfies,

δS(C, Qn) = 1
240

(

∫ l

0

|k(u)|1/5 du
)5 1

n4
+ O(

1

n5
),

where u is the affine arc length parameter of the curve C. Schaback [10] introduces a
scheme that yields an interpolating conic spline with tangent continuity for a curve
with non-vanishing curvature, and achieves an approximation order of O(h5) with
respect to the Hausdorff distance, where h is the maximal distance of adjacent data
points on the curve. The problem of approximating a planar curve by a conic spline
has also been studied from a more practical standpoint by Farin [2], Pottmann [9],
Yang [13], and Li et al. [4]. The methods employed have some limitations, like the
dependence on the specific parametrization of the curve, the large number of conic
segments produced or the lack of accuracy and absence of control of the error.

Ghosh, Petitjean and Vegter [3] presents the first sharp asymptotic bounds
for an optimal parabolic and conic spline approximation for a sufficiently smooth
curve with non-vanishing curvature, with respect to the Hausdorff distance. The
complexity of an optimal parabolic spline approximating the curve to within Haus-
dorff distance ε is shown to be

N(ε) = (128)−1/4
(

∫ L

0

|k(s)|1/4 κ(s)5/12 ds
)

ε−1/4 (1 + O(ε1/4)).

Furthermore, the complexity of an optimal conic spline with respect to the Haus-
dorff distance is

N(ε) = (2000
√

5)−1/5
(

∫ L

0

|k′(s)|1/5 κ(s)2/5 ds
)

ε−1/5 (1 + O(ε1/5)),

where κ(s) is the Euclidean curvature, k(s) is the affine curvature and s is the arc
length parameter. Furthermore, bitangent conic arcs of affine spirals, i.e., conic
arcs tangent to the affine spiral at both endpoints, have some useful global prop-
erties. First, among the bitangent conic arcs of an affine spiral there is a unique
one minimizing Hausdorff distance. Furthermore, it is shown that the Hausdorff
distance between a curve and its optimal bitangent conic arc is a monotone func-
tion of arc length. This property gives rise to a simple bisection algorithm for the
computation of optimal conic splines.

1.2. Results of this paper

We consider the problem of optimally approximating a convex curve with respect
to the symmetric difference distance by parabolic and conic splines. Our derivation
of the complexity follows the lines of [3], but requires some new techniques to cope
with the peculiarities of the symmetric difference distance.
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Complexity of conic approximants. We show that the complexity N(ε), the num-
ber of elements of an optimal parabolic spline approximating the curve to within
symmetric difference distance ε, is given by

N(ε) = (240)−1/4
(

∫ ̺

0

|k(r)|1/5 dr
)5/4

ε−1/4 (1 + O(ε1/4)),

where k(r) is the affine curvature of a smooth convex curve γ at γ(r) and r is
the affine arc length parameter. An optimal conic spline approximates the curve
to within fifth order, with respect to the symmetric difference distance. More
precisely, we show that its complexity is given by

N(ε) = (7680)−1/5
(

∫ ̺

0

|k′(r)|1/6 dr
)6/5

ε−1/5 (1 + O(ε1/5)).

These bounds on the complexity are obtained by first deriving an expression for the
symmetric difference distance of a conic arc that is tangent to a (sufficiently short)
curve at its endpoints, and minimizes the symmetric difference distance among all
such bitangent conics. We derive explicit constants for the asymptotic expansion
of the symmetric difference distance as a function of arc length. Our method for
computing the asymptotic error bound of an optimal parabolic spline are different
from those of [6], and allow us to determine the optimal asymptotic error bound
in case of general conic splines as well. Obviously, our result for parabolic splines
match those of Ludwig [6]. Furthermore, for deriving the asymptotic error bounds,
we use the relation between affine curvatures of offset curves as proved in [3, Lemma
4.1], and the fact that conics have constant affine curvature.

