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Complexity of Approximation by Conic Splines

(Extended Abstract)

Sylvain Petitjean∗ Sunayana Ghosh † Gert Vegter‡

Abstract

In this paper we show that the complexity, i.e., the
number of elements, of a parabolic or conic spline
approximating a sufficiently smooth curve with non-
vanishing curvature to within Hausdorff distance ε is
c1ε

−1/4 + O(1), or c2ε
−1/5 + O(1), respectively. The

constants c1 and c2 are expressed in the Euclidean and
affine curvature of the curve. We also prove that the
Hausdorff distance between a curve and an optimal
conic arc tangent at its endpoints is increasing with
its arc-length, provided the affine curvature along the
arc is monotone. We use this property in a simple bi-
section algorithm for computing an optimal parabolic
or conic spline.

1 Introduction

Complexity of conic approximants. We show that
the complexity—the number of elements—of an opti-
mal conic spline approximating a sufficiently smooth
curve to within Hausdorff distance (See [6] for a defini-

tion) ε, is of the form c1 ε−
1

5 +O(1), where we express
the value of the constant c1 in terms of the Euclidean
and affine curvature (See Corollary 2). An optimal
parabolic spline approximates a curve to fourth order,
so its complexity is of the form c2 ε−

1

4 +O(1). Also in
this case the constant c2 is expressed in the Euclidean
and affine curvature. These bounds are obtained by
first deriving an expression for the Hausdorff distance
of a conic arc that is tangent to a (sufficiently short)
curve at its endpoints, and that minimizes the Haus-
dorff distance among all such bitangent conics. Ap-
plying well-known methods like those of [2] it follows
that this Hausdorff distance is of fifth order in the
length of the curve, and of fourth order if the conic
is a parabola. We derive explicit constants in these
asymptotic expansions in terms of the Euclidean and
affine curvature of the curve.

Algorithmic issues. For curves with monotone affine
curvature, called affine spirals, we consider conic arcs
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tangent to the curve at its endpoints, and show that
among such bitangent conic arcs there is a unique one
minimizing the Hausdorff distance. This optimal bi-
tangent conic arc Copt intersects the curve at its end-
points and at one interior point, but nowhere else. If
α : I → R

2 is an affine spiral, its displacement func-
tion d : I → R measures the signed distance between
the affine spiral and the optimal bitangent conic along
the normal lines of the spiral. This displacement func-
tion has an equioscillation property (See Section 3)
and the Hausdorff distance between a section of an
affine spiral and its optimal approximating bitangent
conic arc is a monotone function of the arc length of
the spiral section. This useful property gives rise to a
bisection based algorithm for the computation of an
optimal interpolating tangent continuous conic spline.
The scheme reproduces conics. We implemented such
an algorithm, and compare its theoretical complex-
ity with the actual number of elements in an optimal
approximating parabolic or conic spline.

Related work. In [4] Fejes Tóth considers the prob-
lem of approximating a convex C2-curve C in the
plane by an inscribed n-gon. Fejes Tóth proves that,
with regard to the Hausdorff distance, the optimal n-

gon Pn satisfies δH(C,Pn) = 1
8

(

∫ l

0
κ1/2(s)ds

)2
1

n2 +

O( 1
n4 ). Here l is the length of the curve, s its arc

length parameter, and κ(s) its curvature. Ludwig [8]
extends this result by deriving the second term in this
asymptotic expansion.

These problems fall in the context of geometric Her-
mite interpolation, in which approximation problems
for curves are treated independent of their specific
parametrization. The seminal paper De Boor, Höllig
and Sabin [2] also fits in this context. Floater [5] gives
a method that, for any conic arc and any odd inte-
ger n, yields a geometric Hermite interpolant with 2n
contacts, counted with multiplicity. This scheme gives
a Gn−1-spline, and has approximation order O(h2n),
where h is the length of the conic arc. Degen [3]
presents an overview of geometric Hermite interpola-
tion, also emphasizing differential geometry aspects.

