

 University of Groningen

Understanding and analyzing software architecture (of distributed systems) using patterns
Stal, Michael

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Stal, M. (2007). Understanding and analyzing software architecture (of distributed systems) using patterns.
s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/857a1574-9913-4856-83bd-e8ea43294a39

161

Chapter 7 - Activation Pattern

7 Activation Pattern

Submitted and Accepted As: Activator Reloaded

In: PloP 2005, Monticelli, Illinois, USA

Authors: Douglas C. Schmidt, Michael Stal

7.1 Pattern Description

7.1.1 Pattern Abstract

The Activator design pattern automates scalable on-demand activation and deactivation
of service execution contexts to run services accessed by many clients without
consuming resources unnecessarily.

7.1.2 Example

Many distributed systems have constraints on the computing resources they can allocate

and manage. In the industry automation domain, for example, distributed traffic control

systems and manufacturing plants are increasingly implemented using embedded de-

vices known as controllers that communicate via networks. When software developers

build distributed automation systems, they must determine how to provide services, such

as inventory trackers, system monitors, and command and control services, in a manner

that scales gracefully as the size of the network topology and number of clients in-

creases.

In automation systems, service processing must be scalable since multiple clients may

access embedded devices simultaneously. One service deployment strategy is to apply

an eager resource allocation strategy [75], which activates processes in controllers dur-

162

Chapter 7 - Activation Pattern

ing system initialization and runs all services in processes while the system is opera-

tional, irrespective of which services are actually accessed by clients. Embedded de-

vices, however, often have a limited amount of computing resources, such as main

memory, CPU time, and network connections [107]. As the number of clients or services

increases, therefore, an eager resource allocation strategy scales poorly because un-

used server processes consume computing resources that could be allocated more ef-

fectively to services actually being accessed by clients.

A typical scenario in the lifetime of an eager resource allocation strategy for a controller

in an industrial automation system is shown in the figure below. The “System Load” rec-

tangle in the diagram depicts the current CPU load of the embedded controller that falls

into the range between 0% and 100%.

Figure 23: Overload situations due to permanently activated threads.

163

Chapter 7 - Activation Pattern

In this eager resource allocation scheme, all services are activated automatically at sys-

tem initialization and consume significant amounts of available system resources as the

increased CPU load indicates. In the depicted time span above only service 1 is ac-

cessed successfully by a client increasing CPU load to 80% because all other services

are in memory busy waiting for incoming requests. The consumption of resources by

allocated − but unused − server processes can therefore increase unnecessarily.

• Service response time, e.g., by competing for resources with services actually

accessed by clients, and

• Hardware costs, e.g., by requiring more main memory and CPU than would oth-

erwise be needed to handle clients simultaneously.

In the figure above, a second client tries to access service 3 but obtains an overload er-

ror since the embedded controller has dedicated its resources to service 1 and to the

eager allocation strategies of other services. This overload error gets generated because

the CPU load reaches a predefined overload barrier of 90%. In the example system em-

bedded controllers won’t initiate any new tasks when overload barriers are reached.

Better service activation strategies are therefore necessary to optimize resource usage

and enhance scalability when resources are scarce. Depending on the software tech-

nologies used in the automation system, these activation strategies can be implemented

using operating system (OS) and middleware super servers, such as Inetd [93], the

CORBA Implementation Repository [103], or system-specific variants of these technolo-

gies, based on the Activator pattern described in this paper.

164

Chapter 7 - Activation Pattern

7.1.3 Context

A resource-constrained distributed computing environment without stringent real-time

requirements whose services (1) can be accessed by multiple clients simultaneously, (2)

require non-trivial utilization of resources, such as memory or processing time, (3) are

activated quickly relative to service processing time, and (4) are not accessed continu-

ously throughout the system lifetime.

7.1.4 Problem

In distributed systems, multiple clients often simultaneously access services (such as e-

commerce web services, audio/video streaming services, or lower-level OS/network ser-

vices like DNS or FTP) that perform functionality on behalf of the clients. These services

are deployed in service execution contexts (such as operating system processes,

threads, and/or component containers) and consume scarce system resources (such as

network/database connections, threads, virtual memory, process table slots, and open

files). As a consequence, it is often necessary to balance the following forces:

• Parsimony. Service execution contexts available in the system should only con-

sume resources for services that are accessed actively by clients.

• Transparency. Clients should be shielded as much as possible from where ser-

vices are located, how they are deployed onto hosts in a network, and how their

lifecycle is managed.

