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Chapter 2

Incompleteness and Contour Based Shape
Descriptors

Abstract

With inspiration from psychophysical researches of the human visual system we pro-

pose a novel aspect and a method for performance evaluation of contour based shape

recognition algorithms regarding their robustness to incompleteness of contours. We

use complete contour representations of objects as a reference (training) set. Incomplete

contour representations of the same objects are used as a test set. The performance of an

algorithm is reported using the recognition rate as a function of the percentage of con-

tour retained. We call this evaluation procedure the ICR test. We consider three types

of contour incompleteness, viz., segment-wise contour deletion, occlusion and random

pixel depletion. As an illustration, the robustness of two shape recognition algorithms to

contour incompleteness is evaluated. These algorithms use a shape context and a distance

multiset as local shape descriptors. Qualitatively, both algorithms mimic human visual

perception in the sense that recognition performance monotonously increases with the

degree of completeness and that they perform best in the case of random depletion and

worst in the case of occluded contours. The distance multiset method performs better

than the shape context method in this test framework.

2.1 Introduction

If we look at the objects in the Figure 2.1 we can instantly recognize birds, even

though 50% of the contour is removed segment-wise in the left image, the right half

of the contour is not visible in the middle image, and 80% of the contour points have

been removed (randomly) in the right image. This ability of human beings to recog-

nize objects with incomplete contours was studied by the psychologist E. S. Gollin
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(a) (b) (c)

Figure 2.1: A bird can be recognized even though (a) 50% of its contour has been removed

segment-wise, (b) its tail part is not visible (occluded), (c) 80% of the contour pixels have been

randomly removed.

(Gollin 1960). His objective was to investigate the performance of humans in recog-

nizing objects with incomplete contours as a function of developmental characteris-

tics, such as mental and chronological age and intelligence quotient. The subjects of

his experiments were children of different age groups and a group of adults. Gollin

used sets of contour1 images with different degrees of incompleteness (Figure 2.2)

and addressed the following questions: (1) In order to be recognized, how complete

the contours of common objects need to be? (2) How does training affect the recog-

nition performance in case of incomplete representations? The main conclusions

drawn by him through his experiments were: human ability to recognize objects

with incomplete contours (a) depends on intelligence quotient and (b) is improved

by training.

In the context of processing visual information using computers this aspect of

recognition of objects with incomplete contours is also very important. Figure 2.3

shows a natural image and two edge images, obtained from it. The middle image

was obtained by applying a bank of Gabor energy filters. It contains the contours

of the object of interest, viz., a rhinoceros, but it also contains a large number of

texture edges in the background that are not related in any way to the shape of the

rhinoceros. These texture edges will have a devastating effect on the performance

of all currently known contour based shape recognition algorithms. Advanced con-

tour detection methods based on surround suppression (Grigorescu et al. 2004),

(Grigorescu et al. 2003) succeed in separating the essential object contours from the

1By ”contours” in the following we refer to both occluding boundaries and inner edges that are de-

fined by boundaries of parts of an object or perceptually important color or texture regions.
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Figure 2.2: Example of image sets used in Gollin’s original test (Gollin 1960). The images

in set V are complete contour representations and the other sets are derived from set V by

removing segment-wise an increasing fraction of the contour.(Reproduced with permission

of author and publisher from: Gollin E. S. Developmental studies of visual recognition of

incomplete objects. Perceptual and Motor Skills, 1960, 11, 289-298. c©Southern University

Press 1960.)

texture edges, as illustrated by the right-most image in Figure 2.3, but at the same

time these methods have a certain negative side effect of depleting the contours of

the objects of interest. Hence, the robustness of shape recognition methods to con-

tour incompleteness is an issue of practical importance.

With inspiration from Gollin’s work we propose a novel attribute, viz., robust-

ness to incomplete contour representations, that any contour based object recognition

system/algorithm should have. The objective of this study is to show how the per-

formance of recognition systems/algorithms can be investigated in an idealized sit-

uation where: (a) complete contour representations of the objects to be recognized

form the reference (training) set or ”memory” of the system/algorithm, (b) incom-

plete contour representations of the same objects are derived from the afore men-

tioned complete representations and are used as a test set, (c) the performance of the

system/algorithm in recognizing the objects from these incomplete representations

is evaluated. The main reason behind choosing such an ideal situation is the ratio-
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nal logic that in order to perform well in a real world scenario (natural images) any

recognition system should first perform well in such idealized (simple) situations.

In his study (Gollin 1960) Gollin also worked in a similar idealized situation where

it was assumed that the subjects are familiar with the complete representations of

the objects to be recognized. To be precise, if any of the subjects could not recognize

the complete representations of any of the objects then his data were discarded from

the study.

We study the robustness of contour based shape recognition methods by com-

paring an object represented by incomplete contours with all objects in a reference

set represented by complete contours and determining the nearest neighbor. If the

nearest neighbor is the object from which the incomplete contour representation is

derived we consider the recognition to be correct, otherwise incorrect. We also pro-

pose possible extensions and generalizations of this basic framework.

In addition to Gollin’s method of segment-wise contour deletion (like set I to set

IV of Figure 2.2), we also consider other types of incompleteness, viz., occlusion and

random pixel depletion. We name the corresponding studies segment-wise deletion

test, occlusion test, and depletion test. Collectively we call these tests in short In-

complete Contour Representations (ICR) tests.

