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Abstract— Using concepts from switched adaptive control
theory, a provably correct solution is given to the problem of
maintaining the position of a point modelled mobile autonomous
agent in a moving formation in the plane using only range
measurements to three of its neighbors. The performance of the
resulting system degrades gracefully in the face of measurement
and miss-alignment errors, provided the measurement errors
are not too large.

I. INTRODUCTION

In a recent paper [1] we address the “station keeping”

problem where by station keeping we mean the practice of

keeping a mobile autonomous agent in a prescribed position

in the plane which is determined by prescribed distances

from two or more landmarks. We refer to these landmarks

as neighboring agents because we envision solutions to the

station keeping problem as potential solutions to multi-agent

formation maintenance problems with stationary formations.

The specific station keeping problem considered assumes

the agent whose position is to be maintained is described

by a kinematic point model. The problem further assumes

that the only signals available to the agent, are noisy range

measurements from its neighbors. The approach to station

keeping taken in [1] is novel in that it treats station keeping as

a problem in switched adaptive control. In this paper we build

on the ideas of [1] by addressing the closely related problem

of maintaining an agent’s position in a moving formation

using only range information. We assume that the neighbors

of the agent to be controlled are all moving in formation at a

fixed velocity v which the controlled agent is not explicitly

aware of.

The station keeping problem is closely related to the

Simultaneous Localization and Mapping (SLAM) problem

[2], [3], [4], [5], which is also called the Concurrent Mapping

and Localization (CML) problem [6], [7]. SLAM is the

process of building a map of an unknown environment by

using mobile robots’ sensed information and simultaneously

estimating those robots’ locations by using this map. The

station keeping problem with one autonomous agent and

multiple landmarks can be cast as a SLAM problem in which

the map describes the positions of the landmarks and the au-

tonomous agent is the robot to be localized. There are several

approaches to address the SLAM problem, such as those

based on Kalman filters [8], [9] and those using sequential

This research was supported by the National Science Foundation, the US
Army Research Office, and by a gift from the Xerox Corporation.

Monte Carlo techniques [10], [11]. Kalman filtering based

methods apply to linearized observation models and assume

that the measurement errors are Gaussian. Since most of the

sensory data from the range-only measurements are highly

nonlinear and with non-Gaussian errors, the Kalman filter

method is not always successful in this context. Sequen-

tial Monte Carlo based methods use nonlinear observation

models and do not require suitable probabilistic models

for measurement noises, but do require large numbers of

samples; typically such methods are computationally difficult

to implement. There are also several interesting and new set-

based techniques addressed to the range-only SLAM problem

[12], [13], but these have not been validated mathematically.

Related work on range-only source localization can be found

in [14], [15].

In Section 2 we formulate the formation maintenance

problem of interest. Error models appropriate to the so-

lution of problem are developed in Section 3. The error

models derived are modifications of previously derived error

models used in station keeping. In Section 4 we present

a switched adaptive control system which solves the three

neighbor formation maintenance problem in the plane. Agent

relative position correcting within the moving formation

occurs exponentially fast in the absence of measurement

and miss-alignment errors; in addition performance degrades

gracefully in the face of measurement and miss-alignment

errors, provided the measurement errors are not too large. In

Section 5 we sketch the ideas upon which these claims are

based. Finally in Section 6, we discuss possible approaches to

an implementation issue which arises because the underlying

parameter space appropriate to the problem is not typically

convex.

II. FORMULATION

Let n > 1 be an integer. The system of interest consists

of n + 1 points in the plane labelled 0, 1, 2, . . . , n which

will be referred to as agents. Let x0, x1, . . . , xn denote the

coordinate vectors of the current positions of neighboring

agents 0, 1, 2, . . . n respectively with respect to a common

frame of reference. We assume that the formation is supposed

to move at a constant velocity v and moreover that agents

1, 2, 3, . . . , n are already at their proper positions in the

formation and are all moving at velocity v. Thus

ẋi = v, i ∈ {1, 2, 3, . . . , n} (1)
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We further assume that the nominal model for how agent 0
moves is a kinematic point model of the form

ẋ0 = u0 (2)

where u0 is an open loop control taking values in IR2.

