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Extension of Kalman-Yakubovich-Popov Lemma to Descriptor Systems

M. K. Camlibel R. Frasca

Abstract— This paper studies concepts of passivity and
positive realness for regular descriptor systems. A complete
analogue of the well-known Kalman-Yakubovich-Popov lemma
is presented. Some of the earlier related results are recovered
from the provided results.

I. INTRODUCTION

The notion of passivity has always been of interest in
various problems of systems and control theory. It is inti-
mately related to the notion of positive realness. The relation
between this two properties has been under investigation ever
since Kalman’s introduction of state space approach. The
very well-known Kalman-Yakubovich-Popov (KYP) lemma
is among the classical results of systems theory. For more
than four decades, many researchers have investigated pas-
sivity/positive realness and their various extensions within
the framework of state space systems. As an encyclopedic
account of this vast literature, we refer to [1].

One line of research consists of efforts to extend the
available literature for state space systems to descriptor
systems. Despite the considerable contributions of numerous
papers, a full analogue of KYP lemma for descriptor systems
has not appeared yet to the best of authors’ knowledge. A
most majority of the related studies (see e.g. [2], [3] and [4])
is concentrated on strict versions of positive realness and/or
works under extra assumptions (e.g. impulse-freeness, sign
conditions on the feed-through term).

This paper aims at providing the extension of KYP lemma
to descriptor systems. To do so, we first formulate passivity
in terms of the so-called dissipation inequality by following
Jan Willems’ conceptual framework that is introduced in
the seminal paper [5]. This will be followed by necessary
and sufficient LMI conditions for passivity. Our treatment
is highly inspired by the approach of [3]. In [3], the au-
thors present some sufficient conditions under an additional
assumption on the feed-through term. Another interesting
contribution of [3] is a refinement of Weierstrass form for
realizations of positive real transfer matrices. This refinement
serves as one of the key tool in our development. Another
key tool that we borrow from the literature (see e.g. [6])
is the characterization of “smooth” solutions of descriptor
systems.

II. NOTATIONS AND CONVENTIONS

The following notations and conventions will be in force.
The symbols R, R+, C and C+ denote the sets of real
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numbers, nonnegative real numbers, complex number and
complex number with positive real part, respectively. The
notation Rn×m denotes the set of n × m matrices with
real elements and Rn×m(s) the set of n × m matrices of
rational functions. For any set S , the n tuples of elements
of S will be denoted by S n. For a complex number s,
Re(s) stands for the real part. For complex vector v, the
conjugate, the transpose and the conjugate transpose are
denoted, respectively, v̄, vT and vH . These conventions are
used for matrices in the obvious manner. Let M be a matrix.
The image of M is denoted by im M and kernel of M by
ker M . Let P be a square matrix. The matrix P is said to
be symmetric if P = PT . We say that P (not necessarily
symmetric) is positive semi-definite if vT Pv > 0 for all
vectors v. It is said to be positive definite if it is positive
semi-definite and vT Pv = 0 implies v = 0. We write P > 0
and P > 0 by meaning that P is positive semi-definite and
positive definite, respectively. Negative (semi-)definiteness is
defined in a similar fashion. Given two vectors u and v, the
notation col(u, v) denotes the vector obtained by stacking u
over v. The identity matrix will be denoted by I , while the
zero matrix by 0. A rational matrix G(s) is said to be proper
if lims→∞G(s) is finite.

III. PRELIMINARIES

In what follows we introduce/review some of the concepts
that will be used later.

A. Descriptor Systems

Consider the descriptor system

Eẋ(t) = Ax(t) + Bu(t) (1a)
y(t) = Cx(t) + Du(t) (1b)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈
Rp is the output, and the matrices (A,B,C, D, E) are of
appropriate sizes with E and A being square. We denote (1)
by Σ(E,A, B, C, D). Throughout the paper, we assume
that (1) is regular, i.e. (sE−A) is invertible as a polynomial
matrix. We say that a descriptor system is minimal if there
is no other descriptor system with less number of states
yielding the same transfer matrix. A full characterization of
minimality can be found in the Appendix.