The choice of the shape recognition methods we study is limited by the condi-

tion that they use contour information. Unless necessary modifications are done,

methods which use other type of information fall outside the scope of this study.

For instance, Gavrila (Gavrila 1998) proposes a method based on the distance trans-

form in which every point of a binary object is characterized by its distance to

the object’s border. In our study objects are represented by their contour points

only and hence, the distance transform is not informative. Due to the same rea-

son Goshtaby’s shape matrix (Goshtaby 1985) cannot be directly assessed in this

framework either. Some other methods which do not use boundary information

are the medial axis transform approach described in (Davis 1986, Blum 1967, Pe-

leg and Rosenfeld 1981), and the moment based approach dealt with in (Belkasim

et al. 1991, Prokop and Reeves 1992). Latecki and Lakämper’s polygonal shape de-

scriptor (Latecki and Lakämper 2000) inherently assumes that an object is repre-

sented by a closed curve, and therefore this method first needs some modification

before it can be applied to objects represented by incomplete contours. Mokhtarian

and Mackworth’s curvature scale space method (Mokhtarian and Mackworth 1992),

which plays an important role in the MPEG-7 standard, computes the curvature

at every point of a closed curve (at different scales) to represent the shape of an

object. Hence, this method also needs some modification (e.g., estimation of the

missing portions of the contours) in order to be evaluated in the ICR test frame-

work. For further aspects of and references to shape analysis and object recogni-
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(a) (b) (c)

Figure 2.3: (a) Image of a rhinoceros in its natural habitat. (b) Result of edge detection with

a bank of Gabor energy filters. (c) Result of contour detection by a bank of Gabor energy

filters augmented with a biologically motivated surround suppression of texture edges. The

contours of the object of interest are better visible in the latter image but the suppression of

texture edges has resulted in a partial contour depletion. (Both algorithms are available as

web applets at www.cs.rug.nl/∼petkov)

tion methods see e.g., (Grigorescu and Petkov 2003, Loncaric 1998, Veltkamp and

Hagedoorn 1999, Nagy 2000, Pavlidis 1980, Aloimonos 1988, Basri et al. 1998).

We study the shape context method described in (Belongie et al. 2002) and the dis-

tance multiset method described in (Grigorescu and Petkov 2003) with respect to

their robustness to contour incompleteness of different types. In Section 2.2 we

briefly describe these methods. In Section 2.3 we present the basic experimental

design and the achieved results. We discuss some further aspects and possible test

extensions in Section 2.4. A summary and conclusions are presented in Section 2.5.

2.2 Contour Based Shape Recognition Methods

In both methods studied below the recognition of objects is done by computing dis-

similarity between the contour representations of two objects by using a point corre-

spondence paradigm. The point correspondences are found using shape descriptors

associated with the points.

2.2.1 Shape Context

A shape descriptor, called the shape context (Belongie et al. 2002), of a point p belong-

ing to the contour of an object is a bi-variate histogram in a log-polar coordinate
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system that gives the distribution of contour points in the surroundings of p. Let

an object O be represented by a set of contour points, O≡ {p1 . . . pN}. Formally, the

authors of this method define the shape context of a point p ∈ O as a vector in the

following way:

HO
K(p) = (h1(p), h2(p), . . . , hK(p)) (2.1)

where

hk(p) = card{q 6= p|q ∈ O, (q − p) ∈ bin(k)} (2.2)

is the number of contour points in the kth bin bin(k) and K is the total number

of histogram bins. The bins are constructed by dividing the image plane into K

partitions (in a log-polar coordinate system) with p as the origin. In this study we

use 5 intervals for the log distance r, and 12 intervals for the polar angle θ, so K = 60.

As radius of the surroundings on which the shape context is computed (the upper

bound of the radial distance r) we choose the diagonal of the image. In this way

this radius is constant for all experiments. As suggested in (Belongie et al. 2002), we

randomly choose 100 points (if available) from the contour of an object and calculate

their shape contexts. The shape of the object is described using the set of shape

contexts associated with the contour points in the following way:

SSC
O ≡ {HO

K(p)|p ∈ O}. (2.3)

The cost of matching a point pi that belongs to the contour of an object O1 of M

points, to a point qj from the contour of an object O2 of N points is defined as

follows:

cSC
i,j ≡ 1

2

K∑

k=1

[hk(pi) − hk(qj)]
2

hk(pi) + hk(qj)
(2.4)

An M ×N cost matrix of point-wise dissimilarities is constructed according to rela-

tion (2.4). Next we compute the dissimilarity between the shapes SSC
O1

and SSC
O2

of

the objects in the following way:

dSC(SSC
O1

, SSC
O2

) ≡
M∑

i=1

min{cSC
i,j |j = 1, . . . , N}. (2.5)

The authors of the shape context approach (Belongie et al. 2002) (and also the au-

thors of the distance multiset approach (Grigorescu and Petkov 2003)) use a different

method to compute the dissimilarity of two shapes from the point-wise dissimilar-

ity matrix. More specifically they use the Hungarian algorithm (Papadimitroiou and

Stieglitz 1982) of bipartite graph matching to solve the optimal assignment problem.

