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Far-Field Emission Pattern of a Dielectric Circular
Microresonator with a Point Scatterer

C. P. Dettmann, G. V. Morozov*, M. Sieber, H. Waalkens
Department ofMathematics, University ofBristol, Bristol BS8 1 TW, United Kingdom
*Tel. (44-117) 331 1664, Fax. (44-117) 928 7999, e-mail. g. morozov@,&bristol. ac. uk

ABSTRACT
The far-field emission pattern of a two-dimensional circular microresonator with a point scatterer inside, at some
distance away from the centre, is investigated theoretically. We demonstrate that the presence of the scatterer
leads to significant enhancement in the directionality of the outgoing light in comparison with whispering
gallery modes of a circular resonator without scatterer. Numerical results show that the highly directional modes
are observed in various frequency regions depending on the position and strength of the scatterer.
Keywords: two-dimensional circular microresonator, point scatterer, directional modes.

1. INTRODUCTION
Natural low threshold characteristics of typical dielectric microdisk resonators [1, 2] make them a good
alternative to the Fabry-Perot cavities in which two parallel mirrors reflect the light back and forth through the
active material. Microdisk cavities naturally utilize total internal reflection of light to achieve a mirror
reflectivity near unity, while in Fabry-Perot cavities such a high reflectivity requires fabrication of very
expensive and relatively thick multilayered optical mirrors whose alignment and binding is another rather
difficult task.
Lasers based on microdisk cavities lase on whispering gallery modes of the electromagnetic field. In such

a mode, light circulates around the circumference of the microdisk, reflecting from the boundary of the disk with
an angle of incidence always greater than the critical angle of total internal reflection, i.e. it remains trapped
inside the microresonator. As a result, there are only small losses of radiation caused by the tunnelling effect
(evanescent leakage) and by the surface roughness of the disk walls that is a fundamental limitation for currently
available etching techniques. Therefore, low cavity losses, small size, and relative ease of fabrication are among
main advantages of two-dimensional microdisk resonators [3, 4].
However, a serious drawback of the microdisk geometry is that the laser emission is isotropic in the plane of

the disk. A promising solution for improving directionality of the light output is to deform the shape of the
microdisk [5, 6]. This solution utilizes the fact that deformation causes a significant change in the light-ray
dynamics so that the light eventually impinges on the disk boundary at an angle smaller than the critical one.
This automatically leads to a directional refractive escape but typically spoils the threshold characteristics.
In this paper, we propose a simpler method to significantly improve directionality of the modes of

conventional passive microdisk resonators. We place a point scatterer at the distance d from the disk centre into
the inner region (d < R) of the microdisk of the radiusR . It turns out that such geometry improves the
emission directionality of microdisk modes for a wide range of frequencies, especially in a visible spectral
range.

2. THEORY OF MICRODISKS WITH POINT SCATTERERS
For zero axial momentum EM field, i.e. for the waves with k, = 0, where z is perpendicular to the disk plane
(x,y), a thin microdisk can be modelled as just a two-dimensional dielectric disk of radius R, with the

effective refractive index neff (r) = n . This index is slightly different from the actual refractive index of the
microdisk material due to the disk thickness (typically 1 to 2 wavelengths). For such a model, Maxwell's
equations are reduced to two scalar Helmholtz equations corresponding to TM and TE polarizations,
respectively. We should note that in polar coordinates (r, (0) each TM mode of the microdisk without scatterer

is characterized by an azimuthal quantum number m = 0, + 1,+ 2,... and a radial quantum number q = 1, 2,3,....
In this paper we consider only TM modes. The electric field of such a mode (resonance) is of the

form E = E (r, kres ) 2 = E1 (x, y, kres ) i I where kres = aoes /c is the resonance complex wavenumber. One

method for solving problems with a point scatterer is based on self-adjoint extension theory [7]. According to
this theory, the resonance wave numbers kres can be found from the equation

0 = 1-iGreg (d, d, kres) (1)
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where d is the position of the point scatterer, i is its coupling strength, and G (d, d, kres) is the regularized

Green's function of the operator (A+ kr2sn2 (r)) at the point (d,d). This function is obtained from the

unregularized Green's function by subtracting the term In (ko r - d )/2;T with ko being an arbitrary constant.