Overview. Section 2 reviews some notions from
affine differential geometry that we use in this paper.
Section 3 introduces affine spirals, a class of curves

138



EWCG 2007, Graz, March 19–21, 2007

which have a unique optimal bitangent conic. These
optimal bitangent conic arcs have some nice prop-
erties giving rise to a bisection algorithm for their
computation. The complexity analysis of optimal
parabolic and conic splines is presented in Section 4.
Section 5 presents the output of the algorithm in a
specific example.

2 Mathematical preliminaries

Circular arcs and straight line segments are the only
regular smooth curves in the plane with constant Eu-
clidean curvature. Conic arcs are the only smooth
curves in the plane with constant affine curvature.
The latter property is crucial for our approach, so
we briefly review some concepts and properties from
affine differential geometry of planar curves. See also
Blaschke [1].

Affine curvature. Recall that a regular curve α :
J → R

2 defined on a closed real interval J , i.e., a curve
with non-vanishing tangent vector T (u) := α′(u), is
parametrized according to Euclidean arc length if its
tangent vector T has unit length. In this case, the
derivative of the tangent vector is in the direction of
the unit normal vector N(u), and the Euclidean cur-
vature κ(u) measures the rate of change of T , i.e.,
T ′(u) = κ(u)N(u). Euclidean curvature is a differen-
tial invariant of regular curves under the group of rigid
motions of the plane, i.e., a regular curve is uniquely
determined by its Euclidean curvature, up to a rigid
motion.

The larger group of equi-affine transformations of
the plane, i.e., linear transformations with determi-
nant one (in other words, area preserving linear trans-
formations), also gives rise to a differential invariant,
called the affine curvature of the curve. To intro-
duce this invariant, let I ⊂ R be an interval, and let
γ : I → R

2 be a smooth, regular plane curve. The
curve γ is parametrized according to affine arc length

if

[γ′(r), γ′′(r)] = 1. (1)

Here [v, w] denotes the determinant of the pair of
vectors {v, w}. It follows from (1) that γ has non-
zero Euclidean curvature. Conversely, every curve
α : J ⊂ R → R

2 with non-zero Euclidean curvature
satisfies [α′(u), α′′(u)] 6= 0, for u ∈ J , so it can be
reparametrized according to affine arc length.

Note that the property of being parametrized ac-
cording to affine arc length is an invariant of the
curve under equi-affine transformations. If γ is
parametrized according to affine arc length, then dif-
ferention of (1) yields [γ′(r), γ′′′(r)] = 0, so there is a
scalar function k such that

γ′′′(r) + k(r) γ′(r) = 0. (2)

The quantity k(r) is called the affine curvature of the
curve γ at γ(r). A regular curve is uniquely deter-
mined by its affine curvature, up to an equi-affine
transformation of the plane.

The affine curvature can be expressed in terms of
the derivatives of γ up to and including order four.
We refer to the full version of the paper for details.

At a point of non-vanishing Euclidean curvature
there is a unique conic, called the osculating conic,
having fourth order contact with the curve at that
point (or, in other words, having five coinciding points
of intersection with the curve). The affine curvature
of this conic is equal to the affine curvature of the
curve at the point of contact. Moreover, the contact
is of order five if the affine curvature has vanishing
derivative at the point of contact. (The curve has to
be C5.) In that case the point of contact is a sextactic

point. See [1] for further details.

Conics have constant affine curvature. Solving the
differential equation (2) shows that a curve of con-
stant affine curvature is a conic arc. More precisely,
a curve with constant negative affine curvature is a
hyperbolic, parabolic, or elliptic arc iff its affine cur-
vature is negative, zero, or positive, respectively.