In our experiments we found that the simple method according to relation (2.5)
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gives sufficient2 results. Further aspects of the shape context method as presented

in (Belongie et al. 2002), such as a thin plate spline transform and certain sampling

considerations are not deployed here for simplicity and in order to make the two

algorithms used comparable regarding the number and complexity of processing

steps.

2.2.2 Distance Multiset

For a point p in the contour of an object O of N points, the distance multiset3 is for-

mally defined as follows (Grigorescu and Petkov 2003):

DO
N (p) = {ln(d1(p)), ln(d2(p)), . . . , ln(dN−1(p))} (2.6)

where dj(p) is the Euclidean distance between p and its jth nearest neighbor in O
and ln denotes the natural logarithm. In this approach the shape of an object O
≡ {p1 . . . pN} defined by a set of contour points is described by the set of distance

multisets in the following way:

SDM
O ≡ {DO

N (p)|p ∈ O}. (2.7)

Next, a cost c(X,Y ) of matching two distance multisets X and Y is defined, see

Appendix A.

Let cDM
i,j be the cost of matching a point pi in an object O1 represented by M

contour points to a point qj in an object O2 represented by N contour points, M ≤ N :

cDM
i,j ≡ c(DO1

N (pi),D
O2

M (qj)) (2.8)

Similar to relation (2.5) the dissimilarity between the shapes SDM
O1

and SDM
O2

is

defined as follows:

dDM (SDM
O1

, SDM
O2

) ≡
M∑

i=1

min{cDM
i,j |j = 1 . . . N}. (2.9)

Further aspects of the distance multiset method as presented in (Grigorescu and

Petkov 2003), such as the use of multiple features in a data structure called the la-

belled distance set are not deployed here for the reasons mentioned at the end of

Section 2.2.1.

2By sufficient we mean that the recognition rate is good enough to illustrate the conceptual aspects of

the ICR test framework. We use the same simple method to compute the dissimilarity of two shapes for

both algorithms that are studied.
3In (Grigorescu and Petkov 2003) the term distance set is used which is not always correct, since this

data structure might contain repeating elements, and should therefore be called multiset or bag.
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Figure 2.4: Row 1: Sample of the MPEG-7 dataset (Latecki et al. 1998) images used. Row

2: Contour images extracted from the images in row 1. Row 3: Rescaled contour images;

these images are considered as complete representations that comprise the memory of the

recognition system.

2.3 Experiments and Results

2.3.1 Dataset

As a data set we choose images from the MPEG-7 dataset (Latecki et al. 1998). It

contains 1400 images divided in 70 classes, each of 20 similar objects (e.g., apple,

bird, bat, etc). We choose one object from each class (Figure 2.4, row 1) and extract

the contours of the object using Gabor filters (Grigorescu et al. 2003) (Figure 2.4, row

2). The resulting 70 contour images are rescaled in such a way that the diameter

(maximum Euclidean distance between two contour pixels) is approximately the

same (76 pixels) for all objects, c.f., row 3 of Figure 2.4. These 70 rescaled contour

images are used as reference images in our experiments. The set of these images

corresponds to the complete representations, set V of Figure 2.2, used in Gollin’s

original study and form the ”memory” of the recognition system.
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Figure 2.5: Segment-wise deleted contour representations of objects (they correspond to the

incomplete representations of Gollin’s original study, set I to IV of Figure 2.2). The images are

obtained by retaining 70% (row 1) and 50% (row 2) of the contour pixels (compare with row

3 of Figure 2.4).

For the segment-wise deletion test incomplete representations (Figure 2.5) are con-

structed by randomly removing continuous segments of the contours and retaining

a given percentage of contour pixels from the above mentioned complete contour

representations.

For the occlusion test incomplete representations are created by removing a given

percentage of consecutive contour pixels starting from the leftmost (row 1 of Figure

2.6) or the rightmost pixel (row 2 of Figure 2.6 ) of an object. The choice of left and

right occlusion in our study is driven by the fact that in case of natural images the

object of interest is most commonly occluded either from the left or from the right.

For the depletion test the incomplete representations (Figure 2.7) are obtained by

randomly removing a given percentage of pixels from the contours of the complete

contour representations.

In our experiments the percentages of retained pixels are chosen in the following

way: from 2% to 4% in steps of 1%, from 5% to 85% in steps of 5%, and 100% for

the depletion test; from 5% to 85% in steps of 5%, and 100% for the segment-wise

deletion and the occlusion tests. For each type (segment-wise deletion, occlusion

and depletion) and degree of contour degradation we create 70 test images from

the corresponding reference images. All complete contour images and incomplete

contour images obtained with different types and percentages of incompleteness are

available in the web-site www.cs.rug.nl/∼petkov.
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Figure 2.6: Occluded contour representations of objects. The images are obtained by remov-

ing 40% of the contour from left (row 1) and right (row 2).

Figure 2.7: Depleted contour representations of objects which are constructed by randomly

removing 50% (row 1) and 80% (row 2) of the contour pixels.