Suppose that agent 0 can sense its distances

y1, y2, y3, . . . , yn from agents 1, 2, 3, . . . , n with uniformly

bounded, additive errors ǫ1, ǫ2, . . . , ǫn respectively. Thus

yi = ||xi − x0|| + ǫi, i ∈ {1, 2, . . . , n} (3)

Suppose in addition that agent 0 is given a set of non-negative

numbers d1, d2, . . . , dn, where di represents a desired dis-

tance from agent 0 to agent i. The problem is to devise a

control law depending on the di and the yi, but not on v

which, were the ǫi all zero, would causes agent 0 to move

to and maintain a relative position in the formation which

is di units from agent i, i ∈ {1, 2, . . . , }. We call this the

n neighbor formation maintenance problem for a moving

formation. We shall also require the controllers we devise to

guarantee that errors between the yi and their desired values

eventually become small if the measurement errors are all

small.

Let x∗ denote the target position to which agent 0 would

have to move were the formation maintenance problem

solvable. Then x∗ would have to satisfy

di = ||xi − x∗||, i ∈ {1, 2, . . . , n} (4)

Since agents 1, 2, . . . , n are all moving at constant velocity

v it is reasonable to assume that ẋ∗ = v. There are two cases

to consider:

1) If n = 2, there will be two solutions x∗ to (4) if |d1 −
d2| < ||x1 − x2|| < d1 + d2 and no solutions if either

|d1 − d2| > ||x1 − x2|| or ||x1 − x2|| > d1 + d2.

We will assume that two solutions exist and that the

target position is the one closest to the initial position

of agent zero.

2) If n ≥ 3 there will exist a solution x∗ to (4) only if

agents 1 through n are aligned in such a way so that

the circles centered at the xi of radii di all intersect

at at least one point. If the xi are so aligned and at

least three xi are not co-linear, then x∗ is even unique.

Such alignments are of course exceptional, especially

since the formation is moving. To account for the more

realistic situation when points are out of alignment, we

will assume instead of (4), that there is a value of x∗

for which

di = ||x∗ − xi|| + ǭi, i ∈ {1, 2, . . . , n} (5)

where each ǭi is a small miss-alignment error. We will

continue to assume that

ẋ∗ = v (6)

which means that each miss-alignment error ǭi is a

constant.

Our specific control objective can now be stated. Devise a

feedback control for agent 0, using the di and measurements

yi, which bounds the induced L2 gains from each ǫi and

each ǭi to each of the errors

ei = y2
i − d2

i , i ∈ {1, 2, 3, . . . , n} (7)

We will address this problem using well known concepts and

constructions from adaptive control.

III. ERROR MODELS

The controllers which we propose to study will all be

based on suitably defined error models. We now proceed

to develop these models.

A. Error Equations

To begin, we want to derive a useful expression for each

ei. In view of (3)

y2
i = ||xi − x0||

2 + 2ǫi||xi − x0|| + ǫ2i

But

||xi − x0||
2 = ||xi − x∗||2 + 2(x∗ − xi)

′x̄0 + ||x̄0||
2

where

x̄0 = x0 − x∗ (8)

Moreover from (5)

d2
i = ||xi − x∗||2 + 2ǭi||xi − x∗|| + ǭi

2

From these expressions and the definition of ei in (7) it

follows that

ei = 2(x∗ − xi)
′x̄0 + ||x̄0||

2 + 2ǫi||x̄0|| + ηi (9)

where

ηi = 2ǫi||xi − x0|| + ǫ2i − 2ǭi||xi − x∗|| − ǭ2i − 2ǫi||x̄0||

Note that |||xi − x0|| − ||x0||| ≤ ||xi − x∗|| because of the

triangle inequality and the definition of x̄0 in (8). From this

and (5) it is easy to see that

|ηi| ≤ (|ǫi| + |ǭi|)γi (10)

where γi = 2di + |ǫi − ǭi|.