We conjecture that there is a unique bitangent conic which minimizes the
symmetric difference distance to a smooth affine spiral. This property would be
the equivalent of the unicity of the bitangent conic minimizing the Hausdorff dis-
tance to the affine spiral, and would be of paramount importance for the design of
an algorithm computing the optimal approximant. However, there is another conic
spline achieving the same asymptotic bound on the symmetric difference metric,
that exhibits these features. More precisely, we introduce the equisymmetric bi-
tangent conic of an affine spiral, which is uniquely determined by the fact that the
two moons it forms with the affine spiral have equal area. An equisymmetric conic
spline is a tangent continuous conic spline all of whose elements are equisymmetric
bitangent conics of the affine spiral. The equisymmetric conic spline, has the prop-
erty that all moons formed by this spline and the affine spiral have equal area, and
we denote by Ces the spline that minimizes the symmetric difference distance to
the spiral among all equisymmetric conic splines. Furthermore, the complexity of
this equisymmetric conic spline as a function of the symmetric difference distance
to the affine spiral is asymptotically equal to the complexity of the optimal conic
spline with respect to this error metric. Therefore, we call the computation of the
optimal equisymmetric conic spline a near-optimal approximation scheme.

Algorithmic issues. We implement the near-optimal approximation scheme for
affine spirals. The symmetric difference distance between a section of an affine
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spiral and its equisymmetric bitangent conic arc is a monotone function of the arc
length of the spiral section. This useful property gives rise to an efficient, bisection
based algorithm computing the equisymmetric conic spline. For several curves we
compare the theoretical complexity of an optimal conic spline with the computed
number of elements in an equisymmetric tangent continuous conic spline, and find
that these numbers match almost exactly.

1.3. Paper overview

Section 2 reviews notions from affine differential geometry used in this paper.
Section 3 presents the global properties of equisymmetric bitangent arcs of an affine
spiral, like the monotonicity of the symmetric difference distance to the spiral as
a function of arc length. In Section 4 we derive the complexity of an optimal conic
spline with respect to the symmetric difference distance, and show that the optimal
equisymmetric conic spline has the same asymptotic complexity. The algorithm
is presented in Section 5, together with experimental results corroborating our
theoretical complexity bounds.

2. Mathematical Preliminaries

In this section we introduce some key concepts like affine curvature and affine
arc length parametrization from affine differential geometry briefly. These are re-
quired in understanding the asymptotic error bound expansion for the symmetric
difference distance , which is given for curves parametrized with affine arc length.
Straight lines and circular arcs are the only convex curves in the plane with con-
stant Euclidean curvature, whereas conics are the only curves in the plane with
constant affine curvature. The latter property is crucial for our approach, so we
briefly review some concepts and properties from affine differential geometry of
planar curves. See also Blaschke [1].

2.1. Affine Curvature

Recall that a regular curve α : J → R
2 defined on a closed real interval J , i.e., a

curve with non-vanishing tangent vector T (s) := α′(s), is parametrized according
to Euclidean arc length if its tangent vector T has unit length. In this case, the
derivative of the tangent vector is in the direction of the unit normal vector N(s),
and the Euclidean curvature κ(s) measures the rate of change of T , i.e., T ′(s) =
κ(s)N(s). Euclidean curvature is a differential invariant of regular curves under
the group of rigid motions of the plane, i.e., a regular curve is uniquely determined
by its Euclidean curvature, upto a rigid motion. The larger group of equi-affine
transformations of the plane, i.e., linear transformations with determinant one(in
other words, area preserving linear transformations), also gives rise to a differential
invariant, called the affine curvature of the curve. To introduce this invariant, let
I ⊂ R be an interval, and let γ : I → R

2 be a smooth, regular plane curve. The
curve γ is parametrized according to affine arc length if

[γ′(r), γ′′(r)] = 1. (2.1)



6 Sunayana Ghosh and Gert Vegter

Here [v, w] denotes the determinant of the pair of vectors {v, w}. It follows
from (2.1) that γ has a non-zero Euclidean curvature. Conversely, every curve
α : J ⊂ R → R

2 with non-zero Euclidean curvature satisfies [α′(s), α′′(s)] 6= 0, for
s ∈ J , so it can be reparametrized according to affine arc length. Note that the
property of being parametrized of being parametrized according to affine arc length
is an invariant of the curve under equi-affine transformations. If γ is parametrized
according to affine arc length, then differentiation of (2.1) yields [γ′(r), γ′′′(r)] = 0,
so there is a scalar function k such that

γ′′′(r) + k(r) γ′(r) = 0. (2.2)

The quantity k(r) is called the affine curvature of the curve γ at γ(r). A regular
curve is uniquely determined by its affine curvature, up to an equi-affine trans-
formation of the plane. At a point of non-vanishing Euclidean curvature there is
a unique conic, called the osculating conic, having fourth order contact with the
curve at that point (or, in other words, having five coinciding points of intersection
with the curve). The affine curvature of this conic is equal to the affine curvature
of the curve at the point of contact. Moreover, the contact is of order five if the
affine curvature has vanishing derivative at the point of contact. (The curve has
to be C5.) In that case the point of contact is a sextactic point. See [1] for further
details.