3 Approximation of affine spirals

Displacement function. A bitangent conic of a reg-
ular curve α : I → R

2 is a conic arc which is tangent
to α at its endpoints, such that each normal line of α

intersects the conic arc in a unique point. Therefore,
a bitangent conic has a parametrization β : I → R

2 of
the form β(u) = α(u)+d(u) N(u), where d : I → R is
the displacement function of the conic arc. The Haus-
dorff distance between α and a bitangent conic C is
equal to

δH(α, C) = maxu∈I |d(u)|. (3)

There is a one-parameter family of bitangent conics,
so the goal is to determine an optimal bitangent conic,
i.e., a conic in this family that minimizes the Haus-
dorff distance.

Equioscillation property. An affine spiral is a regu-
lar curve without sextactic points, in other words, a
curve with monotone affine curvature. Affine spirals
have a unique optimal bitangent conic, which is tan-
gent to the curve at its endpoints, and intersects the
curve in one additional interior point, but at no other
interior point. Moreover, the displacement function
of this optimal bitangent conic has an equioscillation

property : there are exactly two parameter values at
which the maximum in (3) is attained. More precisely,
there are u+, u− ∈ I such that d(u+) = −d(u−) =
δH(α, Copt) and |d(u)| < δH(α, Copt) if u 6= u±. The
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points α(u−) and α(u+) are separated by the inte-
rior point of intersection of α and Copt. The optimal
bitangent conic is the unique bitangent conic having
this equioscillation property, a property that gives rise
to a simple algorithm for computing it. See the full
paper for details.

Monotonicity of optimal Hausdorff distance. If one
endpoint of the affine spiral moves along the curve
α, the Hausdorff distance between the affine spiral
and its optimal bitangent conic arc is monotone in
the arc length of the affine spiral. More precisely,
let α : [u0, u1] → R

2 be an affine spiral arc. For
u0 ≤ u ≤ u1, let αu be the sub-arc between α(u0) and
α(u), and let βu be the (unique) optimal bitangent
conic arc of αu. Then the Hausdorff-distance between
αu and βu is a monotonically increasing function of
u.

This property gives rise to a bisection method for
the computation of an optimal conic spline approxi-
mating a spiral arc to within a given Hausdorff dis-
tance. Section 5 presents the output of this algorithm
in a specific example.

4 Complexity of conic splines.

In this section our goal is to determine the Hausdorff
distance of a conic arc of best approximation to an
arc of α of Euclidean length σ > 0, that is tangent to
α at its endpoints. If the conic is a parabola, these
conditions uniquely determine the parabolic arc. If
we approximate by a general conic, there is one de-
gree of freedom left, which we use to minimize the
Hausdorff distance between the the arc of α and the
approximating conic arc β.

The main result of this section gives an asymptotic
bound on this Hausdorff distance.

Theorem 1 (Optimal Hausdorff distance)
Let β be a conic arc tangent at its endpoints to an arc

of a regular curve α of length σ, with non-vanishing

Euclidean curvature.

1. If α is a C8-curve, and β is a parabolic arc, then the

Hausdorff distance between these arcs has asymptotic

expansion

δH(α, β) = 1
128 |k0|κ

5

3

0 σ4 + O(σ5), (4)

where κ0 and k0 are the Euclidean and affine curva-

ture of α at one of its endpoints, respectively.

2. If α is a C9-curve, and β is a conic arc, then the

Hausdorff distance between these arcs is minimized if

the affine curvature of β is equal to the average of the

affine curvatures of α at its endpoints, up to quadratic

terms in the length of α. In this case the Hausdorff

distance has asymptotic expansion

δH(α, β) = 1
2000

√
5
|k′

0|κ2
0 σ5 + O(σ6), (5)

where κ0 is the Euclidean curvature of α at one of

its endpoints, and k′
0 is the derivative of the affine

curvature of α at one of its endpoints.

The proof of this result is quite involved, but the
main idea is rather simple. Let α : [0, ̺] → R

2 be
parametrized according to affine arc length. In par-
ticular, ̺ is the affine arc length of α. One can show
that

̺ = κ
1

3

0 σ + O(σ2). (6)

The parabolic arc, which is bitangent to α at α(0) and
α(̺), is an offset curve depending on ̺. Therefore it
has a parametrization u 7→ β(u, ̺) of the form

β(u, ̺) = α(u) + d(u, ̺) N(u), (7)

where the displacement function d is of the form
d(u, ̺) = u2(u − ̺)2 D(u, ̺). Then

δH(α, β) = max0≤u≤̺ |d(u, ̺)| = 1
16 ̺4|D(0, 0)|+O(̺5).