B. Formation Maintenance with n = 3 Neighbors

In this section we consider the case when n = 3. We

shall assume that initially x1, x2, and x3 are not co-linear.

Because all three agents move at the same velocity v, this

property is maintained for all time. In view of (6), (2) and

the fact that x̄0 = x0 − x∗ we can write

˙̄x0 = u0 − v

The form of this equation suggests that we employ integral

control. Thus we consider controls of the form

u̇0 = u (11)

where u is a vector of open-loop control rates to be defined.

These equations imply that

¨̄x0 = u (12)
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Let

e =

[
e1 − e3

e2 − e3

]

and define q1 = Gx̄0 and q2 = G ˙̄x0 where

G = 2 [ x3 − x1 x3 − x2 ]
′

(13)

Note that G is a constant matrix because ẋi = v, i ∈
{1, 2, 3}. The error model for this case is then

e = q1 + ǫ||G−1q1|| + η (14)

q̇1 = q2 (15)

q̇2 = Gu (16)

where

ǫ = 2

[
ǫ1 − ǫ3
ǫ2 − ǫ3

]
η =

[
η1 − η3

η2 − η3

]

Our assumption that the xi are not initially co-linear implies

that G is non-singular. Note that since G is nonsingular,

x0 = x∗ whenever q1 = 0. This in turn will be the case

when e = 0 provided ǫ = 0 and η = 0. The term ||G−1q1||ǫ
can be regarded as a perturbation and can be dealt with

using standard small gain arguments. Essentially linear error

models like (14), (15) can also be derived for any n > 3.

C. Formation Maintenance with n = 2 Neighbors

In the two-neighbor case we’ve assumed that |d1 − d2| <

||x1 − x2|| < d1 + d2 and thus that two solutions x∗ to

(4) exist. We will assume that x̄0 has been defined so that

||x̄0(0)|| is the smaller of the two possibilities. As before,

and for the same reason, (12) holds. For this version of the

problem we define

e =

[
e1

e2

]

Let q1 = Gx̄0, where now

G = 2 [ x∗ − x1 x∗ − x2 ]
′

(17)

Note that G is still a constant matrix. The error model for

this case is then

e = q1 + ǫ||G−1q1|| + ||G−1q1||
2
1 + η (18)

q̇1 = q2 (19)

q̇2 = u (20)

where

1 =

[
1
1

]
ǫ = 2

[
ǫ1
ǫ2

]
η =

[
η1

η2

]

Note that our assumption that |d1−d2| < ||x1−x2|| < d1+d2

implies that x1, x2, x
∗ are not co-linear. This in turn implies

that G is still non-singular. The essential difference between

this error model and the error model for the three neighbor

case is that the two-neighbor error model has a quadratic

function of state in its readout equation whereas the three

neighbor error model does not.

IV. FORMATION MAINTENANCE SUPERVISORY

CONTROLLER

In this section we will develop a set of controller equations

aimed at solving the formation maintenance problem with

three neighbors. Because of its properties, the controller we

propose can also be used for the two neighbor version of the

problem; however in this case meaningful results can only be

claimed if agent 0 starts out at a position which is sufficiently

close to its target x∗(0). For ease of reference, we repeat the

error equations of interest.

e = q1 + ǫ||G−1q1|| + η (21)

q̇1 = q2 (22)

q̇2 = Gu (23)

In the sequel we will assume that ||ǫ|| ≤ ǫ∗, t ≥ 0 where

ǫ∗ is a positive constant which satisfies the constraint

ǫ∗ <
1

||G−1||
(24)

Note that this constraint says that the allowable measurement

error bound will decrease as agents 1, 2, an 3 are positioned

closer and closer to co-linear and/or further and further away

from agent 0. While we are unable to fully justify this

assumption at this time, we suspect that it is intrinsic and

is not specific to the particular approach to station keeping

which we are following. Our suspicion is prompted in part

by the observation that the map q1 �−→ q1 + ǫ||G−1q1|| will

be invertible for all ||ǫ|| ≤ ǫ∗ if and only if (24) holds.