Conics have constant affine curvature. Solving the differential equation (2.2) shows
that a curve of constant affine curvature is a conic arc. More precisely, a curve
with constant affine curvature is a hyperbolic, parabolic or elliptic arc iff its affine
curvature is negative, zero or positive, respectively.

2.2. Affine Frenet-Serret frame

The well known Frenet-Serret identity for the Euclidean frame, has a counterpart
in the affine context. More precisely, let γ be a strictly convex curve parametrized
by affine arc length. The affine Frenet-Serret frame {t(r), n(r)} of γ is a moving
frame at γ(r), defined by t(r) = γ′(r) and n(r) = t′(r), respectively. Here the dash
indicates differentiation with respect to affine arc length. The vector t is called the
affine tangent, and the vector n is called the affine normal of the curve. The affine
frame satisfies

α′ = t, t′ = n, n′ = −k t. (2.3)

The affine Frenet-Serret identitites as given in equation (2.3) yield the following
values for the derivatives with respect to the affine arc length parametrization, of
the curve γ, upto order five

γ′ = t, γ′′ = n, γ′′′ = −k t,

γ(4) = −k′ t − k n, γ(5) = (k2 − k′′) t − 2k′ n.

(2.4)

Combining identities given in (2.4) with Taylor series expansion of γ at a given
point yields the following affine local canonical form of the curve.
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Lemma 2.1. Let γ : I → R
2 be a regular curve with non-vanishing curvature, and

with affine Frenet-Serret frame {t, n}. Then

γ(r0 + r) = γ(r0) +
(

r − 1
3!k0r

3 − 1
4!k

′

0r
4 + O(r6)

)

t0

+
(

1
2r2 − 1

4!k0r
4 − 2

5!k
′

0r
5 + O(r6)

)

n0

(2.5)

where t0, n0, k0 and k′

0 are the values of t, n, k and k′ at α(0).

3. Near optimal conic approximation of affine spiral arcs

The main result of this section concerns the equisymmetry property and the mono-
tonicity property of the symmetric difference distance. Both properties are global,
since the affine spiral is not necessarily short.

3.1. Intersections of conics and affine spirals

At this point we state some global properties of affine spirals.

Proposition 3.1. 1. A conic intersects an affine spiral in at most five points,
counted with multiplicity.

2. The osculating conics of an affine spiral are disjoint, and do not intersect the
spiral arc except at their point of contact.

A proof of this theorem is given in [8, Chapter 4]. The second part is an exercise
in [1, Chapter 1]. A modern proof is given in [11].

Now consider an affine spiral arc γ : [u0, u1] → R
2. Let Cu, u0 6 u 6 u1, be

the unique conic that is tangent to γ at its endpoints, and intersects it at the point
γ(u). For u = u0 and u = u1 the conic has a triple intersection with the curve, or,
in other words, it has a contact of second order with γ there.

Proposition 3.2. 1. Two conics Cu and Cu′ , u 6= u′, are tangent at γ(u0) and
γ(u1), and have no other intersections.

2. Conic Cu intersects arc γ at γ(u0), γ(u), and γ(u1), but at no other point.

For the proof of Proposition 3.2, we refer to [3, Section 3.1].