Throughout the paper, we are interested in a particular
type of solutions for (1). Let L2,loc denote the locally square
integrable functions. Let AC denote the absolutely continu-
ous functions. We say that a triple (x, u, y) ∈ ACn×Lm+p

2,loc

is a solution (or trajectory) if it satisfies (1) for almost all
t ∈ R.
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B. Weierstrass form
A useful tool in the analysis of descriptor systems is

Weierstrass form. If (1) is regular, there exist two square
invertible matrices S and T such that the system (1) is
transformed to the Weierstrass canonical form

Ẽẋ(t) = Ãx(t) + B̃u(t) (2a)

y(t) = C̃x(t) + Du(t) (2b)

with:

Ẽ = SET =
[
I 0
0 N

]
, Ã = SAT =

[
A1 0
0 I

]
,

B̃ = SB =
[
B1

B2

]
, C̃ = CT =

[
C1 C2

]
,

where A1 ∈ Rn1×n1 , Bi ∈ Rni×m, Ci ∈ Rni×m and N ∈
Rn2×n2 is nilpotent, i.e. Nq = 0 for some integer q > 0.
We denote the smallest of such integers by k.

C. Properties of solutions
Consider the set

W = {ξ | there exists a trajectory of (1) and
t ∈ R such that ξ = col(ẋ(t), x(t), u(t))}.

The following lemma gives a characterization of the set W .

Lemma III.1 For the descriptor system (1), there exist
matrices V ∈ Rn×`, F ∈ R`×`, and U ∈ Rm×` with
` = n + (k + 1)m such that

W = im

V F
V
U

 .

Moreover, EV F = AV + BU .

Proof. Without loss of generality, we can assume that
(E,A, B, C) is in the Weierstrass form. Then, any trajectory
of (1) is given by (see for instance [6])

ẋ1(t) = A1x1(t) + B1u(t) (3)

x2(t) = −
k−1∑
i=0

di

dti
(N iB2u(t)). (4)

By differentiating the second equation, we get

ẋ2(t) = −
k−1∑
i=0

d(i+1)

dt(i+1)
(N iB2u(t)). (5)

By putting (3) and (5) together, we get equation (6) where
vi(t) are functions satisfying N iB2vi(t) = di

dti (N iB2u(t))
for i = 0, 1, . . . , k. Then, the choices

V =
[
I 0 0 · · · 0 0
0 −B2 −NB2 · · · −Nk−1B2 0

]
(7)

F =


A1 B1 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 I
0 0 0 · · · 0 0

 (8)

U =
[
0 I 0 · · · 0 0

]
(9)

prove the first part. The rest readily follows from the defini-
tion of W as W ⊆ ker

[
E −A −B

]
. �

D. Passivity and Positive Realness

Following Willems [5], [7], we formulate the notion of
passivity via the so-called dissipation inequality.

Definition III.2 The system (1) is passive if there exists a
nonnegative-valued function V : Rn → R+ such that

V (x(t0)) +
∫ t1

t0

uT (t)y(t) dt > V (x(t1)).

for all t0, t1 with t1 > t0 and (u, x, y) satisfying (1). If
exists, V is called a storage function.

An intimately related concept is positive realness.

Definition III.3 A rational matrix G(s) ∈ Rm×m(s) is
positive real if the following conditions are satisfied:

• G is analytic in C+;
• G(s̄) = G(s) for all s ∈ C;
• G(s) + GH(s) > 0 for all s ∈ C+.

E. Kalman-Yakubovich-Popov Lemma

When E = I , the following theorem summarizes well-
known relationship between passivity of a system and posi-
tive realness of its transfer matrix.

Theorem III.4 Consider the system (1) with E = I and
m = p. Among the statements

1) The system Σ(I,A, B, C,D) is passive with a
quadratic storage function.

2) The linear matrix inequalities

K = KT > 0 (10a)[
AT K + KA KB − CT

BT K − C −(D + DT )

]
6 0 (10b)

have a solution K.
3) The transfer matrix D + C(sI − A)−1B is positive

real.
4) The quadruple (I,A, B,C) is minimal.
5) The pair (C,A) is observable.
6) The matrix K is positive definite.

the following implications hold:

A) 1 ⇔ 2.
B) 2 ⇒ 3.
C) 3 and 4 ⇒ 2.
D) 2 and 5 ⇒ 6.
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ẋ1(t)

ẋ2(t)

x1(t)

x2(t)

u(t)


=


A1 B1 0 · · · 0 0
0 0 −B2 · · · −Nk−2B2 −Nk−1B2

I 0 0 · · · 0 0
0 −B2 −NB2 · · · −Nk−1B2 0
0 I 0 · · · 0 0





x1(t)
u(t)
v1(t)

...
vk−1(t)
vk(t)


. (6)

IV. MAIN RESULTS

The main contribution of the paper is the following
complete analogue of KYP lemma for descriptor systems.

Theorem IV.1 Consider the system (1) with m = p. Let
V, F, U be as in Lemma III.1. Among the statements

1) The system Σ(E,A, B, C, D) is passive with a
quadratic storage function.

2) The linear matrix inequalities

K = KT > 0 (11a)V F
V
U

T 0 K 0
K 0 −CT

0 −C −(D + DT )

V F
V
U

 6 0 (11b)

have a solution K.
3) The transfer matrix D + C(sE − A)−1B is positive

real.
4) The quadruple (E,A, B, C) is minimal.

the following implications hold:
A) 1 ⇔ 2.
B) 2 ⇒ 3.
C) 3 and 4 ⇒ 2.

Proof. A : This follows from Lemma (III.1) by employing
the arguments of the standard case.

B: Let ξ ∈ ker V ∩ C`. Define X(s) = V (sI − F )−1ξ,
U(s) = U(sI − F )−1ξ and w = col(sX(s), X(s), U(s)).
Since ξ ∈ ker V , we get

sX(s) =sV (sI − F )−1ξ − V ξ = V [s(sI − F )−1 − I]ξ

=V F (sI − F )−1ξ.

Thus w ∈ W . Then

sEX(s) = AX(s) + BU(s). (12)

Note that

0 >wH

 0 K 0
K 0 −CT

0 −C −(D + DT )

w

=Re(s)XH(s)KX(s)−XH(s)CT U(s)+

− UH(s)CX(s)− UH(s)(D + DT )U(s).

(13)

Since s ∈ C+, and K is positive semi-definite, (13) results
in

UH(s)[CX(s) + DU(s)] + [CX(s) + DU(s)]HU(s) > 0

By solving X(s) from (12), we get

UH(s)[G(s) + GH(s)]U(s) > 0 (14)

To conclude the proof, we need to show that U(sI −
F )−1(ker V ∩C`) = Cm. This can be achieved by assuming
that (1) is given in Weierstrass form and using (8) and (9).
Now, suppose that G(s) has a pole s0 ∈ C+. This means
that the condition (14) holds in a pointed neighborhood of s0

which is free of any pole. This, however, would contradict to
the fact that s0 is a pole. Thus, G(s) does not have any pole
in C+ and (14) holds for all s ∈ C+. Note that G(s̄) = G(s)
for all s ∈ C as matrices in equation (E,A, B, C, D) are
real. So, G(s) is positive real.

C: In view of Proposition A.4 statement 2, we can assume
without loss of generality

(E,A) =
(I 0 0

0 0 I
0 0 0

 ,

A1 0 0
0 I 0
0 0 I

)

(B,C) =
(B1

B2

B3

 ,
[
C1 C2 C3

])
.

Since G(s) is positive real and (E,A, B, C) is minimal, we
can assume without loss of generality that (E,A, B, C) is in
Weierstrass form of (26). Then, straightforward calculations
yield that

V F
V
U

 =



A1 B1 0 0
0 0 −B2 −B3

0 0 −B3 0
I 0 0 0
0 −B2 −B3 0
0 −B3 0 0
0 I 0 0


.

Let K be a symmetric positive semi-definite matrix and be
partitioned as

K =

K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

 = KT > 0 (15)

where Kij ∈ Rni×ni . Then, it can be verified that equa-
tion (16) holds. Take K12, K13, K22 and K23 as zero
matrices with the corresponding sizes. Since C2B3 is neg-
ative semi-definite and B3 is of full row rank due to
Proposition A.4, there exists a symmetric positive semi-
definite matrix K33 such that BT

3 K33 + C2 = 0. With these
choices, (16) becomes (18). Since G(s) is positive real and
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V F
V
U

T  0 K 0
K 0 −CT

0 −C −(D + DT )

V F
V
U

 =


AT

1 K11 + K11A1 M12 M13 −K12B3

MT
12 M22 M23 M24

MT
13 MT

23 M33 BT
3 K22B3

−BT
3 KT

12 MT
24 BT

3 K22B3 0

 (16)

where

M12 = K11 −AT
1 K12B2 −AT

1 K13B3 − CT
1

M13 = −K12B2 −K13B3 −AT
1 K12B3

M22 = −BT
2 KT

12B1 −BT
3 KT

13B1 −BT
1 K12B2 −BT

1 K13B3 + C2B2 + C3B3 + BT
2 CT

2 +
+BT

3 CT
3 − (D + DT )

M23 = BT
2 K22B2 + BT

3 KT
23B2 + BT

2 K23B3 + BT
3 K33B3 −BT

1 K12B3 + C2B3

M33 = BT
3 K22B2 + BT

3 K23B3 + BT
2 K22B3 + BT

3 KT
23B3

M24 = BT
2 K22B3 + BT

3 K23B3.

(A1, B1, C1) is minimal due to Proposition A.4, we can
use Kalman-Yakubovich-Popov lemma to find a symmetric
positive semi-definite K11 such that LMIs (19) holds. This
means that

K =

K11 0 0
0 0 0
0 0 K33


is a solution of the LMIs (11). �

The arguments of the proof of the last statement can be
employed to parameterize all solution of the LMIs (11).

Lemma IV.2 Consider descriptor system (1) with m = p.
Suppose that

1) C(sE −A)−1B + D is positive real.
2) (E,A, B, C) is minimal.
3) (E,A, B, C) is given in Weierstrass form of (26).

Then, all solutions of the LMIs (11) are given by

K =

K11 0 0
0 0 0
0 0 K33


where Kii ∈ Rni×ni such that

A) K11 is a solution of the LMIs (10) for

(A,B, C, D) = (A1, B1, C1, D − C2B2 − C3B3).

B) K33 is the unique solution of BT
3 K33 = C2.

Proof. The hypotheses guarantee the solvability of
LMIs (11). Let K be given as in (15). Note that the right
hand side of (16) is a negative semi-definite matrix. Since
M44 = 0, it follows from elementary linear algebra that all
the elements on the corresponding rows and columns must
be zero. In other words,

BT
3 K22B3 = 0 (17a)

M24 = 0 (17b)
−K12B3 = 0. (17c)

Due to minimality, B3 is of full row rank. Then, (17a)-(17c)
yield that K12 = 0, K22 = 0 and K23 = 0. As such, we get
M33 = 0. This yields K13 = 0 and K33B3 +C2 = 0. Since
B3 is of full row rank and C2B3 is symmetric and negative
semi-definite due to hypotheses, there always exists a unique
symmetric positive semi-definite K33 satisfying K33B3 +
C2 = 0. Therefore, the right hand side of (16) boils down to
the right hand side of (18). Since G(s) is positive real, so is
its proper part

G1(s) = C1(sI −A1)−1B1 + D − C2B2 − C3B3.

Moreover, (I,A1, B1, C1) is minimal due to minimality of
(E,A, B, C). Hence, one can find K11 with the desired
properties. �

A. Comparison with previous results

In what follows, we will compare our results with the
available results in the literature.

Remark IV.3 (KYP lemma) When E = I , it can be veri-
fied that

W = im

A B
I 0
0 I

 .

Since A B
I 0
0 I

T 0 K 0
K 0 −CT

0 −C −(D + DT )

 A B
I 0
0 I


=

[
AT K + KA KB − CT

BT K − CT −(D + DT )

]
,

Kalman-Yakubovich-Popov lemma is recovered as a special
case from Theorem IV.1.

Remark IV.4 (Kablar [8]) In [8, Corollary 4.1], it is
claimed that a minimal descriptor system (1) with m = p
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V F
V
U

T  0 K 0
K 0 −CT

0 −C −(D + DT )

V F
V
U



=


AT

1 K11 + K11A1 K11B1 − CT
1 0 0

BT
1 K11 − C1 C2B2 + C3B3 + BT

2 CT
2 + BT

3 CT
3 − (D + DT ) 0 0

0 0 0 0
0 0 0 0

 .

(18)

[
AT

1 K11 + K11A1 K11B1 − CT
1

BT
1 K11 − C1 BT

2 CT
2 + C2B2 + B3C

T
3 + B3C3 − (D + DT )

]
6 0. (19)

is passive if, and only if, the LMIs

P = PT > 0 (20a)[
AT PE + ET PA PB − CT

BT P − C −(D + DT )

]
6 0 (20b)

admit a solution. However, this result cannot hold in this
generality as D+DT is not necessarily positive semi-definite
for passive descriptor system. As an example, consider the
system [

0 1
0 0

] [
ẋ1

ẋ2

]
=

[
−1 0
0 −1

] [
x1

x2

]
+

[
0
−1

]
u

y =
[
1 −1

] [
x1

x2

]
− u.

Since D = −1, the LMIs (20) do not admit a solution.
However, the dissipation inequality holds for the storage
function V (x) = 1

2x2
2. To see this, note that x2+u = 0 ⇒

u = −x2 and y = x1 − x2 − u ⇒ y = x1. Hence, one
gets d

dtV = ẋ2x2 = −x1x2 = uy. Therefore, the dissipation
inequality holds as an inequality.

Remark IV.5 The following theorem summarizes the ex-
tension of Kalman-Yakubovich-Popov lemma to descriptor
system that is proposed in [3].

Theorem IV.6 [3, Theorem 1, 2 and 3] Consider the de-
scriptor system (1) with m = p. Let G(s) = C(sE −
A)−1B + D. The following statement hold.

1) If the LMIs

ET X = XT E > 0 (21a)[
AT X + XT A XT B − CT

BT X − C −(D + DT )

]
6 0 (21b)

admit a solution, then G(s) is positive real.
2) If the LMIs

ET XE = ET XT E > 0 (22a)[
AT XE + ET XT A ET XT B − CT

BT XE − C −(D + DT )

]
6 0 (22b)

admit a solution, then G(s) is positive real.
3) Suppose that G(s) is positive real and G(s) = G1(s)+

sG0 where G1(s) is proper. If (E,A, B, C) is minimal

and D + DT > G1(∞) + GT
1 (∞) then the LMIs (21)

admit a solution.

By taking K = ET X and using EV F = AV +BU , we getV F
V
U

T  0 K 0
K 0 −CT

0 −C −(D + DT )

V F
V
U


=

[
V
U

]T [
AT X + XT A XT B − CT

BT X − C −(D + DT )

] [
V
U

]
. (23)

Similarly, by taking K = ET XE and using EV F = AV +
BU , we getV F

V
U

T  0 K 0
K 0 −CT

0 −C −(D + DT )

V F
V
U


=

[
V
U

]T[
AT XE + ET XT A ET XT B − CT

BT XE − C −(D + DT )

][
V
U

]
. (24)

It follows from (23) and (24) that the LMIs (11) admit a
solution whenever one of the LMIs (21) and (22) admits a
solution.

To see that the last statement follows from our main
result, assume that (E,A, B, C) is given in Weierstrass form
of (26). Note that G1(∞) = D − C2B2 − C3B3 and also
that [

AT
1 K11 + K11A1 K11B1 − CT

1

BT
1 K11 − C1 −(D + DT )

]
6

[
AT

1 K11 + K11A1 K11B1 − CT
1

BT
1 K11 − C1 −(G1(∞) + GT

1 (∞))

]
as D + DT > G1(∞) + GT

1 (∞). Then, it follows from
Lemma IV.2 that the LMIs (21) admits a solution with

X =

K11 0 0
0 0 K33

0 0 0

 .

V. CONCLUSIONS

This paper presents a complete analogue of Kalman-
Yakubovich-Popov lemma for regular descriptor systems.
Unlike previous work, we do not make any additional
assumptions such as impulse-freeness or any condition on
the feed-through term. After establishing our main result,
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some of the earlier results are covered as special cases.
Our future research topic is to characterize strict versions of
passivity/positive realness in the spirit of the current paper.

APPENDIX
KNOWN RESULTS

We quote the following well-known theorem that states
necessary and sufficient conditions for minimality.

Theorem A.1 [9], [10] Let

G(s) = C(sE −A)−1B + D (25)

be a rational function where E and A are square matrix with
dimension n. Then, (25) is a minimal realization of G(s) if,
and only if, the following conditions are satisfied:
• rank

[
A− sE B

]
= n for all s ∈ C

(Finite controllability).
• rank

[
E B

]
= n (Infinite controllability).

• rank
[
AT − sET CT

]
= n for all s ∈ C

(Finite observability).
• rank

[
ET CT

]
= n for all s ∈ C

(Infinite observability).
• A ker E ⊆ im E (Absence of non dynamics modes).

A characterization of positive realness can be found in the
following theorem:

Theorem A.2 [11, Theorem 2.7.2] A real rational function
G : C 7→ (C ∪ ∞)m×m is positive real if, and only if, the
following conditions are satisfied:
• G has no poles in C+;
• G(iω) + GH(iω) > 0 for all ω ∈ R with iω not a pole

of G;
• If iω or ∞ is a pole of G, then it is a simple pole and

the associated residue matrix is positive semi-definite.

Weierstrass form plays a key role in the analysis of descriptor
systems. The following proposition imposes a particular
structure on Weierstrass form of the systems of interests in
this paper.

Proposition A.3 Let (E,A, B, C) ∈ Rn×n × Rn×n ×
Rn×m × Rm×p be given such that

1) (E,A, B, C) is minimal.
2) If s = ∞ is a pole of C(sE − A)−1B then it is a

simple pole
Then, there exist matrices (S, T ) ∈ Rn×n×Rn×n such that

SET =

I 0 0
0 0 I
0 0 0

 SAT =

A1 0 0
0 I 0
0 0 I

 (26a)

SB =

B1

B2

B3

 CT =
[
C1 C2 C3

]
(26b)

where A1 ∈ Rn1×n1 , Bi ∈ Rni×m, Ci ∈ Rni×m and all
other matrices involved are of appropriate sizes.

Proof. The same result is obtained by [3] where the second
condition is replaced by positive realness. Its proof is based
on Proposition 2 of [3]. However, this proposition still holds
if one replaces positive realness by the condition 2. This
observation concludes our proof. �

Proposition A.4 Let (E,A, B, C) given such that G(s) =
D+C(sE−A)−1B is positive real. The following statements
hold.

1) G(s) = G1(s)+G0s where G1 is proper and positive
real and G0 = GT

0 > 0.
2) (E,A, B, C) admits the Weierstrass form (26) and

G0 = −C2B3.
3) If (E,A, B, C) is minimal, then (A1, B1, C1) is mini-

mal and B3 is of full row rank.

Proof. 1: Follows from Theorem A.2.
2: Follows from Theorem A.2 and Proposition A.3.
3: Note that G(s) = C1(sI − A1)−1B1 + D − C2B2 −

C3B3 − sC2B3. Hence, G1(s) = C1(sI −A1)−1B1 + D−
C2B2 − C3B3. Minimality of (I,A1, B1, C1) follows from
Theorem A.1. �
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