The unregularized function satisfies the standard equation

[A+kr2en (r)] G(r,d,kres)=d(r-d), (r)n r (2)

with appropriate boundary conditions. In particular, those conditions for open disk resonators require
G (r,d, kres) to be finite at r = 0, to be outgoing wave for r -> oo, and to be smooth at r = R. Removing the

singularity of the unregularized Green's function at the point (d,d) and introducing the new coupling

parameter a, which is defined by 2;T/i _ - In (koa), we obtain that equation (1) takes the form

i7r kresn a ) i;l '7+ Hm (kresnR)f (kresR) fl (kresfR)Hm (kres R) j2

2 2 ) m=- n Hm ( kresR ) Jm ( kresnR)-HmH (kresR) Jm (kresflR)(Rd(
where J. Hm are Bessel and Hankel functions of the first kind and y =_ 0.5772 is the Euler-Mascheroni
constant. The electric field of the corresponding resonance mode is given by

E (r,kres)=NG(r,d,kres) (4)
where G (r, d, kres ) is the unregularized Green's function from the equation (2), N is a normalization factor.

3. FAR-FIELD EMISSION
In order to quantify the far-field directionality of the electric field, we consider its asymptotic behaviour for
r -> oo which has the form

Ez(r,kres)=E z(r,,kres ) OC exp(ikresr) (5)

To characterize the directionality we compute the normalized variance of the far-field intensity
2)r 2)r 2

2ff

02=J f(y)4d 0- (6)

From this definition it follows that A\
f

2 =0 and A/f2=0.5 for the resonant TM modes of the microdisk

without scatterer which have m =Oand m . 0 respectively. To illustrate the emission directionality of the
microdisk with a scatterer we consider a GaAs microdisk of effective refractive index n=3 and radius
R =1 pIm [8] with a point scatterer placed at the distance d = 0.495 ptm. The complex wave numbers of
corresponding resonant modes, kres, can be found from the equation (3) ifwe vary the coupling strength a from
0 to oo. We are interested in the modes that have both high directionality and low threshold characteristics
(high Q -factors). In near infrared range of frequencies one possibility is the mode kresR = 2.0571- 0.0164i,
corresponding to the coupling strength a z 0.754. It has A 12 = 2.12 and Q=251. In Fig. 1 we compare the

function f(y) 2 for this mode with two resonant TM modes of the microdisk without scatterer. In a spectral

range of green light, the resonant mode kresR = 12.5513-0.0016i, corresponding to a z 0.003, has both
extremely high directionality A2 =4.71 and a very high factor Q =15700. In Fig. 2 we compare the function

2) for this mode with the resonant mode m = 21, q = 4 [the closest one in terms of Re (kR) ] of the

microdisk without scatterer.
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Figure 1. Polar plot ofthe far-field intensity f () ~2for the two TM modes ofthe disk without scatterer.,

m =0, q I1 (dashed circle), m = 2, q =2 (thin solid line), andfor the high directional TM mode

kresR =2.057 1- 0.0 164 i ofthe disk with the scatterer (thick solid line).

Figure 2. Polar plot ofthe far-field intensity f () ~2for the TM mode, m 21 q 4, ofthe disk without

scatterer (thin solid line) andfor the high directional TM mode kresR =12.5513 -0.0016 i of the disk with the
scatterer (thick solid line).

4. CONCLUSIONS
In summary, we demonstrated the existence of highly directional TM-modes in the emission spectrum of a two-
dimensional passive microdisk cavity with a point scatterer. These modes can appear even for the scatterer with
a very weak coupling constant which promises the feasibility of an experimental realization of such cavities. It
would be interesting and potentially very useful to get a deeper insight into the output directionality by relating
the resonant modes to the underlying ray dynamics in the semiclassical limit.
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