3.2. Uniqueness of equisymmetric conic

In this section we will concern ourselves with the global result, that given an
affine spiral arc γ : [u0, u1] → R

2, there is a unique bitangent conic Cσ, in the one
parameter family of bitangent conics, such that the areas of the two moons formed
by γ and Cσ are equal. Here Cσ is conic arc tangent to γ at γ(u0) and γ(u1), and
intersecting it at an interior point γ(σ). Moreover we show that with respect to the
equisymmetry property, the symmetric difference distance is an increasing function
of the arc length of the given affine spiral curve γ. Even though we do not show
the existence of a unique conic, which minimizes the symmetric difference distance
between the curve γ and itself, in the next section we prove that asymptotic error
expressions for the symmetric difference distance of a conic minimimizing area
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γ(u0)
γ−

σ

C−

σ

A−(σ)

γ(σ)

γ+
σ

C+
σ

A+(σ)

γ(u1)

Figure 2. Notations for symmetric difference distance for bitan-
gent conics

and an equisymmetric conic are the same upto terms of order 6, in the length of a
very short arc. Thus we that the approximation with respect to the equisymmetric
conic is very close to the optimal conic approximation. Before we state the main
result for this section, let us make some notations clear. Let Cσ be the bitangent
conic to γ, intersecting it at an interior point γ(σ). Let γ−

σ be the arc of γ, defined
over [u0, σ] and γ+

σ be the arc defined over [σ, u1]. Similarly C−

σ is part of the conic
arc in the interval [u0, σ] and C+

σ is part of the conic arc in the interval [σ, u1].
Let A−(σ) be the area between γ−

σ and C−

σ and let A+(σ) be the area between
γ+

σ and C+
σ . Therefore the symmetric difference between γ and Cσ is given by

δS(γ, Cσ) = A−(σ) + A+(σ). Figure 2, makes these notations clear.

Lemma 3.3 (Unicity of the equisymmetric conic). Given an affine spiral arc γ :
[u0, u1] → R

2 there is a one parameter family of bitangent conics which intersects
γ at γ(σ) as σ varies in the interval [u0, u1]. In this family of bitangent conics
there is a unique equisymmetric conic Cσ∗ (i.e., A(σ

∗) = A+(σ∗)).

Proof. We are given that γ : [u0, u1] → R
2 is an affine spiral curve, thus from

Proposition 3.2, we have that the family of bitangent conics are lying side by
side, as shown in the figure 3. Therefore it follows that the function A− is strictly
increasing as σ varies in the interval [u0, u1], moreover A−(u0) = 0. A+ is strictly
decreasing as σ varies in the interval [u0, u1], moreover A+(u1) = 0. Therefore, we
conclude that there exists a unique σ∗ such that A−(σ∗) = A+(σ∗). �

3.3. Monotonicity of the equisymmetric distance

If one endpoint of the affine spiral moves along the curve γ, the symmetric differ-
ence between the affine spiral and its equisymmetric conic arc is monotone in the
affine arc length of the affine spiral. This result shows that an adaptive method
can be used for the computation of a near optimal approximating conic arc. We
use this property for the implementation of the algorithm presented in Section 5.
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γ(u0)

γ(u1)

Figure 3. Family of bitangent conics, lying side by side, on an
affine spiral section

Proposition 3.4 (Monotonicity of symmetric difference along affine spiral arcs).
Let γ : I → R

2 be an affine spiral arc, where I is an open interval containing 0.
For ̺ > 0 let γ̺ be the sub-arc between γ(0) and γ(̺), and let β̺ be the (unique)
equisymmetric conic arc tangent to γ̺ at its endpoints. Then the symmetric dif-
ference between γ̺ and β̺ is a monotonically increasing function of ̺, for ̺ > 0

The proof of monotonicity of equisymmetric distance proceeds similar to the
monotonicity proof of the Hausdorff distance as given in [3]. Therefore, we omit
the proof and refer the reader to [3, Section 3.4], for the details of the proof.

4. Optimal approximation with conics

In this section our goal is to determine the symmetric difference distance of an
optimally approximating conic arc of an arc of γ, with affine arc length ̺. This
optimally approximating conic arc is tangent to γ at its endpoints. If the conic is a
parabola, these conditions uniquely determine the parabolic arc. If we approximate
with a general conic, there is one degree of freedom left, which we use to minimize
the symmetric difference distance between the arc of γ and the approximating
conic arc β. Moreover, we also give an asymptotic expansion of the symmetric
difference distance between the arc of γ and its unique equisymmetric conic arc.
We also show that the asymptotic expansion of the symmetric difference distance
for an optimal conic spline and an equisymmetric conic spline are equal upto terms
of order six in the arc length of the curve.