2.3.2 Method

An incomplete representation (segment-wise deleted or depleted or occluded con-

tour image) obtained from one of the 70 reference images is compared with all 70

reference images and a decision is taken about which reference image the degraded

image is most similar to (nearest neighbor search). The comparison is based on a
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Figure 2.8: Segment-wise deletion test: The distance multiset method gives 100% recognition

rate when more than 20% of the contour is retained. The shape context method performs

reasonably well (more than 90% recognition rate) when more than 40% of the contour points

are retained. The results are for the MPEG-7 dataset.

shape dissimilarity computed using a given shape comparison algorithm, described

in Section 2.2. If the nearest neighbor is the reference image from which the de-

graded image was obtained, the recognition is considered correct, otherwise incor-

rect. If the nearest neighbor is found to be not unique then the recognition is also

considered incorrect. For each of the three tests (segment-wise deletion, occlusion,

depletion) and for each degree of contour image degradation, the corresponding 70

test images are compared with each of the 70 reference images and the percentage

of correct recognition is determined. The percentage of correct recognition P is ob-

served as a function P (c) of the percentage c of retained contour pixels. In the case

of occlusion test the percentage of correct recognition is calculated by averaging the

correct recognition rates with left and right occluded images for a given percentage

of retained contour.
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Figure 2.9: Occlusion test: The shape context method is particularly affected by occlusion

because the shape context descriptors of contour points near the occlusion boundary are rad-

ically different from the shape contexts of the points in the complete contours. The results are

for the MPEG-7 dataset.

2.3.3 Results

Figure 2.8, 2.9, 2.10 show the results of our experiments. In all three tests and for

both shape comparison algorithms, the recognition rate is a monotonously increas-

ing function of the percentage of contour retainment. In this respect the consid-

ered algorithms resemble the human visual system (Chihman et al. 2004), (Shelepin

et al. 2004), (Foreman and Hemmings 1987). Both methods perform worst in the

occlusion test and best in the depletion test, which also conforms with the recogni-

tion performance of humans, as occluded contour images carry the least amount of

shape information and depleted contour images carry maximum shape information

in the context of human visual perception (c.f., Figure 2.11).

In the case of the segment-wise deletion test (Figure 2.8) and the occlusion test

(Figure 2.9), the performance of the distance multiset method is appreciably better

than that of the shape context method for any percentage of retained contour pixels.

From the results of the depletion test (Figure 2.10) we see that both the shape context

method and the distance multiset method perform very well in recognizing objects
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Figure 2.10: Depletion test: The distance multiset method and the shape context method

perform very well for more than 5% and 40% retainment of contour pixels. The results are for

the MPEG-7 dataset.

Figure 2.11: Though amounts of incompleteness are same (80%) for three types of incomplete

representation yet the randomly depleted contour (left most) is most easily and the occluded

contour (right most) is least easily recognizable by humans as a butterfly.

with depleted contour representations, if more than 40% and 5%, respectively, of the

contour points are retained. The distance multiset method outperforms the shape

context method when the degree of depletion is very high, i.e., a very low percentage

(less than 40%) of the pixels are retained.
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For both methods the results of the occlusion test are worse than the results

in other tests. This is more evident for the shape context method and can be ex-

plained as follows: a contour point near the occlusion boundary has radically differ-

ent shape context from the same contour point in the reference (unoccluded) object

contour, since all the contour points on one side of the occlusion boundary are miss-

ing. Hence, such a point will have a large contribution to the dissimilarity between

occluded and unoccluded contours.

In general, the better performance of the distance multiset method can be ex-

plained by the fact that the proposed ICR tests give advantage to algorithms which

yield zero dissimilarity in a comparison of two objects represented by two sets of

points where one is a subset of the other. This property of the distance multiset

algorithm is explained in more detail below. (Another method with the same prop-

erty is based on the non-symmetric Hausdorff distance.) Let us consider two sets

A,B,⊂ R
2 such that

B = {f(x) : x ∈ A}, (2.10)

where f : R2 → R
2 is defined as follows:

f(x) = Lx + t,∀x ∈ R
2, (2.11)

L being a 2 × 2 orthogonal matrix (|det(L)| = 1) and t ∈ R
2. Note that the transfor-

mation described by (2.11) preserves the Euclidean distance between points (isom-

etry). The following special forms of f are of particular interest:

(a) L = I (the identity matrix) and t = 0: identity transformation, B = A.

(b) L = I and t 6= 0 : pure translation, B is a translated version of A.

(c) det(L) = 1, t = 0 : pure rotation, B is a rotated version of A.

(d) det(L) = −1, t = 0 : pure reflection, the elements of B are obtained by

reflecting elements of A across a straight line.

So if A is the set of contour points of an object O1 then B is the set of contour

points of an object O2 that is derived from O1 through any of the transformations

described in (a) through (d) or any combination there of.

Lemma

Let B be obtained from A according to (2.10 - 2.11) and let C be a subset of B,

C ⊂ B, card(C) ≥ 2. (2.12)

It holds

dDM (SDM
C , SDM

A ) = 0 (2.13)

where SDM
C and SDM

A are the shapes, described by distance multisets, correspond-

ing to C and A, respectively.
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Figure 2.12: Sample of incomplete contour representations of affine transformed objects used

in a segment-wise deletion test (compare with rows of Figure 2.4).

The proof of this lemma is included in Appendix B at the end of the chapter.