The type of control system we intend to develop assumes

that G is unknown, but requires one to define at the outset a

closed bounded subset of 2 × 2 non-singular matrices P ⊂
IR2×2 which is big enough so that it can be assumed that

G ∈ P . P can consist of one connected subset or a finite

union of compact, connected subsets. It is not necessary for

the subsets to be disjoint. These properties can be used to

advantage in defining P . More about this later.

In addition to the two integrators (11), the supervisory

controller to be considered consists of a “multi-estimator”

E, a “multi-controller” C, a “monitor” M and a “dwell-

time switching logic” S. These terms and definitions have

been discussed before in [16], [17] and elsewhere. They are

fairly general concepts, have specific meanings, and apply to

a broad range of problems. Although there is considerable

flexibility in how one might define these component subsys-

tems, in this paper we shall be quite specific. The numbered

equations which follow, are the equations which define the

supervisory controller we will consider.

A. Multi-Estimator E

By a multi-estimator E for (21), (22) is meant an exponen-

tially stable linear system depending on a parameter Ĝ ∈ P
whose inputs are e and u and whose output ê

Ĝ
would be

an asymptotically correct estimate of e were Ĝ = G, ǫ = 0,

and η = 0. A critical requirement distinguishing E from

a conventional observer, is that Ĝ must appear only in E’s

readout equation; thus E’s state differential equation must
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be independent of Ĝ. These requirements make defining

E challenging for multi-output systems [18]. However for

the problem of interest here, the synthesis turns out to

be reasonably straightforward. The key observation which

simplifies things is that the system (21) - (23) can be written

in the form

e = Qb + ǫ||G−1Qb|| + η

Q̇ = QA0 + Gvc

where

Q = [ q1 q2 ] c = [ 0 1 ] A0 =

[
0 0
1 0

]
b =

[
1
0

]

These equations suggest at once a multi-estimator of the form

Ż1 = Z1A + ef (25)

Ż2 = Z2A + vc (26)

with a readout

ê
Ĝ

= (Z1 + ĜZ2)b

where the Zi take values in IR2×2 and A = A0 − bf . Here

f is chosen so that A0 − bf has stability margin λ where λ

is a design constant which must be positive but is otherwise

unconstrained. Such an f can be chosen because (A0, b) is

a controllable pair.

To understand why the preceding is a multi-estimator for

(21) - (23), note first that the signal R = Z1 + GZ2 − Q

satisfies

Ṙ = RA + {ǫ||G−1Qb|| + η}f

Observe that if ǫ and η were both zero, then R would tend

to zero and Z1 +GZ2 would tend to Q. Note that the output

estimation error

ēG = êG − e = (Z1 + GZ2)b − e

can be written as ēG = Rb − ǫ||G−1Qb|| − η. The relation-

ships just derived can be conveniently represented by the

block diagram in Figure 1.

f(sI − A)−1b

ǫ ||G−1 · ||

η
+

+

−

+

−
+

Rb

Qb||G−1Qb||ǫ ||G−1Qb||

ēG

(Z1 + GZ2)b

Fig. 1. Subsystem

The diagram describes a nonlinear dynamical system with

inputs η and (Z1 + GZ2)b and output ēG. It is easy to

verify that this system is globally exponentially stable with

stability margin no smaller than λ(1 − ǫ∗||G−1||) because

of the measurement constraint (24) discussed earlier. The

diagram clearly implies that if ǫ and η were to tend to 0,

so would ēG; in this case (Z1 + GZ2)b would therefore

be an asymptotically correct estimate of e. Thus E has the

properties it required to be a multi-estimator.

B. Multi-Controller C

The multi-controller C we propose to study is based on the

idea of “certainty equivalence.” In adaptive context, certainty

equivalence means that one uses a controller devised to con-

trol an estimate of the process as if the estimate were correct

even though may not be. The implication of doing this,

predicted by the certainty equivalence stabilization theorem

[19], is that this controller stabilizes the so called “injected

system” derived from the multi-estimator multi-controller

pair under the output injection e �−→ ē
Ĝ
− (Z1 + ĜZ2)b.