4.1. Complexity of conic splines

A bitangent parabolic arc, of a regular curve γ : I → R
2, is given by β : I×I → R

2,
and β has the following parametrization

β(r, ̺) = γ(r) + r2 (r − ̺)2 (P (r, ̺)t(r) + Q(r, ̺)n(r))
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A bitangent conic arc, of γ, intersecting γ at an interior point γ(σ), is given by
β : I × I × I → R

2, and the bitangent conic arc has the following parametrization

β(r, σ, ̺) = γ(r) + r2 (r − ̺)2 (r − σ) (P (r, ̺)t(r) + Q(r, ̺)n(r)).

Before we give the proof of the Theorem on asymptotic expansion of symmetric
difference distance , we state the Lemma 4.1 from [3], relating the affine curvatures
of offset curves with the affine curvature of the curve γ itself. This result is useful
since, parabolic and conic arcs are offset curves to γ, with constant affine curvature.
Throughout in this paper, we consider the curve γ to be smooth, but the theorems
can also be proved, where γ is a Cm−curve, for some finite value of m.

Lemma 4.1 (Affine curvature of offset curves). Let γ be a C∞−regular curve.

1. Let β : I × I → R
2 be a smooth function, such that, β(., ̺) is a curve tangent

to γ at γ(0) and γ(̺), for ̺ ∈ I. There are smooth functions P, Q : I×I → R

such that

β(r, ̺) = γ(r) + d(r, ̺) (P (r, ̺) t(r) + Q(r, ̺)n(r)),

where d(r, ̺) = r2 (r − ̺)2. Here t(r) and n(r) are the affine tangent and the
affine normal of γ, respectively. Furthermore, the affine curvature kβ(r, ̺) of
β(·, ̺) at 0 6 r 6 ̺ is given by

kβ(r, ̺) = k(0) + 8 Q(0, 0) + O(̺).

2. Let β : I × I × I → R
2 be a smooth function, such that, β(·, σ, ̺) is a curve

tangent to γ at γ(0) and γ(̺) and intersecting γ at γ(σ), for σ, ̺ ∈ I and
0 6 σ 6 ̺. If β also intersects γ at γ(σ), with 0 6 σ 6 ̺, then there are
smooth functions P, Q : I × I × I → R such that

β(r, σ, ̺) = γ(r) + d(r, σ, ̺) (P (r, σ, ̺) t(r) + Q(r, σ, ̺)n(r)).

Furthermore, the affine curvature kβ(r, σ, ̺) of β(·, σ, ̺) at 0 6 u 6 ̺ is given
by

kβ(r, σ, ̺) = k(0) + k′(0) r + 8 (5 r − σ − 2 ̺)Q(0, 0, 0) + O(̺2).

The asymptotic error bound for the parabolic case has already been computed
by Ludwig in [6]. We on the other hand use the general formula of symmetric
difference distance given by (4.3) and the property that the affine curvature of the
parabolic arc is zero. In fact our method allows us to generalize the result for any
general conic by using the fact that conics are the only curves in the plane, with
constant affine curvature.

Theorem 4.2 (Error in symmetric difference distance approximation). Let γ :
[0, ̺] → R

2 be a sufficiently smooth, regular curve with non-vanishing Euclidean
curvature.

1. Let β be the parabolic arc tangent to γ at the endpoints, the symmetric dif-
ference between the two arcs has the following asymptotic expansion

δS(γ, β) = 1
240 |k0|̺5 + O(̺6),
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where k0 is the affine curvature of γ at γ(0).
2. Let β be a bitangent conic arc, minimizing the symmetric difference, then

the symmetric difference between the two arcs has the following asymptotic
expansion

δS(γ, β) = 1
7680 |k

′

0|̺6 + O(̺7), (4.1)

where k′

0 is the derivative of the affine curvature of γ at γ(0).
3. Let β be the equisymmetric bitangent conic arc of γ, then the asymptotic ex-

pansion of the symmetric difference between the two curves is given by (4.1).
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Figure 4. The area of the shaded region is the symmetric differ-
ence distance between α and chord α(σ) and α(τ).

Proof. First we introduce some notation. The symmetric difference distance be-
tween a convex curve α and a chord α(σ)α(τ) is equal to the area of the shaded
region in Figure 4, and will be denoted by Aα(σ, τ). Then

Aα(σ, τ) = 1
2

∫ τ

σ

[α(u) − α(σ), α′(u)] du, (4.2)

and [v, w] denotes the determinant of two vectors v and w in R
2.