In our study A corresponds to the set of contour points of a reference object, f is

the identity transformation (i.e., B = A) and C is the set of contour points of an

incomplete representation.

The implication of the lemma is two-fold:

(1) In the case of the distance multiset method, the recognition will be incorrect

only when the nearest neighbor of a test object in the reference set is not unique.

(2) The distance multiset method should perform exactly the same way when f

is not the identity transformation, that is, the incomplete representations of the ob-

jects are derived not directly from the reference objects but from affine transformed

versions of them. This emphasizes the use of a distance multiset in our study instead

of just matching pixels to calculate the dissimilarity between the shapes of objects.

To illustrate the latter implication (2) we consider the incomplete representa-

tions depicted in Figure 2.12. Here the incomplete representations are not directly

derived from the objects depicted in row 3 of Figure 2.4 but from affine transformed

versions of them. The affine transformations are chosen to be either rotation (by an-

gle nπ
2 to avoid discretization effects) or reflection across a line. We performed the

segment-wise deletion test on the distance multiset method using the incomplete

representations such as those shown in Figure 2.12. The results of this experiment

are shown in Figure 2.13. If we compare the original segment-wise deletion test re-

sults for the distance multiset method (Figure 2.8) with these results we do not find

any qualitative difference. A quantitative difference might arise due to the random-

ness involved in the construction of incomplete representations.

The above lemma does not hold for the shape context method, but this method

can be modified in such a way that the relation (2.13) can be approximately ful-

filled. Specifically, we normalize the shape context HO
K(p) by dividing its elements

by the total number of points card(O) in the corresponding object O. If O′ ⊂ O
is an incomplete representation derived from O and HO

′

K (p) is the normalized (by

card(O′

)) shape context of a point p (p ∈ O′

) in this incomplete representation, the
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Figure 2.13: Performance of the distance multiset algorithm in the segment-wise deletion test

with incomplete representations obtained from affine transformed versions of the reference

objects (Figure 2.12). Affine transformations have no substantial effect on the performance of

the distance multiset method (compare with Figure 2.8).

relation HO
′

K (p) ≈ HO
K(p) will hold for modest degrees of contour deletion because

the ratio of the number of contour points in each bin to the total number of points

will be approximately the same for the complete and the incomplete contour repre-

sentations. Hence, dSC(SSC
O , SSC

O
′ ) ≈ 0 for the normalized shape contexts.

We performed experiments with and without the above mentioned normaliza-

tion of the shape context, Figure 2.14, 2.15, 2.16. There is a significant performance

improvement in the segment-wise deletion and the depletion tests due to the nor-

malization procedure. This justifies the use of this procedure in the experiments

whose results are shown in Figure 2.8, 2.9 and 2.10.
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Segment-wise deletion ICR test.

Figure 2.14: The performance improvement of the shape context method due to normaliza-

tion is significant in the segment-wise deletion test. The results are for the MPEG-7 dataset.

2.4 Further Aspects

2.4.1 Choice of Dataset

The experiments presented in Section 2.3 above were carried out in the well known

MPEG-7 dataset that is a de facto standard for comparison of shape recognition

algorithms which use complete representations. As the scope of this study is to

introduce a new test, it is important to check if the conclusions drawn from the ICR

test are consistent across datasets. Furthermore, the MPEG-7 dataset has a certain

restriction: the contours that define the objects are only outer contours. In contrast,

the contour images used in the original psychophysical test of Gollin (Figure 2.2) as

well as the contour images provided by computer algorithms (Figure 2.3) include

inner edges next to the occluding boundaries of the objects.

For these reasons we carried out experiments in a second dataset, the Columbia

University Image Library (COIL-20) dataset. It contains 1440 different images di-

vided in 20 classes, each of 72 similar objects.
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Figure 2.15: The performance improvement of the shape context method due to normaliza-

tion is slight in the occlusion test. The results are for the MPEG-7 dataset.

We choose one object from each class (Figure 2.17, row 1) and extract the con-

tours. The resulting 20 contour images are rescaled to a diameter of 76 pixel units,

c.f., row 2 of Figure 2.17. These 20 rescaled contour images are considered as the

complete representations and are used as reference images in our experiments.

To prepare data for the ICR test we follow the same procedure as in the case of

the MPEG-7 dataset, c.f., Figure 2.18, 2.19, 2.20.

We performed ICR test with these images and the results are shown in Figure

2.21. Comparing these results with the results in Figure 2.8 2.9 and 2.10 we see that

there is no qualitative difference in the performances of the algorithms across the

datasets. The positive effect of the aforementioned normalization of shape context

is also observed with the COIL-20 dataset (Figure 2.22, 2.23, 2.24).

2.4.2 Combination of Variability Types

Object recognition methods can be evaluated for their robustness in various re-

spects, viz., affine transformation, variation of shape, presence of noise etc. In this
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Figure 2.16: The performance improvement of the shape context method due to normaliza-

tion is large in the depletion test. The results are for the MPEG-7 dataset.

study we put forward a new attribute, namely robustness to incomplete contour

representations. Since this is the focus of the research, the dataset used in the ex-

periments includes only variability regarding contour incompleteness. This type of

variability is not combined with other types, e.g., variation of shape or size. The

rationale behind this decision is that first the algorithms should be characterized by

their robustness to one type of variability at a time, e.g., shape changes, incomplete-

ness of contours, rotation, size etc. Only after such characterization it makes sense to

combine different types of variation, e.g., contour incompleteness with variation in

shape or incompleteness with variation in size or any combination of these or other

types of variation.