We expand on this below.

To begin, let k be any vector which causes the matrix

(A0 + kc) to have stability margin λ. Such a vector exists

because (c, A0) is an observable pair. Observe that if Ĝ and

Z1 + ĜZ2 were correct estimates of G and Q respectively

then the control

u = Ĝ−1(Z1 + ĜZ2)k (27)

would equal G−1Qk and this control would result in the

stable closed loop system Q̇ = Q(A0 + kc).
For the problem at hand, the injected system is the system

which results when (Z1 + ĜZ2)b − ē
Ĝ

is substituted for e

in the closed loop system determined by (25), (26) and (27).

The injected system is thus

Ż1 = Z1A + (Z1 + ĜZ2)bf − ē
Ĝ

f

Ż2 = Z2A + Ĝ−1(Z1 + ĜZ2)kc

Certainty equivalence guarantees that this model, viewed as

a system with input ē
Ĝ

, is stable with stability margin λ

for each fixed Ĝ ∈ P . In this special case one can deduce

this directly using the state transformation {Z1, Z2} �−→
{Z1, Z1 + ĜZ2}.

Note that the injected system can also be written in the

standard form

ż = A(Ĝ)z + Dē
Ĝ

for suitably defined A(Ĝ) and D. Here z =
column{z1, z2, z3, z4} where zi is the ith column of

[ Z1 Z2 ]. For the injected system to have stability margin

λ means that for any positive number λ0 < λ the matrix

λ0I + A(Ĝ) is exponentially stable for all constant Ĝ ∈ P .

In the sequel, we fix λ0 at any positive value such that

λ0 < λ(1− ǫ∗)||B||−1. This number turns out to be a lower

bound on the convergence rate for the entire closed-loop

control system.

We need to pick one more positive design parameter,

called a dwell time τD. This number has to be chosen

large enough so that the injected linear system defined

above is exponentially stable with stability margin λ for

every “admissible” piecewise constant switching signal Ĝ :
[0,∞) → P , where by admissible we mean any piecewise

constant signal whose switching instants are separated by at

least τD time units. This is easily accomplished because each

λ0I +A(P ), P ∈ P is a stability matrix. All that’s required

then is to pick τD large enough so that the induced norm
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{any matrix norm} of each matrix e{λ0I+A(P )}t, P ∈ P , is

less than 1.

It is useful for analysis to add to Figure 1, two copies

of the injected system just defined, one {Σ1} with output

e = (Z1 + ĜZ2)b − ē
Ĝ

and the other {Σ2} with output

(Z1 + GZ2)b. The multiple copies are valid because with

Ĝ admissible, the injected system is an exponentially stable

time-varying linear system. The resulting system is shown in

Figure 2.

f(sI − A)−1b

ǫ ||G−1 · ||

η
+

+

−

+

−
+

Rb

Qb||G−1Qb||ǫ ||G−1Qb||

ēG ē
Ĝ

eΣ1

Σ2

Fig. 2. Subsystem for Analysis

Examination of this diagram reveals if there were a gain

between ēG and ē
Ĝ

, and if ǫ were small enough, the resulting

system would be exponentially stable and bounded η would

produce bounded e. We return to this observation later.

C. Monitor M

The state dynamic of monitor M is defined by the equation

Ẇ = −2λ0W +

[
Z1b − e

Z2b

] [
Z1b − e

Z2b

]′

(28)

where W is a “weighting matrix” which takes values in the

linear space X of 4 × 4 symmetric matrices. Note that it

takes only 10 first order differential equations rather than 16
to generate W because of symmetry1. The output of M is

a parameter dependent “monitoring signal” µP = M(W,P )
where M : X × P → IR is defined as

M(X, P ) = trace{[ I P ] X [ I P ]
′
} (29)

The readout map M(·) is used in defining the switching

logic S. The signals µP , P ∈ P are helpful in motivating

the definition of M and the switching logic S which follows;

however, they are actually not used anywhere in the imple-

mented system. It is obvious that they could not be because

there are infinitely many of them.