1. Consider the case when the approximating curve β is a parabolic arc. The
symmetric difference distance between γ and β in the interval [0, ̺] is given by

δS(β, γ) = |Aβ(0, ̺) − Aγ(0, ̺)|. (4.3)

Also see Figure 5 (left). Inserting the Taylor series expansion (2.5) of β, into (4.2),
we obtain

Aβ(0, ̺) = 1
12 ̺3 + 1

240

(

−k0 − 8 Q(0, 0)
)

̺5 + O(̺6),

and

Aγ(0, ̺) = 1
12 ̺3 − 1

240 k0 ̺5 + O(̺6).

Therefore, in view of (??)

δS(γ, β) = |Aβ(0, ̺) − Aγ(0, ̺)| = 1
30 |Q(0, 0)| ̺5 + O(̺6). (4.4)

Using the relation between affine curvatures of a curve γ and its offset β, given in
Lemma 4.1, and the fact that the affine curvature of a parabolic arc is zero every-
where, we obtain Q(0, 0) = − 1

8 k0 + O(̺). Substituting this expression into (4.4),
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Figure 5. Shaded region in the first figure shows symmetric dif-
ference distance given by (4.3) and shaded region in the second
figure shows symmetric difference distance given by (4.5).

we obtain

δS(γ, β) = 1
240 |k0| ̺5 + O(̺6).

2. The curve γ has a one parameter family of bitangent conic arcs. Our aim is
to give an asymptotic expression for the minimal symmetric difference distance .
In our case, the symmetric difference distance between γ and any bitangent conic
β is given by the equation (4.5), where σ = c ̺ + O(̺2), and c ∈ [0, 1], and the
bitangent conic β, intersects γ at γ(σ).

The symmetric difference distance between a given smooth convex curve γ

and a bitangent conic arc β, intersecting γ at γ(σ) is given by

δS(β, γ) = |Aβ(0, σ) − Aγ(0, σ)| + |Aγ(σ, ̺) − Aβ(σ, ̺)|. (4.5)

Also see Figure 5 (right). Using the Taylor series expansion (2.5) of γ and (4.2)
we derive

|Aβ(0, σ) − Aγ(0, σ)| = | 1
60 (5 c4 − 6 c5 + 2 c6)||Q(0, 0, 0)| ̺6 + O(̺7),

and

|Aβ(σ, ̺) − Aγ(σ, ̺)| = | 1
60 (1 − 2 c + 5 c4 − 6 c5 + 2 c6)| |Q(σ, σ, ̺)| ̺6 + O(̺7).

Furthermore, Q(σ, σ, ̺) can be written as

Q(σ, σ, ̺) = Q(0, 0, 0) + c ̺ Qu(0, 0, 0) + O(̺2),

plugging this expression into the expression for Aβ(σ, ̺) − Aγ(σ, ̺), we have

|Aβ(σ, ̺) − Aγ(σ, ̺)| = 1
60 |1 − 2 c + 5 c4 − 6 c5 + 2 c6| |Q(0, 0, 0)| ̺6 + O(̺7).

Using (4.5) we obtain

δS(γ, β) = 1
60 (|1−2 c+5 c4−6 c5 +2 c6|+ |5 c4−6 c5 +2 c6|)|Q(0, 0, 0)| ̺6 +O(̺7).

(4.6)
Since we want to find the asymptotic error bound for the conic minimizing sym-
metric difference distance , we minimize (4.6) with respect to c. We conclude that
δS(γ, β) is minimal for c = 1

2 . Therefore, equation (4.6) reduces to

δS(γ, β) = 1
192 |Q(0, 0, 0)| ̺6 + O(̺7).
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Referring to the Lemma 4.1, relating the affine curvature of offset curves, and the
fact that the affine curvatures of conics are constant we have that, Q(0, 0, 0) =
− 1

40 k′

0 +O(̺). Plugging in the expression for Q(0, 0, 0) into the last expression for
δS(γ, β), we have

δS(γ, β) = 1
7680 |k′

0| ̺6 + O(̺7).