In this contest we note that good performance in the original ICR test does not

guarantee good performance in other respects, e.g., robustness to shape or size vari-

ation. Hence, a good performance in the ICR test should be considered as a necessary

condition for object recognition methods to perform well in a real world scenario but

not as a sufficient one. We are not aware of any evaluation procedure for shape

recognition methods which is sufficient in such respect. Once an algorithm is tested
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Figure 2.17: Row 1: Sample of the COIL-20 database images used. Row 2: Rescaled contour

images that are considered as complete representations.

Figure 2.18: COIL-20 Dataset: Segment-wise deleted contour representations of objects (they

correspond to the incomplete representations of Gollin’s original study, set I to IV of Figure

2.2). The images are obtained by retaining 70% (row 1) and 50% (row 2) of the contour pixels

(compare with row 2 of Figure 2.17).

for its robustness to shape variation (e.g., by the MPEG-7 bull’s eye test (Latecki

et al. 1998), (Grigorescu and Petkov 2003)), incompleteness (e.g., by the proposed

ICR test) and other types of simple variation, more elaborate tests that combine dif-

ferent types of variation can be applied. Bellow we give an example.
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Figure 2.19: COIL-20 Dataset: Occluded contour representations of objects. The images are

obtained by removing 30% of the contour from left (row 1) and right (row 2).

Figure 2.20: COIL-20 Dataset: Depleted contour representations of objects which are con-

structed by randomly removing 50% (row 1) and 80% (row 2) of the contour pixels.

Shape variability and incompleteness: To assess robustness to incomplete representa-

tions along with robustness to variation in shape we propose a bull’s eye ICR test

using the MPEG-7 dataset. Unlike the basic ICR test proposed above, where we

choose one complete contour image from each class of objects, in the bull’s eye ICR

test we choose more than one complete contour images, say n (out of 20 available in

the MPEG-7 dataset), to represent a class. For a given percentage of contour retain-
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(a) Segment-wise deletion ICR test (COIL-20)
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(b) Occlusion ICR test (COIL-20)
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(c) Depletion ICR test (COIL-20)

Figure 2.21: Results of the ICR tests with a subset of the COIL-20 dataset. There is no qual-

itative difference in performance of the algorithms in the COIL-20 dataset compared to the

MPEG-7 dataset (Figure 2.8 2.9 and 2.10).

ment c, each of the 70 × n incomplete contour images constructed by the methods

described in Section 2.3 is compared with all 70 × n reference (complete contour)

objects and the corresponding n nearest neighbors are found4. Let εi (εi ≤ n) be the

number of nearest neighbors that belong to the class of object i. The percentage of

4In the original bull’s eye test (Latecki et al. 1998) a fixed number of 40 nearest neighbors is used. Here

we use a modification of the test in which the number of nearest neighbors is taken to be equal to the

number n of objects in one class.
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Figure 2.22: Results of the segment-wise deletion test applied to the shape context method

with and without the normalization procedure described in the text of the chapter with the

COIL-20 dataset. The improvement in the performance of the shape context method due the

normalization procedure is significant in the segment-wise deletion test.

correct recognition P (c) is calculated in the following way:

P (c) =

∑70×n
i=1 εi

70 × n2
× 100. (2.14)

In Figure 2.25 we present the results of a bull’s eye depletion test with n = 2. In-

creasing the value of n we can introduce more shape variation in this test procedure.

An extreme case would be to consider the full MPEG-7 dataset (n = 20).

2.4.3 Object Size

The object size can have effect on the results of an ICR test through (a) the resolution

of the reference objects and (b) a possible mismatch between the size of a reference

object and a test object.

Regarding the resolution of the reference objects, in our experiments we found

that for a given percentage of contour degradation (by any method) the perfor-

mance of the algorithms grows with the diameter of the reference objects. This is

in agreement with the results of psychophysical studies on humans where perfor-

mance increases with the visual angle at which the objects are presented (Chihman
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Figure 2.23: Performance of the shape context method in the occlusion test with and without

the normalization procedure with the COIL-20 dataset. In the occlusion test the performance

of the shape context method is slightly improved due to the normalization procedure.

et al. 2004). In Figure 2.26 we illustrate the performance of the shape context method

in the depletion test for two different sizes of the reference objects. From this figure

we see that for a low percentage (less than 45%) of retained contour the performance

of the method is appreciably better in the case when the reference object size is big-

ger. To eliminate this effect and to standardize the test procedure we rescaled the

reference contour images to a fixed diameter (76 pixel units).

The problem of a possible mismatch between the sizes of reference and test ob-

jects is not specific for the type of test objects (incomplete contour representations)

that we use in this study. The problem is rather related to the way in which shape

recognition algorithms deal or do not deal with size variation. Both algorithms

(shape context and distance multiset) used here to illustrate the ICR test are not

intrinsically scale invariant. In (Belongie et al. 2002) the authors of the shape context

method suggest normalization of all radial distances by the mean distance between

all point pairs in a contour in order to make the shape context descriptor scale in-

variant. To achieve the same goal, the authors of the distance multisets method

(Grigorescu and Petkov 2003) prescribe dividing all distances by the diameter of the

object under consideration.