7.1.5 Solution

Minimize resource consumption by activating service execution contexts on demand,

running service implementations in these contexts, and deactivating services and their

contexts when they are no longer being accessed by clients. Use proxies to transparently

decouple client access from service behavior and lifecycle management.

165

Chapter 7 - Activation Pattern

In detail: Implement services that have service identifiers and offer functionality to client

applications via their service proxies. Use service execution contexts to manage the life-

cycle of these services, in particular their activation, processing, and deactivation. Im-

plement an activator that uses an activation table to activate service execution contexts

on demand and deactivate them when clients no longer access them. Provide a registra-

tion interface that services can use to register and unregister their availability with the

activator. Use the service proxy to ensure clients only access services via activators. If a

service is not running when a client tries to access it, an activator automatically creates

the appropriate service execution context and arranges for the service to process the

client’s request(s) in this context.

7.1.6 Structure

A client is an application that uses services to perform portions of its computations. It

accesses the services remotely using service proxies, which are proxies it obtains from

an activator.

Figure 24: Client participant of Activator pattern.

In our industrial automation system, clients access services within embedded devices by

connecting to these devices remotely. Example clients include material flow controllers

166

Chapter 7 - Activation Pattern

that identify optimal paths for delivering goods to their destinations and administration

consoles that monitor and control an automation system.

A service identifier is some type of entity, such as a web service universal resource loca-

tor (URL), CORBA interoperable object reference (IOR), or COM+ moniker, that clients

use to identify a particular service. A service identifier can be created by a server

and/service proxy or a client. A client passes a service identifier to an activator, which

extracts the information required to locate and provide the requested service.

Figure 25: Service identifiers.

In our automation example, the service identifier is an IOR that opaquely encodes a sin-

gle service’s addressing information, including the host address of its embedded device,

the port number on which an activator listens for incoming requests, and additional con-

text information, such as the particular object that implements the service and its security

credentials.

Figure 26: Service proxy within Activator pattern.

167

Chapter 7 - Activation Pattern

A service proxy is a proxy [14][33] that resides with the client and facilitates its communi-

cation with the activator and service. It also shields clients from an activator’s involve-

ment in connecting clients and services. In addition, a service proxy can encode informa-

tion about the service identifier, service, and the service execution context that can be

used to optimize communication and enhance availability. The service proxy can either

be an explicit proxy with concrete operations (as in the case of CORBA or EJB) or it can

be more implicit (as is the case with web clients that activate HTTP servers by establish-

ing TCP/IP connections).

In our automation example, the service proxy is an explicit proxy object that shields the

client from system-level details of communication and activation. The service proxy uses

the service identifier to extract the host, port, and other context information needed to

direct client requests to their destinations.

A service execution context runs on a server, executes services, and controls their acti-

vation and deactivation lifecycles. Lower-level service execution contexts include operat-

ing system processes (which provide the unit of memory protection and resource alloca-

tion) or threads (which provide the unit of execution for instructions within a process).

Higher-level service execution contexts include containers in component middleware that

provide the context for processing operation invocations on components. Container-

based service execution contexts often provide a factory to create services and/or lookup

functionality to obtain existing services.

Figure 27: Service Execution Contexts manage service lifecycles.

168

Chapter 7 - Activation Pattern

Our example uses thread-based service execution contexts to run automation services

implemented as C++ objects. After activating a service, the service execution context

invokes a method on the service to initialize itself.

A service is an entity that runs on a server and is executed in a service execution context

and provides functionality and/or resources to clients. Services are named by their ser-

vice identifiers and accessed by clients via their service proxies. A service must be regis-

tered with an activator manually by users or by some administrative entity.

Figure 28: An activatable service.

In our automation example, embedded system controllers provide remotely accessible

services, such as command and control functionality that allows administrators to check

and change the current system configuration. These service instances run in threads and

consume various system resources, such as main memory, CPU time, sockets, or data-

base connections. Multiple clients access these service components at various frequen-

cies, i.e., not all services are accessed all the time.

An activator is a mediator [33] between services and their clients. It may run on each

server or may be shared by a group of servers, but in either case it activates service

execution contexts on demand. The activator uses an activation table to insert and re-

move registration information about services and their associated service execution con-

texts. When a client needs to access a currently inactive service, the activator activates a

service execution context and arranges for the service to process the client’s request(s)

in this context.