3. The asymptotic expansion of the symmetric difference distance between the
given arc of γ and its unique equisymmetric conic arc β, is found by equating
|Aβ(0, σ) − Aγ(0, σ)| to |Aβ(σ, ̺) − Aγ(σ, ̺)|,yielding c = 1

2 . Further simplifying
we see that δS(γ, β) is of the same form as given by (4.1).
We therefore conclude that the asymptotic error bounds for a conic minimizing
symmetric difference and an equisymmetric conic are the same upto terms of order
6 in ̺, and therefore we say that the approximation with an equisymmetric conic
is near optimal. �

In the following corollary we give expressions for the symmetric difference between
a given convex curve γ and its best approximating parabolic and conic spline. The
corollary can be proven using the same techniques as used by McClure and Vitale
in [7] and Ludwig in [6].

Corollary 4.3 (Symmetric difference distance for an optimal spline). Let γ : I →
R

2 be a sufficiently smooth convex curve, with strictly increasing or decreasing
affine curvature.

1. The symmetric difference between γ and a best approximating parabolic spline
Pn with n knots is given by

δS(γ, Pn) = 1
240

(

∫ ̺

0

|k(r)|1/5 dr
)5 1

n4
+ O(

1

n5
).

2. The symmetric difference between γ and a best approximating conic spline
Cn with n knots is given by

δS(γ, Cn) = 1
7680

(

∫ ̺

0

|k′(r)|1/6 dr
)6 1

n5
+ O(

1

n6
).

Here γ is parametrized by the affine arc length parameter r and the affine
curvature of the curve γ is denoted by k.

In the following corollary, we give the asymptotic expression for the symmet-
ric difference distance between a given convex curve γ, and its equisymmetric conic
spline, with n knots and denoted by ESn. As the name suggests, an equisymmetric
conic spline, is a spline such that every element in it is an equisymmetric conic.

Corollary 4.4 (Symmetric difference distance for an equisymmetric conic spline).
The symmetric difference distance between γ and an equisymmetric conic spline
with n knots is given by

δS(γ, ESn) = 1
7680

(

∫ ̺

0

|k′(r)|1/6 dr
)6 1

n5
+ O(

1

n6
).
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Remark. The basic idea behind proving Corollary 4.3 or Corollary 4.4 is to define
functions called parabolic content and conic content. Given a sufficiently smooth
strictly convex curve γ : [σ, τ ] → R

2, its parabolic content is defined by λp =
∫ τ

σ |k(r)|1/5 dr. Similarly the conic content of γ is given by λc =
∫ τ

σ |k′(r)|1/6 dr.
These functions are useful in distributing the knots over the curve γ, in such a
way, that the symmetric difference distance of all the segments are equal. Here
each segment consists of a region bounded by the arc of γ lying between two knots
and the bitangent parabolic or the equisymmetric conic arc approximating it. The
aim for this kind of approximation is to distribute the knots uniformly over the
curve with respect to the parabolic or the conic content. In fact the methods used
by McClure and Vitale in [7] and Ludwig in [6] use this notion of content to show
that there exists an optimal spline minimizing the symmetric difference distance
for a curve with a given number of knots.

The preceding result represents an asymptotic expression for the number of
elements of an optimal parabolic or conic spline and also an asymptotic expression
for an equisymmetric conic spline in terms of the symmetric difference distance.

Corollary 4.5 (Complexity of parabolic and conic splines). Let γ : [0, ̺] → R
2 be a

sufficiently smooth regular curve with non-vanishing Euclidean curvature of length
̺, parametrized by affine arc length, and let k(r) be its affine curvature at γ(r).

1. The minimial number of arcs in a tangent conitnuous parabolic spline ap-
proximating γ to within symmetric difference distance ε is

N(ε) = (240)−1/4
(

∫ ̺

0

|k(r)|1/5 dr
)5/4

ε−1/4 (1 + O(ε1/4)).

2. The minimal number of arcs in a tangent continuous conic spline approxi-
mating γ, to within symmetric difference distance ε is

N(ε) = (7680)−1/5
(

∫ ̺

0

|k′(r)|1/6 dr
)6/5

ε−1/5 (1 + O(ε1/5)).

The expression for complexity of an equisymmetric conic spline is of the same
form as the expression for complexity of an optimal conic spline. The expressions
match in the most significant terms, implying that the minimal number of elements
in either case differ by a constant for a given value of ε. For all practical cases this
difference turned out to be small.