(8)
In the full paper we show that the affine curvature of
a curve of the form (7) is of the form

kβ = k0 + 8κ
− 1

3

0 D(0, 0) + O(̺). (9)

Since β is a parabolic arc, its affine curvature is zero,
i.e., kβ = 0. Combining (6), (8), and (9) yields the
asymptotic expression for the Hausdorff distance be-
tween the curve and its bitangent parabolic arc as
stated in the first part of the theorem. The proof of
the second part is more involved, but follows the same
line of reasoning.

The preceding result gives an asymptotic expression
for the minimal number of elements of an optimal
parabolic or conic spline in terms of the maximal
Hausdorff distance.

Corollary 2 (Complexity of conic splines)
Let α : [0, L] → R

2 be a regular curve of length L,

with non-vanishing Euclidean curvature parametrized

by Euclidean arc length, and let κ(s) and k(s) be its

Euclidean and affine curvature at α(s), respectively.

1. If α is a C8-curve, then the minimal number of arcs

in a tangent continuous parabolic spline approximat-

ing α to within Hausdorff distance ε is

N(ε) = c1

(

∫ L

0

|k(s)| 14 κ(s)
5

12 ds
)

ε−
1

4 (1 + O(ε
1

4 )),

(10)

where c1 = 128−
1

4 ≈ 0.297.

2. If α is a C9-curve, then the minimal number of arcs

in a tangent continuous conic spline approximating

α to within Hausdorff distance ε is

N(ε) = c2

(

∫ L

0

|k′(s)| 15 κ(s)
2

5 ds
)

ε−
1

5 (1 + O(ε
1

5 )),

(11)

where c2 = (2000
√

5)−
1

5 ≈ 0.186.
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We only sketch the proof, and refer to the papers
by McClure and Vitale [9] and Ludwig [8] for details
about this proof technique in similar situations. Con-
sider a small arc of α, centered at α(s). Let σ(s) be
its Euclidean arc length. Then the Hausdorff distance
between this curve and a bitangent parabolic arc is
1

128 |k0|κ
5

3

0 σ(s)4 + O(σ(s)5), cf˙ Theorem 1. There-
fore,

σ(s) =
4
√

128 |k(s)|− 1

4 κ(s)−
5

12 ε
1

4 (1 + O(ε
1

4 )).

The first part follows from the observation that

N(ε) =
∫ L

s=0
1

σ(s) ds. The proof of the second part

is similar.

5 Implementation

We implemented an algorithm for the computation
of an optimal parabolic or conic spline, based on the
monotonicity property. For computing the optimal
parabolic spline, the curve is subdivided into affine
spirals. Then for a given maximal Hausdorff dis-
tance ε, the algorithm iteratively computes optimal
parabolic arcs starting at one endpoint. At each step
of this iteration the next breakpoint is computed via a
standard bisection procedure, starting from the most
recently computed breakpoint. The bisection proce-
dure yields a parabolic spline whose Hausdorff dis-
tance to the subtended arc is ε. An optimal conic
spline is computed similarly. The bisection step is
slightly more complicated, since the algorithm has
to select the optimal conic arc from a one-parameter
family. Here the equioscillation property gives the cri-
terion for deciding whether the computed conic arc is
optimal.

A Spiral Curve. We present the results of our al-
gorithm applied to the spiral curve, parametrized by
α(t) = (t cos(t), t sin(t)), with 1

6π ≤ t ≤ 2π.
Table 1 gives the number of arcs computed by the

algorithm, and the theoretical bounds on the number
of arcs for varying values of ε, both for the parabolic
and for the conic spline.
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