Note that for any P ∈ P ,

µ̇P = −2λ0µP +

trace([ Z1b + PZ2b − e ] [ λZ1b + PZ2b − e ]
′
)

so

µ̇P = −2λ0µP + ||(Z1 + PZ2)b − e||2

But ēP = (Z1 + PZ2)b − e so

µ̇P = −2λ0µP + ||ēP ||
2

1In fact, only 7 of these differential equations are actually required as
will be explained in a moment.

Therefore, if for motivational purposes we were to temporar-

ily initialize W (0) = 0, then

M(W,P ) =

∫ t

0

{e−2λ0(t−s)||ēP ||
2}ds

Thus if we introduce the exponentially weighted 2 norm

||ω||t =

√∫ t

0

{eλ0s||ω(s)||}2ds

where ω is a piecewise continuous signal, then

M(W (t), P ) = e−2λ0t||ēP ||
2
t , t ≥ 0

Minimizing M(W (t), P ) with respect to P and setting Ĝ(t)
equal to the minimizing value, would then yield an inequality

of the form

||ē
Ĝ
||t ≤ ||ēG||t

Were it possible to accomplish this at every instant of time

and were Ĝ changing slowly enough so that all of the time-

varying subsystems in Figure 2 were exponentially stable,

then one could conclude that for ǫ∗ sufficiently small, the

resulting overall system with input η and output e would be

stable with respect to the exponentially weighted norm we’ve

been discussing. It is of course not possible to carry out

these steps instantly and even if it were, Ĝ would likely be

changing too fast for the time-varying subsystems in Figure

2 to be exponentially stable. What will be achieved is not

quite this because of the requirement that Ĝ not change too

fast. Nonetheless, we will end up with an input-output stable

system.

D. Dwell-time Switching Logic S

For our purposes a dwell-time switching logic S, is a hybrid

dynamical system whose input and output are W and Ĝ

respectively, and whose state is the ordered triple {X, τ, Ĝ}.

Here X is a discrete-time matrix which takes on sampled

values of W , and τ is a continuous-time variable called a

timing signal. τ takes values in the closed interval [0, τD].
Also assumed pre-specified is a computation time τC ≤ τD

which bounds from above for any X ∈ W , the time it would

take a supervisor to compute a value P ∈ P which minimizes

M(X,P ). Between “event times,” τ is generated by a reset

integrator according to the rule τ̇ = 1. Event times occur

when the value of τ reaches either τD − τC or τD; at such

times τ is reset to either 0 or τD − τC depending on the

value of S’s state. S’s internal logic is defined by the flow

diagram shown in Figure 3 where PX denotes a value of

P ∈ P which minimizes M(X,P ).
The definition of S clearly implies that its output Ĝ is

an admissible switching signal. This means that switching

cannot occur infinitely fast and thus that existence and

uniqueness of solutions to the differential equations involved

is not an issue.

Note that implementation of the switching logic just

described requires an algorithm capable of minimizing

M(X,P ) over P for various values of X ∈ X . Although

the quadratic term in M(X,P ) is a positive semi-definite
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Initialize

Ĝ

τ = 0

τ = τD − τC

X = W

M(X, PX) < M(X, Ĝ)

τ = τD − τC τ = τD

Ĝ = PX

y n

n y

y n

Fig. 3. Dwell-Time Switching Logic S

function in the elements of P and P is compact, this

minimization problem is nonetheless formidable because P
is typically not a convex set or even a finite union of

convex sets. While this issue does not in any way limit the

theoretical validity of the algorithm we are discussing, it is of

obvious practical importance when implementation is taken

into account. There are several different ways one might seek

to deal with this issue. We will discuss each of them later in

the paper.

It is easy to see that for any X ∈ X , the value of P

which minimizes M(X, P ) depends on only 7 of X’s entries.

Because of this only 7 of the first order differential equations

which define W actually need to be implemented.

V. RESULTS

The results which follow rely heavily on the following

proposition which characterizes the effect of the monitor-

dwell time switching logic subsystem.

Proposition 1: Suppose that P is a compact subset of

a finite dimensional space, that W (0) = 0, that Ĝ is the

response of the monitor-switching logic subsystem {M, S}
to any continuous input signals e, Z1 and Z2 taking values

in IR2, IR2×2, and IR2×2 respectively, and that ēP = (Z1 +
PZ2)b − e, P ∈ P . For each real number γ > 0 and each

fixed time T > 0, there exists piecewise-constant signals

H : [0,∞) → IR2×8 and ψ : [0,∞) → {0, 1} such that

|H(t)| ≤ γ, t ≥ 0 (30)
∫ ∞

0

ψ(t)dt ≤ 8(τD + τC) (31)

and

||(1 − ψ)(ē
Ĝ
− Hz) + ψēG||T ≤ δ||ēG||T (32)

where

δ = 1 + 16

(
1 + diameter{P}

γ

)8

,

z = column{z1, z2, z3, z4}, and zi is the ith column of

[ Z1 Z2 ].
This proposition is proved in [16], [17]. The proposition sum-

marizes the key consequences of dwell time switching which

are needed to analyze the system under consideration. While

the inequality in (32) is more involved than the inequality

||ē
Ĝ
||t ≤ ||ēG||t mentioned earlier, the former is provably

correct whereas the latter is not. Despite its complexity, (32)

can be used to establish input-output stability with respect to

the exponentially weighted norm || · ||t. The idea is roughly

as follows. Fix T > 0 and pick γ small enough so that

λ0I+A(Ĝ)+(1−ψ)DH is exponentially stable where A(Ĝ)
and D are the coefficient matrices of the injected system

written in standard form with state vector z. Let F be such

that Fz = (Ĝ − G)Z2b. Since ψ has a finite L1 norm {cf.

(31)}, λ0I + A(Ĝ) + (1 − ψ)DH + ψDF is exponentially

stable as well. Next define

ē = (1 − ψ)(ē
Ĝ
− Hz) + ψēG

Then

||ē||T ≤ δ||ēG||T (33)

because of (32). The definition of ē implies that

ē
Ĝ

= ē + (1 − ψ)Hz + ψFz

Substitution into the injected system defined earlier yields

the exponentially stable system

ż = {A(Ĝ) + (1 − ψ)DH + ψDF}z + Dē

with input ē. Now add to Figure 1, two copies of this system,

one {Σ̄1} with output e = (Z1 + ĜZ2)b−{ē+(1−ψ)Hz +
ψFz} and the other {Σ̄2} with output (Z1 + GZ2)b. Like

before, the multiple copies are valid because the matrix

A(Ĝ) + (1 − ψ)DH + ψDF is exponentially stable. The

resulting system is shown in Figure 4.

f(sI − A)−1b

ǫ ||G−1 · ||

η
+

+

−

+

−
+

Rb

Qb||G−1Qb||ǫ ||G−1Qb||

ēG ē eΣ̄1

Σ̄2

Fig. 4. Snapshot at time T of the Overall Subsystem for Analysis

In the light of (33) it is easy to see that if the bound ǫ∗ on

ǫ is sufficiently small, the induced gain of this system from

η to e with respect to || · ||T is bounded by a finite constant

gT . It can be shown that gT in turn, is bounded above by a
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constant g not depending on T [17]. Since this is true for all

T , it must be true that g bounds the induced gain from η to

e with respect to || · ||∞.

The following results are fairly straightforward conse-

quences of these ideas. Detailed proofs, specific to the

problem at hand, can be found in the full-length version of

this paper. The results are as follows:

1) If all measurement errors ǫi and all miss-alignment

errors ēi are zero, then, no matter what its initial value,

x0(t) tends to the unique solution x∗ to (4) as fast as

e−λ0t.

2) If the measurement errors ǫi and the miss-alignment

errors ēi are not all zero, and the ǫi sufficiently small,

then no matter what its initial value, x0(t) tends to a

value for which the norm of the error e is bounded by

a constant times the sum of the norms of the ǫi and

the ǭi.

VI. DEALING WITH A NON-CONVEX PARAMETER SPACE

Although the quadratic term in M(X, P ) is a positive

semi-definite function of the elements of P , the problem of

minimizing M(X, P ) over P is still very complex because

P is not typically convex or even a finite union of convex

sets. The root of the problem stems from the requirement

that the algebraic curve

S = {P : p11p22 − p12p21 = 0}

in IR2×2 on which P is singular cannot intersect P . There

is considerable experience with simulations which suggests

that this singularity issue can simply be ignored, because

the chances of encountering a minimizing P which lies

in S are very low. Nonetheless one would like to have

a systematic way of dealing with this problem. One such

approach relies on an idea called “cyclic switching” which

was specifically devised to deal with this type of problem

[20], [21]. Cyclic switching is roughly as follows. First P
is allowed to contain singular matrices, in which case it is

reasonable to assume that it is a finite union of compact

convex sets. Minimization over P thus becomes a finite

number of standard quadratic programming problems. For

minimizing values of Ĝ which turn out to be close to or

on S, one uses a specially structured switching controller

in place of (27) – one which does not require Ĝ to be

nonsingular. This controller is used for a specific length of

time over which a “switching cycle” takes place. At the

end of the cycle, minimization of M(W, Ĝ) is again carried

out; if Ĝ is again close to S, another switching cycle is

executed. On the other hand, if Ĝ is not close to S, the

certainty equivalence control (27) is used. Cyclic switching

is completely systematic and can be shown to solve the

singularity problem of interest here. The main disadvantage

of cyclic switching is that it introduces additional complexity.

This matter will be considered in detail in a future paper.

There is another possible way to deal with the singularity

problem. What we’d really like is to construct a parameter

space P which is a finite union of convex sets, defined

so that every matrix in P is nonsingular and, in addition,

the matrices in P correspond to a “large” class of possible

positions of agents 1, 2, 3. Keep in mind that the convex

subsets whose union defines such a P , can overlap. This

suggests the following problem.

Convex Covering Problem: Suppose that we are given

a compact subset P0 of a finite dimensional space which

is disjoint from a second closed subset S {typically an

algebraic curve}. Define a convex cover of P0 to mean a

finite set of possibly overlapping convex subsets Ei such that

the union of the Ei contains P0 but is disjoint from S. One

could then define P to be the union of the Ei. The existence

of such a convex cover can be easily established [22]. The

question then is how might one going about constructing a

convex cover consisting of the smallest number of subsets

possible? This unfortunately appears to be a very difficult

problem.

There is a third way to avoid the tractability problem

which is to use a different parameterization. This is discussed

in [22].

VII. CONCLUDING REMARKS

In this paper we have devised a hybrid controller consist-

ing of 17 first order differential equations and a switching

logic which constructively solves the problem of using only

range sensing to maintain the position of a single, point-

modelled mobile autonomous agent in relation to three

neighbors in a constantly moving formation in the plane.

The solution is provably correct and the performance of the

resulting system degrades gracefully in the face of measure-

ment and miss-alignment errors, provided the measurement

errors are not too large. We have used standard constructions

from adaptive control to accomplish this. Because of the

exponential stability of the overall system, the same control

algorithm will solve the two neighbor version of the problem

provided the agent is initially not too far from its target

position.

Implementation of the controller requires an algorithm ca-

pable of solving a four dimensional non-convex optimization

problem. We’ve outlined how cyclic switching might be used

to avoid this problem. We’ve also posed the convex covering

problem and have noted that its solution would allow one to

avoid non-convex optimization.

The extension of the ideas outlined in the paper to the

more realistic situation when the model of agent 0 is non-

holonomic, appears to be possible. We hope to report results

along these lines in the near future.
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