In the ICR test the reference contour images are rescaled to have the same di-
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Figure 2.24: Results of the depletion test in the case of the shape context method with and

without the normalization with the COIL-20 dataset. A significant performance improve-

ment of the shape context method is observed in the depletion test due to the normalization

procedure.

ameter (76 pixel units) and the incomplete representations are constructed from

these rescaled versions of the reference contour images by removing contour points.

Hence, the actual distances between retained points do not change and the algo-

rithms are provided with test images having the same point-to-point distance as the

reference images. The distance multiset algorithm benefits slightly more from this

aspect of the construction of incomplete representations because the distance mul-

tiset of a point from an incomplete contour is a subset of the distance multiset of

the same point in the corresponding complete contour. As pointed out above, the

dissimilarity computed for pairs of such points will be zero for the distance multiset

algorithm. Zero dissimilarity cannot be guaranteed for the shape context method.

The above choice of a procedure for the construction of incomplete representa-

tions was made deliberately: we want to quantify the success or failure of an al-

gorithm in coping with incompleteness and for this purpose we want to minimize

the effects of other aspects, e.g., size variation. In a real world situation such as the

one illustrated by Figure 2.3, however, there is no guarantee that the size of a test

object with an incomplete contour will match exactly the size of the corresponding

reference object. Under such circumstances it is important that a method can deter-



34 2. Incompleteness and Contour Based Shape Descriptors

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

C [Percentage    of   contour  points   retained]

P
 [P

er
ce

nt
ag

e 
   

of
   

co
rr

ec
t  

   
re

co
gn

iti
on

]

Distance Multiset
Shape Context

Figure 2.25: Results of a bull’s eye depletion test, using a subset of 70 × 2 images of the

MPEG-7 dataset. For high percentage of pixels retained the shape context method performs

better than the distance multiset method.

mine automatically the appropriate size. Our experiments can easily be modified for

this purpose by rescaling all test images (incomplete contour representations) to the

same object diameter (of 76 pixel units) as the reference objects. Figure 2.27 shows

the results of ICR tests with incomplete representations that have been obtained

in this way. A comparison with Figure 2.8, 2.9 and 2.10 shows that performance

degrades due to the fact that the sizes of incomplete representations do not exactly

match the sizes of the corresponding complete representations. When an incomplete

representation is constructed from a complete representation, one of the points for

which the diameter of the object is measured can be removed. The consequence

is that the diameter of the incomplete representation will decrease. After rescaling

this diameter to the standard size (of 76 pixel units) all pair-wise distances in an

incomplete representation will increase and become larger than their counterpart

distances in the corresponding complete representation. The smaller the percentage

of contour retainment, the larger this effect and the larger the performance degra-
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Figure 2.26: The performance of the shape context method in the depletion test with two

different sizes of the reference objects - the larger the diameter, the better is the performance.

The results are for the MPEG-7 dataset.

dation.

This method of rescaling has a devastating effect on the performance of the algo-

rithms with incomplete representations obtained through occlusion (Figure 2.27(b)).

For this case and also for the general case of objects that are not segmented from

their background one should adopt a different, multiscale approach. In real world

situations, such as the one illustrated by Figure 2.3, an object is not segmented from

its background. In contrast, the very purpose of using a shape descriptor in such

a situation is to test whether a given object is present in a complex scene and to

separate it from the background. Under such circumstances and without any prior

knowledge about the appropriate scale to be used, one can take a multiscale ap-

proach: shape descriptors are computed independently at multiple resolutions and

the descriptors computed at each scale are compared with the reference descriptors.

The multiscale approach has been advocated for both in biological (Koenderink and

van Doorn 1978) and computer (Burt 1988) vision.
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(a) Segment-wise deletion test
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(b) Occlusion test.
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(c) Depletion test.

Figure 2.27: Results of the ICR tests with incomplete contour representations that are rescaled

to a constant diameter of 76 pixel units. The performances of the algorithms are worse than in

the case when the distances in the complete and incomplete representations are equal (com-

pare with Figure 2.8 2.9 and 2.10). The effect is particularly strong for the distance multiset

algorithm. The results are for the MPEG-7 dataset.

2.4.4 Criterion for Acceptable Performance

The performance curves obtained in ICR tests can be used to compare algorithms

as illustrated in Figure 2.8, 2.9, 2.10. It would be interesting to define a criterion for

acceptable performance of an algorithm without having to compare it with another



2.5. Summary and Conclusion 37

algorithm. One possible way of achieving this is to use as a reference the perfor-

mance of humans in a similar experimental setup. As a matter of fact similar stud-

ies exist in psychophysics (Chihman et al. 2004, Shelepin et al. 2004, Foreman and

Hemmings 1987). For instance in (Chihman et al. 2004) the performance of humans

in a test that is similar to the segment-wise deletion ICR test is studied whereby

identical gaps between fragments of equal length are used. Similar to computer al-

gorithms, the performance of humans depends on the size of the objects. To make

a comparison possible, objects need, therefore, to be presented at a certain standard

size (visual angle) that is related to the standard object size (in pixel units) deployed

in computer algorithms. To establish such a relation one should use visual acuity

data (minimum visual angle between two distinguishable points).