5. Implementation

We implemented an algorithm in C++ using the symbolic computing library GiNaC
1,

for the computation of an optimal parabolic or an equisymmetric conic spline,
based on the monotonicity property. For computing the optimal parabolic spline,
the curve is subdivided into affine spirals. Then for a local (symmetric difference)
stopping condition εl, the algorithm iteratively computes the optimal parabolic

1http://www.ginac.de
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(b) Parabolic spline approximation

Figure 6. Approximation of the spiral for ε ranging between
10−1 to 10−6.

arcs starting at one endpoint. We give a local, stopping condition, since from the
theory we have that, for a parabolic spline with symmetric difference distance ε

and n-knots, the local εl is given by εl = ε
n . Infact our algorithm gives an exact

match between the theoretical complexity and the experimental complexity, for
sufficiently small values of ε.

Below we present two examples of computations of optimal parabolic and
near optimal conic splines.

5.1. A spiral curve

We present the results of our algorithm applied to the spiral curve, parameterized
by α(t) = (t cos(t), t sin(t)), with 1

6π 6 t 6 2π.

Figures 6(a) and 6(b) depict the result of the algorithm applied to the spiral
for different values of the local error bound ε, for the approximation by conic arcs
and parabolic arcs respectively. There is no visual difference between the curve
and its approximating conic, for the values of ε under consideration.

Table 1 gives the number of arcs computed by the algorithm, and the theo-
retical bounds on the number of arcs for varying values of ε, both for the parabolic
and for the conic spline.
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ε Parabolic Conic
Exp./ Th. Exp./ Th.

10−1 9 4
10−2 15 6
10−3 26 9
10−4 46 13
10−5 82 21
10−6 146 33

Table 1. The complexity (number of arcs) of the parabolic spline
and the conic spline approximating the Spiral Curve. The theoreti-
cal complexity matches exactly with the experimental complexity,
for various values of the symmetric difference distance ε.
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(b) Parabolic spline approximation

Figure 7. Plot of the approximations of a part of Cayley’s sextic
for ε ranging from 10−1 to 10−6.

5.2. Cayley’s sextic

We present the results of our algorithm applied to the Cayley’s sextic, the curve
parameterized by α(t) = (4 cos( t

3 )3 cos(t), 4 cos( t
3 )3 sin(t)), with − 3

4 π 6 t 6 3
4 π.



Curve approximation with respect to symmetric difference distance 17

This curve has a sextactic point at t = 0. For all values of ε we divide the pa-
rameter interval into two parts [− 3

4 π, 0] and [0, 3
4 π] each containing the sextactic

point as an endpoint, and then approximate with conic arcs using the Incremental
Algorithm.

The pictures in Figure 7(a) give the conic spline approximation images for
Cayley’s sextic for different values of ε. The pictures in Figure 7(b) gives only the
parabolic spline approximation for Cayley’s sextic for different errors, since the
original curve and the approximating parabolic spline are not visually distinguish-
able.

Table 2 gives the number of arcs computed by the algorithm, and the theoret-
ical bounds on the number of arcs for varying values of εl, both for the parabolic
and for the conic spline.

ε Parabolic Conic
Exp./ Th. Exp./ Th.

10−1 6 4
10−2 12 4
10−3 20 6
10−4 34 10
10−5 60 16
10−6 108 24

Table 2. The complexity of the parabolic spline and the conic
spline approximating Cayley’s sextic. The theoretical complexity
matches exactly with the complexity measured in experiments,
for various values of the local symmetric difference distance ε.
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[12] L. Fejes Tóth. Approximations by polygons and polyhedra. Bull. Amer. Math. Soc.,
54:431–438, 1948.

[13] X. Yang. Curve fitting and fairing using conic splines. Computer-Aided Design,
36(5):461–472, 2004.

Sunayana Ghosh
Department of Mathematics and Computing Science
University of Groningen
PO Box 407
9700 AK Groningen
The Netherlands
e-mail: S.Ghosh@cs.rug.nl

Gert Vegter
Department of Mathematics and Computing Science
University of Groningen
PO Box 407
9700 AK Groningen
The Netherlands
e-mail: G.Vegter@cs.rug.nl