169

Chapter 7 - Activation Pattern

A client obtains a service proxy from the activator, which it then uses to invoke opera-

tions on the service. The activator uses information in its activation table to activate the

appropriate service if it is currently inactive. Clients that query the activator for a service

must indicate the desired service via a service identifier, which the activator uses to find

the associated entry in its activation table.

Figure 29: The Activator component.

Activation in our automation example can involve different activities. An activator can be

implemented as a remote gateway listening on a network port for incoming client re-

quests. A client request is typically initiated via a service proxy. If the service’s execution

context has already been created, the activator simply forwards the client request to the

service. If the service execution context has not been activated, however, the activator

creates a thread to execute the service and initializes the service. After this initialization

phase, the service proxy on the client is associated with the service execution context

and the client request is forwarded to the service transparently.

Figure 30: The activation table maintains activation information.

170

Chapter 7 - Activation Pattern

An activator uses its activation table to map service identifiers to service implementations

and service execution contexts. An activator uses this table to store associated registra-

tion and deregistration information when new services become available. These entries

may include the execution path of the service executable or DLL, a reference to the ser-

vice’s interface, activation policies, and other configuration information.

The activation table in our automation example is implemented by a hash table that

maps service identifiers to associated information, such as the port address of the ser-

vice execution context, the address of the external service interface, information about

the concrete service, a flag indicating whether the service execution context and the ser-

vice are currently running, and other bookkeeping information.

The UML class diagram below illustrates the relationships between the Activator design

pattern participants described above.

171

Chapter 7 - Activation Pattern

Figure 31: Static structure of the Activator pattern.

7.1.7 Dynamics

There are three phases to the dynamics in this pattern: service registration, service acti-

vation and access, and service deactivation, as discussed below.

7.1.7.1 Service registration

This phase involves the following two steps:

1. A service developer implements a service using appropriate programming lan-

guage and platform libraries or middleware.

172

Chapter 7 - Activation Pattern

2. The service is registered with the activator, which keeps track of where to locate

the service implementation and under what conditions to activate it.

The following figure illustrates the service registration phase.

Figure 32: Service registration.

Service registration is discussed further in implementation activity 7.1.8.3 step 1.

7.1.7.2 Service activation and access.

This phase involves the following six steps:

1. A client uses the service’s identifier to obtain a reference to a service, e.g., it can

locate the reference in a naming service via its service identifier.

2. The client then invokes an operation on the service via its reference.

173

Chapter 7 - Activation Pattern

3. The client’s request is first sent to the activator, which determines the service from

the identifier in the request and finds the corresponding entry in the activation ta-

ble.

4. The activator checks whether a service execution context running the service is

currently active. If it is inactive, the activator uses activation-related information in

its activation table to activate the service execution context that runs the service.

5. The activator waits for acknowledgement that the service execution context and

the service it implements are activated and ready to receive requests.

6. The activator then transparently delegates the request to the service execution

context, which performs the client’s request and returns a reply if necessary.

Other aspects of service activation and access are discussed in implementation activity

7.1.8.3 step 2.

7.1.7.3 Service deactivation.

The service deactivation process involves the following two steps:

1. A service can be deactivated when no clients are accessing it.

2. The client then invokes an operation on the service via its reference.

3. Deactivation may cause the service to store any non-volatile state information in

persistent storage and then terminate the service execution context it is running

in.

Service deactivation strategies are discussed in implementation activity 7.1.8.3 step 3.

The following figure illustrates the service activation and access and service deactivation

phases described above.

174

Chapter 7 - Activation Pattern

Figure 33: Service activation and deactivation.

7.1.8 Implementation

There are many ways to instantiate the Activator pattern. The following activities focus on

the key design and implementation issues, rather than covering all the details.

7.1.8.1 Define the services and service identifiers

The services provided by a distributed system are usually specified in a requirements or

system architecture/design document. If this information is not readily available, conduct

domain analysis to determine the types of services that applications will need. Likewise,

representations of service identifiers are also often defined in various specifications or

175

Chapter 7 - Activation Pattern

requirements documents. If not, consider using well-known service identifier representa-

tions, such as URLs, IORs, or TCP/IP port numbers and network addresses.

Embedded system controllers typically require services for configuring, monitoring, and

effecting parts of the automation system. These activities represent service types in this

application domain.

7.1.8.2 Identify services that should be activated and deactivated on demand

For this activity, iterate through the following sub activities:

1. For each service determine the costs of activating and deactivating services on

demand versus keeping them alive for the duration of the system. The latter costs

are measured in terms of resources required by the service types. For this pattern

to be effective, the time/space overhead used to activate services should be sig-

nificantly lower than the time/space resource consumptions of the services that

are activated.

For example, although an embedded controller contains a limited amount of computing

resources, such as CPU time or memory, monitoring services typically incur high usage

of both resources. In contrast, activation time is relatively low (essentially the time

needed to spawn a thread), so it makes sense to implement on-demand activation

strategies for embedded controller services that do not have hard real-time requirements.

2. Determine client/service usage profiles and identify quality of service (QoS) re-

quirements. If instances of a particular service are used continuously throughout

the whole lifecycle of their clients − and/or if it is critical that clients have low and

predictable latency − they may not be good candidates for on-demand activation.

For example, it may not be feasible to activate a real-time controller for an anti-

lock braking system on demand due to its stringent latency and jitter require-

ments. In contrast, an FTP or SSH login service are often accessed by clients

176

Chapter 7 - Activation Pattern

sporadically and do not have stringent latency and predictability requirements, so

they are more suitable for on-demand activation. Another part of the service us-

age profile is how many instances of a given service must be active − and thus

competing for the same resources − at the same time.

3. Identify services for on-demand activation. Using the results of the previous sub

activities, determine all services that are subject to on-demand activation. As a

rule of thumb, such services have the following properties:

a. They are used temporarily − not continuously − by clients, so it makes

sense to activate/deactivate them on-demand to minimize resource con-

sumption.

b. The costs for activating and deactivating these services are negligible

compared with the QoS requirements of clients, as well as with the time pe-

riods when these services must be available.

No services in our automation system example have stringent real-time requirements, so

they are all candidates for on-demand activation via the Activator pattern.

7.1.8.3 Develop a service activation and deactivation strategy

For every service, determine the details of service activation and deactivation by per-

forming the following sub activities:

1. Define the service execution context representation and associated service regis-

tration strategy. A service execution context can be implemented in various ways

and at various levels of abstraction, including:

a. Lower-level service execution context, such as an operating system proc-

ess or thread.

177

Chapter 7 - Activation Pattern

b. Higher-level service execution context, such as a container in component

middleware, which provides the runtime context for a service implemented

as a component.

The type of execution context representation selected typically dictates the ser-

vice registration strategy. For example, the UNIX Internet daemon (Inetd) super

server [93] uses a text file called inetd.conf to define the Internet services

that will be registered and activated by Inetd. Conversely, containers in compo-

nent middleware typically have well-defined − often standard − APIs and proto-

cols for registering services implemented as components.

Our automation system implements service execution contexts using threads. All

registration information, such as the factory for creating service implementations,

is specified in a text file read by the Activator when it starts running.

2. Define the service activation and access strategies. There are several dimensions

to this implementation activity, including:

a. Define the service initialization strategy. If all services are stateless, little or

no initialization may be required when activation occurs. If they are stateful,

however, they must be initialized when they are activated. In some cases,

the activator or the service execution context can handle initialization is-

sues, e.g., an activator can invoke internal initialization methods of the ser-

vice based on information stored in its activation table. In some cases, a

service may perform its own initialization. In yet other cases, clients may be

responsible for initializing their services.

b. Define the request delegation strategy. After the activator has initialized the

service, the client request must be delegated to it. There are two general

delegation strategies:

178

Chapter 7 - Activation Pattern

i. Server-mediated delegation, where the activator simply forward the

request to the service. The benefit of this approach is that there’s no

extra communication between the server and the client, i.e., the re-

quest is processed directly. The downside of this approach is that a

client who converses with the same service for multiple requests will

have to send each request through the activator.

ii. Client-mediated delegation, where the activator sends back informa-

tion to the client that updates the service proxy to point to the acti-

vated service. The benefit of this approach is that conversational cli-

ents can cache the updated service proxy and use it to optimize

subsequent communication with the activated service. The downside

is that the first request will incur extra communication back to the cli-

ent before being forwarded to the service running on the server.

Broker pattern implementations [14] often apply these delegation strategies

with the broker playing the role of the activator.

In the automation example, all services are stateless so initialization is sim-

plified and self-contained. Since clients often communicate with the same

service for an extended period of time the client-mediated delegation strat-

egy is used.

3. Define the service deactivation strategy. There are several strategies for deacti-

vating services:

a. Service-triggered deactivation. In this strategy, a service decides to deacti-

vate itself, e.g., a service could deactivate itself if a designated period of

time elapsed without any clients sending the service requests. This strategy

is commonly known as the Evictor pattern [47][103].

179

Chapter 7 - Activation Pattern

b. Client-triggered deactivation. In this strategy, a client explicitly invokes an

operation to trigger deactivation of the service. To implement client-

triggered deactivation, the service must be notified whenever a client is ob-

taining a reference or releasing its reference to this particular service. In-

ternally, the service may keep a reference count that it incre-

ments/decrements on service access/release. When the count reaches

zero, the service could deactivate itself to release its resources.

c. Activator-triggered deactivation. In this strategy, the activator decides when

to deactivate a service. For example, the activator might track resource us-

age on a particular computing node and deactivate services after a certain

threshold is reached. Naturally, care must be taken to deactivate services

gracefully to avoid disrupting vital processing and losing important state in-

formation.

In most cases, once the service is ready for deactivation it should inform its exe-

cution context so any resources allocated to the service can be released. The

subsequent behavior of the execution context will depend on how it is repre-

sented. For example, if the service is implemented as a component and service

execution context is implemented as a container, the container will delete the

memory allocated to the component. Likewise, if the service is implemented

within an OS process, the process may simply exit, thereby releasing the mem-

ory resource automatically.

Our automation example uses service-triggered deactivation via the Evictor pat-

tern, i.e., services deactivate themselves and terminate their service execution

context if they do not receive any client requests after a certain period of time.

180

Chapter 7 - Activation Pattern

7.1.8.4 Define the interoperation between services and the service execution con-

text

The service execution context may provide operations to (1) access information and re-

sources managed by the execution context, (2) request service deactivation, and (3)

modify the behavior of the service manager. Likewise, services might provide (1) global

operations for service instantiation or (2) callback operations that the services execution

context invokes automatically upon the occurrence of certain service lifecycle events,

such as service creation/activation and deactivation/destruction.

Services in the automation example implement a callback interface invoked automatically

by the service execution context before a service is created and activated and before it is

deactivated and destroyed. The services use these callback methods to acquire or re-

lease resources.

7.1.8.5 Implement the activator

 This step involves the following sub activities:

1. Determine the association between activators and services. There are a number

of ways to associate activators and services, including:

a. Singleton activator. Make the activator a singleton and have all services

share it within a particular environment, such as a process or a computing

node. In this approach, an activation table keeps track of the services con-

trolled by the activator.

b. Exclusive activator. Provide each service or service execution context with

its own activator. In this approach, an activation table can be used as a

global repository accessible by all activator instances. The advantage of

this approach is its higher scalability and reliability. Activator instances

181

Chapter 7 - Activation Pattern

must coordinate access to the activation table, however, which can in-

crease complexity.

c. Distributed Activator. This approach generalizes the singleton activator. A

local activator is placed on each computing node. When a client asks for a

particular service, the local node’s activator checks whether the corre-

sponding service is available locally or remotely. In the former case, the

workflow continues as in the singleton activator. In the latter case, however,

the local activator determines where the appropriate service is available

and then connects to the remote activator, on that computing node, which

retrieves a reference to the service and returns it to the local activator. The

local activator then returns the service proxy to the client.

In the automation example, the activator implementation uses the singleton acti-

vator approach. Whenever a new request arrives for any service provided by a

computing node, the singleton activator instantiates the appropriate service on

demand.

2. Determine the degree of transparency. There are various degrees of transparency

from the client’s perspective, including:

a. Explicit activator. In some implementations of the Activator pattern, clients

or their service proxies may be aware that they are retrieving services via

an activator. In this case, an activator is a separate component that clients

can contact explicitly to activate a service. The activator could also invoke

the service and return the result to the client. Examples of explicit activation

include network and system management systems, where administrators

use management consoles to activate services on remote clients. In these

systems, remote management agents provide management interfaces that

contain operations for starting and stopping services explicitly to reduce re-

182

Chapter 7 - Activation Pattern

source contention on managed objects. In this context, management

agents play the role of explicit activators.

b. Transparent activator. It is often beneficial to shield clients from the activa-

tor, so they believe they are accessing the service directly rather than indi-

rectly via the activator. To implement a transparent activator, therefore, the

Interceptor pattern [85] can be used to contact the activator implicitly before

the service is created. For example, an EJB or CCM container uses an in-

terceptor to activate components on demand. Likewise, CORBA’s General

Inter-ORB Protocol (GIOP) provides a special message (LocateRequest)

that an Implementation Repository activator uses to intercept client re-

quests, create service execution contexts on demand, and redirect clients

to the newly activated service.

As explained in implementation activity 7.1.8.3 step 3, an activator implementa-

tion should work together with services and/or service execution contexts to

cleanup resources when services are deactivated.

In the automation example, the activator implementation uses the Interceptor

pattern. Whenever a new request arrives, the communication framework notifies

the activator, which then instantiates the appropriate service on demand and de-

activates it later using the Evictor pattern.

7.1.8.6 Define the necessary contracts between interoperating participants

A contract specifies the set of interfaces implemented by each pair of parties that com-

municate and protocols they must obey. Activity diagrams or interaction diagrams can be

used to model the protocol; class diagrams can be used to model the interfaces.

First, determine the internal contracts that are not visible to clients, such as:

183

Chapter 7 - Activation Pattern

• The contract between the activator and the service execution context, which

specifies how an activator locates, registers/unregisters, and (re)activates a ser-

vice, as well as (re)activates and registers/unregisters services managed by the

service execution context. This contract can also limit the number of copies of a

service execution context that an activator should activate, which can be used to

prevent intentional or accidental denial of service attacks.

• The contract between the service execution context and its services, which intro-

duces interfaces for creating, initializing, and releasing services. It also specifies

how a service can notify its service execution context about its deactivation.

Second, define the external contracts that are visible to clients, such as:

• The contract between the client and the activator, which defines how a client ob-

tains a service proxy from the activator. This contract defines a service identifier

that encapsulates addressing information for the service and service execution

context where the service implementation runs. An activator knows how to extract

this information from a service identifier.

• The contract between the client and the service, which defines (1) the set of op-

erations a client can use to access the functionality of the service via its service

proxy and (2) the means of disconnecting from and/or deactivating the service af-

ter its processing is complete. The service proxy is often implemented as a proxy

that exposes this contract via explicit operations, as is the case with CORBA or

EJB. It is possible, however, to implement this contract implicitly via lower-level

means, such as TCP/IP connections or messages, as is the case with Internet

services like HTTP, FTP, and SSH servers.

The stateless instances of services in our automation example system are created by the

service execution context on demand and deactivated using the Evictor pattern [47]. The

service execution context is implemented as a remote object that the activator contacts

184

Chapter 7 - Activation Pattern

to forward client requests. Since services are stateless, there is a 1:1 mapping between

service execution requests and services, which simplifies the interface between the acti-

vator and the service execution context. The eviction strategy is configured statically into

the system. All service instances are preinstantiated and organized in a pool that can

shrink or increase as required.

The interface between clients and activators is also straightforward. Clients obtain ser-

vice identifiers from a central database. service proxies are instantiated from a client-side

library, passing the service identifier as an argument. The service proxy implements the

service interface and shields the client from lower-level network programming details.

The service proxy sends requests to the activator and passes results back to the client,

thereby shielding the client from changes to the activator implementation. For example,

while subsequent versions of the automation system might configure each service exe-

cution context to use thread pools to pre-instantiate groups of service instances, clients

will not be affected by these changes.

7.1.9 Variants

7.1.9.1 One service per service execution context

Instead of allowing a service execution context to provide multiple service types, this

variant enforces a 1:1 relationship between service execution contents and services.

Each service execution context implements exactly one service. The advantage of this

approach is the reduced complexity of the activator implementation. Resource contention

increases, however, when more service execution contexts are available. This approach

is therefore most useful when services have a long execution time or when the number

of services is relatively small.

185

Chapter 7 - Activation Pattern

7.1.9.2 Combined Component Configurator and Activator

This compound pattern combines the Component Configurator pattern [85] with the Acti-

vator pattern to provide the ultimate in on-demand flexibility. In this variant, an activator is

responsible for activating/deactivating service execution contexts in which services run,

whereas a component configurator is responsible for determining what service imple-

mentations are actually linked into a server from a dynamic link library (DLL). This com-

pound pattern approach leads to a highly flexible design with well-defined separation of

concerns. For example, the activator in such systems could spawn a process to serve as

the service execution context and then use a component configurator to link service im-

plementations on-demand from DLLs into the process.

7.1.10 Example Resolved

Applying the Activator pattern as described in the Implementation section improved the

scalability of the industrial automation system by ensuring that computing resources are

consumed only by services being accessed by clients. The diagram below shows that

activating services on demand improves system scalability.

186

Chapter 7 - Activation Pattern

Figure 34: Better load behavior due to activation.

In the initial implementation shown in the Example section, only a small number of clients

could access the system simultaneously since scarce system resources were devoted to

running unused services. In the refactored implementation, however, a larger number of

clients can access the same (or different) services simultaneously without incurring over-

load. Even three clients concurrently accessing the embedded controller do not incur

more than 50% CPU load, so the overload threshold will not be reached.

After refactoring of the initial eager resource allocation strategy, the revised system uses

a singleton activator to create service execution contexts and activate services on-

187

Chapter 7 - Activation Pattern

demand. It uses the Evictor pattern to deactivate services when clients do not access

them after a designated period of time. Some addition runtime overhead is caused by the

activator spawning threads to run newly activated services, but this overhead is negligi-

ble since each client exchanges a number of requests with the service before focusing its

attention elsewhere.

7.1.11 Known Uses

7.1.11.1 Object Request Broker (ORB) and Component Middleware frameworks

CORBA, CORBA Component Model (CCM), Microsoft COM+, and Java RMI use the

Activator pattern in several ways. For example, they use the pattern to transparently

spawn server processes when clients invoke operations on remote objects, as follows:

• In COM+ the Service Control Manager (SCM) can spawn server processes on

demand. It then connects to the appropriate class factory and creates a new in-

stance of a COM object. The activation table is implemented by a combination of

the Windows registry and internal tables. A global DLL, called OLE32.DLL encap-

sulates access to the activator implementation transparently for clients.

• CORBA ORBs use transparent activators to activate servers on demand. When a

client invokes an operation on an object reference, the call initially goes to an Im-

plementation Repository [103], which plays the role of the activator in this pattern.

The Implementation Repository checks to see if a server process containing the

object being accessed by the client is running. If it is not running, the server proc-

ess is spawned. After the Implementation Repository verifies the process is run-

ning, it returns a LOCATION_FORWARD exception to the client ORB, which updates

the object reference to note the new location and reissues the call to the server

transparently to the client application.

188

Chapter 7 - Activation Pattern

Component middleware uses the Activator pattern to activate components transparently

via a hierarchy of activators. For example, in the CORBA Component Model (CCM) the

Implementation Repository is used to spawn server processes. Servant activators can

then be used to create containers that provide the runtime environment for managing the

lifecycle of component implementations. Similar mechanisms are available in Enterprise

JavaBeans.

7.1.11.2 OS superservers

The Activator pattern has been used in OS ‘super servers’ that manage network servers.

Two widely available OS super servers are Inetd [93] and Listen [75], which consult

configuration scripts that specify (1) service names, such as the standard Web and Inter-

net services HTTP, TELNET, FTP, DAYTIME, and ECHO, (2) port numbers to listen on for

clients to connect with these services, and (3) an executable file to invoke and perform

the service when a client connects.

Both Inetd and Listen contain a master acceptor process that monitors a set of port

numbers associated with the services. When a client connection occurs on a monitored

port, the acceptor process accepts the connection and demultiplexes the request to the

appropriate pre-registered service handler. This handler performs the service, either re-

actively, proactively, or as an active object [85], and returning results to the client as

needed.

7.1.11.3 Web servers

Web servers use the Activator pattern to start services on demand when HTTP requests

arrive. Plug-ins may be registered with the Web server (e.g., using configuration files or

Component Configurators [85]), which represent service execution contexts. These plug-

ins handle HTTP requests for specific URL addresses. For example, when a URL speci-

fies a file with a PHP file-extension, a PHP-plug-in is accessed by the web server to han-

dle this kind of request. Handling the request in this context means to load the PHP in-

189

Chapter 7 - Activation Pattern

terpreter, execute the PHP-script specified, and return an HTML page to the originator of

the request. To optimize performance, the server only activates plug-ins on demand

when an appropriate request arrives.

7.1.11.4 Human usage

A human known use of the Activator pattern is a call center used to provide technical

help desk services, credit card fraud reporting, or airline reservations. Here the resources

to be optimized are telephone lines, computer and database connections, and call center

operators. The activator is the central system that is called by customers. After a cus-

tomer has specified their service identifier via voice or touchtone input, the call center

activator connects the customer to the appropriate operator, after first activating the re-

sources needed by the operator to handle the call, which can involve establishing net-

work and database connections, preparing information on the user interface display, etc.

The customer is then connected directly to the operator. Hanging up the telephone trig-

gers service deactivation and releases the allocated resources for use in servicing other

customer calls.

7.1.12 Consequences

The Activator pattern offers the following benefits:

• Scalable resource usage. Service execution contexts only run when services are

being accessed by clients. They are deactivated and reactivated on demand,

which helps improve the scalability of the overall system by allocating resources

more parsimoniously.

• Implicit initialization. All details of service and service execution context activation

and deactivation are encapsulated by the activator interface, which enables ser-

vice developers to initialize services when they are activated. For example, ser-

vice state can be stored in a database and loaded whenever the service execution

190

Chapter 7 - Activation Pattern

context is activated., so clients may not need to initialize services explicitly them-

selves.

• Exchangeable strategies due to transparent service creation. As a consequence

of using activators as intermediaries, the service creation strategy can be ex-

changed without impacting clients. For example, an activator can choose between

different services supporting the same service type via load balancing or fault tol-

erance replication mechanisms.

• Location transparency with respect to services. If the service proxies returned by

the activator point to proxies, the location of the service can be made invisible to

clients. Clients can thus access services residing on remote machines transpar-

ently.

• Efficient and fast service access. After clients have obtained updated service

proxies from an activator, they can access the services directly, bypassing further

indirection and delegation.

The Activator pattern also has following liabilities:

• QoS penalties due to activation overhead. When a client first accesses an inactive

service, the activator must activate a server execution context to run the service,

which increases the latency and jitter of the initial access. It is also possible for

clients to trigger intentional or accidental denial-of-service attacks by activating

many services unnecessarily.

• Complex state management. If service execution contexts running services are

deactivated and activated on demand, any non-volatile state must be persisted

across succeeding passivation and activation events, which can complicate ser-

vice development.

191

Chapter 7 - Activation Pattern

• Debugging and testing can be hard. Decoupling clients from the activation of ser-

vices can make it harder to determine why failures occur. For example, if there is

not enough memory to activate a service in a service execution context, the client

may not be able to ascertain what caused the problem since service activation is

supposed to be transparent.

7.1.13 See Also

The Component Configurator pattern [85] allows applications to dynamically link and

unlink their component implementations at run-time without having to modify, recompile,

or statically relink application code. The primary difference between Component Configu-

rator and Activator is that Activator focuses on activating/deactivating a service execution

context on-demand, whereas Component Configurator focuses on dynamic link-

ing/unlinking the code that runs within an execution context. The Component Configura-

tor and Activator patterns can be combined to form a compound pattern, as described in

the Variants section.

The Virtual Component [21] and Virtual Proxy patterns [14] can also be used in conjunc-

tion with the Component Configurator pattern to provide an transparent way of loading

and unloading components that implement middleware and/or application software func-

tionality. These patterns ensure that the software provides a rich and configurable set of

functionality, yet occupies main memory only for components that are actually being

used. Whereas the Virtual Component and Virtual Proxy patterns focus largely on creat-

ing component memory on demand, the Activator pattern focuses on a broader set of

issues, such as locating services and activating/deactivating service execution contexts

on demand.

The Broker pattern [14] structures distributed software systems with decoupled compo-

nents that interact via local and/or remote invocations. A broker component is responsi-

ble for coordinating communication, such as establishing connections and forwarding

requests, as well as for handling results and exceptions. Remote objects represent ser-

192

Chapter 7 - Activation Pattern

vices that reside in servers. For performance and scalability reasons, these Broker sys-

tems often instantiate the Activator pattern to spawn server processes on demand. A

common example is the Implementation Repository in CORBA-based ORBs [103].

The Lazy Acquisition pattern [47] defers the acquisition of resources late in the system

lifecycle, e.g., at installation- or run-time. Although this pattern is similar to the Activator

pattern, these patterns address different problem contexts at different levels of abstrac-

tion. The Lazy Acquisition pattern defines a broad strategy for allocating resources, such

as shared, passive entities like memory or connections, to active entities, such as ser-

vices. Activator, in contrast, is a more focused pattern that addresses the activation and

deactivation of service execution contexts and services in resource-constrained distrib-

uted computing environments.

The small memory patterns in [107] describe a range of other techniques that can be

applied to reduce the consumption of memory in embedded systems and handheld de-

vices with their limited computing horsepower.

7.1.14 Acknowledgements

Thanks to our shepherd Jeffrey Overbey and to the participants in group 1 for helping

improve this paper at the PLoP 12 conference.