2.5 Summary and Conclusion

Object recognition methods that employ shape descriptors have been evaluated and

compared using various characteristics like invariance, uniqueness and stability

(Mokhtarian and Mackworth 1992). Marr and Nishihara (Marr and Nishihara 1978)

proposed three criteria for judging the effectiveness of a shape descriptor, viz., ac-

cessibility, scope and uniqueness, stability and sensitivity. Brady (Brady 1983) put

forward a set of criteria for representation of shape, viz., rich local support, smooth

extension and propagation. A detailed survey and comparison of shape analysis

techniques on the basis of some of the above mentioned criteria can be found in

(Loncaric 1998). In the current work, motivated by characteristics of the human vi-

sual system (Gollin 1960), we propose an additional new criterion, viz., robustness

to contour incompleteness to compare and characterize contour based shape recog-

nition algorithms using their performance in recognizing objects with incomplete

contours. We are not aware of any such comparison and characterization in the

present literature.

We put forward the following procedure which we call the ICR test:

1. Take a set of images of objects and extract contours. Rescale all contour images

to the same object diameter.

2. Train the recognition system with these complete contour representations.

3. Construct different sets of incomplete representations from the complete con-

tour representations, quantifying the level of incompleteness using the per-

centage of contour pixels retained.

4. Using the incomplete representations as a test set, evaluate the recognition rate

as a function of the percentage of contour pixels retained.
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We distinguish three different types of incomplete contour representations ac-

cording to the method used to remove parts of the contour: segment-wise dele-

tion, occlusion and random pixel depletion. We created test datasets of such incom-

plete contour representations derived from images from the MPEG-7 and COIL-20

datasets and made them publicly available at www.cs.rug.nl/∼petkov/.

We illustrated the test framework with two shape recognition methods based on

the shape context and the distance multiset. We should note that other shape recog-

nition methods such as those based on Hausdorff measure (Huttenlocher et al. 1993,

Huttenlocher et al. 1999), wavelet descriptors (Chuang and Kuo 1996), dynamic pro-

gramming (Petrakis et al. 2002), graph matching (Cross and Hancock 1998), curve

alignment (Sebastian et al. 2003), Fourier descriptors (Bartolini et al. 2005) can also

be studied in this framework. As the main objective of the research presented in

this chapter is to introduce a new test framework an exhaustive comparison of dif-

ferent methods under this framework is beyond the scope of this study. The two

methods tested were chosen merely for illustrative purposes and we did not aim to

prove superiority of any method. A complete comparative study of the two meth-

ods is out of the scope of this work. In our illustrative experiments we found that:

(1) The distance multiset shape recognition method outperforms the shape context

method regarding robustness to contour incompleteness, especially for high levels

of incompleteness. (2) Both methods perform similar to the human visual system in

the sense that their performances are increasing functions of the degree of contour

completeness and are best in the case of the depletion test and worst in the case of

the occlusion test.

Our main conclusions are as follows: The robustness of contour based shape

recognition methods to incompleteness of contour representations is an important

aspect of any contour based objects recognition system. The ICR test as defined and

proposed in this study is an adequate framework for assessing the above mentioned

performance and can be used as a standard test procedure for any contour based

object recognition system/algorithm.

Appendix

A. Cost of Matching Two Distance Multisets

Consider the multisets

X = {x1, x2, . . . xM}, (2.15)

Y = {y1, y2, . . . , yN}, (2.16)

where M ≤ N . Let π be a one-to-one mapping from the set {1, . . . ,M} to the set

{1, . . . , N} and let Π be the set of all such mappings. The mapping π defines an as-

signment of an unique element yπ(i) ∈ Y to each element xi ∈ X . The cost cπ(X,Y )
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of a mapping/assignment π ∈ Π is defined as follows:

cπ(X,Y ) =

M∑

i=1

|xi − yπ(i)|. (2.17)

Let c be the minimum of the costs of all such possible mappings:

c(X,Y ) = min{cπ(X,Y )|π ∈ Π} (2.18)

Note that X and Y are sorted in ascending order by the definition of a dis-

tance multiset. To compute c(X,Y ) efficiently, we use the algorithm described in

(Petkov 2003) which has complexity O(M(N − M)).

B. Proof of the Lemma

Claim 1 : The distance multisets of A and B are identical.

By definition f is an isometry, which implies that distance multisets of A and B

are identical, that is, for every p ∈ A ∃ a q ∈ B, q = f(p) such that DA
N (p) = DB

N (q),

assuming that card(A) = card(B) = N .

Claim 2 : dDM (SDM
C , SDM

B ) = 0.

The definition of distance multiset along with relation (2.18) implies that for ev-

ery pi ∈ C, ∃ a qj ∈ B, such that cDM
i,j = 0. Hence the minimum of every row

of the cost-matrix of point-wise dissimilarities is 0, which implies by relation (2.9),

dDM (SDM
C , SDM

B ) = 0.

Claim 2 and the invariance of distance multisets in claim 1 imply that

dDM (SDM
C , SDM

A ) = 0 . �






