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Chapter 5

Feature Fusion for Text-Independent Writer
Identification and Verification

If the brain were so simple we could understand it, we would
be so simple we couldn’t.

Lyall Watson

Abstract

In the previous chapters, we presented the development of new and very effective techniques
for automatic writer identification and verification that use probability distribution func-
tions (PDFs) extracted from the handwriting images to characterize writer individuality
independently of the textual content of the written samples. This chapter presents a coherent
overview of all our features and specifically considers the problem of combining multiple fea-
tures for text-independent writer identification and verification. Our experiments are also
extended to larger datasets containing up to 900 writers.

Our features operate at two levels of analysis: the texture level and the character-shape (al-
lograph) level. For computing the directional texture level features, here we use contours,
rather than edges, with definite advantages regarding computation speed and control of fea-
ture dimensionality. The contour-based joint directional PDFs encode orientation and cur-
vature information to give an intimate characterization of individual handwriting style. In
our analysis at the allograph level, the writer is considered to be characterized by a stochastic
pattern generator of ink-trace fragments, or graphemes. The PDF of these simple shapes in a
given handwriting sample is characteristic for the writer and is computed using a common
shape codebook obtained by grapheme clustering. Combining texture-level and allograph-
level features yields very high writer identification and verification performance, with usable
rates for datasets containing 103 writers.

5.1 Introduction

The identification of a person on the basis of scanned images of handwriting is a use-
ful biometric modality with application in forensic and historic document analysis
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and constitutes an exemplary study area within the research field of behavioral biomet-
rics. In this chapter, we present an overview of our statistical pattern recognition meth-
ods for automatic writer identification and verification using off-line handwriting. We
specifically consider the problem of combining multiple features for improving perfor-
mance on both tasks of writer identification and verification, a topic that was not fully
addressed in previous chapters. Here we provide an extensive analysis of feature com-
binations and report our experimental results obtained on larger datasets containing up
to 900 writers.

There are two general characteristics distinguishing our approach: human interven-
tion is minimized in the writer identification and verification process and we encode indi-
vidual handwriting style using features designed to be independent of the textual content of
the handwritten sample. Writer individuality is encoded using probability distribution
functions extracted from handwritten text blocks and, in our methods, the computer
is completely agnostic of what has been written in the samples. The development of
our writer identification techniques takes place at a time when many biometric modali-
ties undergo a transition from research to real full-scale deployment. Our methods also
have practical feasibility and hold the promise of concrete applicability.

Physiological biometrics (e.g. iris, fingerprint, hand geometry, retinal blood vessels,
DNA) are strong modalities for person identification due to the reduced variability and
high complexity of the biometric templates used. However, these physiological modal-
ities are usually more invasive and require cooperating subjects. On the contrary, be-
havioral biometrics (e.g. voice, gait, keystroke dynamics, signature, handwriting) are less
invasive, but the achievable identification accuracy is less impressive due to the large
variability of the behavior-derived biometric templates. Writer identification pertains to
the category of behavioral biometrics and has applicability in the forensic and historic
document analysis fields.

Writer identification is rooted in the older and broader domain of automatic hand-
writing recognition (Plamondon and Srihari 2000, Vinciarelli 2002). For automatic hand-
writing recognition, invariant representations are sought which are capable of eliminat-
ing variations between different handwritings in order to classify the shapes of char-
acters and words robustly. The problem of writer identification, on the contrary, re-
quires a specific enhancement of these variations, which are characteristic to a writer’s
hand. Handwriting recognition and writer identification represent therefore two op-
posing facets of handwriting analysis. It is important, however, to mention also the
idea that writer identification could aid the recognition process if information on the
writer’s general writing habits and idiosyncrasies is available to the handwriting recog-
nition system.

Research in writer identification and verification has received significant interest in
recent years due to its forensic applicability (e.g. the case of the anthrax letters). A writer
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Figure 5.1: a) A writer identification system retrieves, from a database containing handwritings of
known authorship, those samples that are most similar to the query. The hit list is then analyzed
in detail by a human expert. b) A writer verification system compares two handwriting samples
and takes an automatic decision whether or not the input samples were written by the same
person.

identification system performs a one-to-many search in a large database with handwrit-
ing samples of known authorship and returns a likely list of candidates (see Fig. 5.1a).
This represents a special case of image retrieval, where the retrieval process is based on
features capturing handwriting individuality. The hit list is further scrutinized by the
forensic expert who takes the final decision regarding the identity of the author of the
questioned sample. Writer identification is therefore possible only if there exist previous
samples of handwriting by that person enrolled in the forensic database. Writer verifica-
tion involves a one-to-one comparison with a decision whether or not the two samples
are written by the same person (see Fig. 5.1b). The decidability of this problem gives
insight into the nature of handwriting individuality. Writer verification has potential
applicability in a scenario in which a specific writer must be automatically detected in a
stream of handwritten documents. The target performance for forensic writer identifica-
tion systems is a near 100% recall of the correct writer in a hit list of one hundred writers,
computed from a database in the order of 10k samples, which is the size of the current
European forensic databases. This target performance still remains an ambitious goal.
Contrary to other forms of biometric person identification used in forensic labs, auto-
matic writer identification often allows for determining identity in conjunction with the
intentional aspects of a crime, such as in the case of threat or ransom letters. This is a
fundamental difference from other biometric methods, where the relation between the
evidence material and the details of an offense can be quite remote.
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Figure 5.2: A comparison of handwritten characters (allographs) and handwritten words from
three different writers. The between-writer variation exceeds the within-writer variability and
provides the basis for writer identification and verification.

Writer identification and verification are only possible to the extent that the variation
in handwriting style between different writers exceeds the variations intrinsic to every
single writer considered in isolation (see Fig. 5.2). The results reported in this thesis
ultimately represent a statistical analysis of the relationship opposing the between-writer
variability and the within-writer variability in feature space. The present study assumes
that the handwriting was produced using a natural writing attitude. Forged or dis-
guised handwriting is not addressed in our approach. The forger tries to change the
handwriting style usually by changing the slant and / or the chosen letter shapes. Us-
ing detailed manual analysis, forensic experts are sometimes able to correctly identify
a forged handwritten sample. On the other hand, our proposed algorithms operate on
the scanned handwriting faithfully considering all graphical shapes encountered in the
image under the premise that they are created by the habitual and natural script style
of the writer.

With regard to the theoretical underpinnings of our approach, handwriting can be
described as a hierarchical psychomotor process: at a high level, an abstract motor pro-
gram is recovered from long-term memory; parameters are then specified for this mo-
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tor program, such as size, shape, timing; finally, at a peripheral level, commands are
generated for the biophysical muscle-joint systems (Maarse 1987). The writer tries to
maintain his / her preferred slant and letter shapes over the complete range of mo-
tion in the biomechanical systems thumb-fingers and hand-wrist (Maarse 1987) and
in a manner that is also independent of changes in the horizontal progression motion
(Maarse and Thomassen 1983). Due to neural and neuromechanical propagation de-
lays, a handwriting process based upon a continuous feedback mechanism alone would
evolve too slowly (Schomaker 1991). Therefore handwriting is not a feedback process,
the brain is continuously planning series of ballistic movements ahead in time in a feed-
forward manner and a character is assumed to be produced by a ”motor program”
(Schmidt 1975). Every person uses personalized and characteristic shapes, called allo-
graphs, when writing a chosen letter of the alphabet (see Fig. 5.2). In this thesis, we
propose writer identification methods that aim to capture peripheral and also more
central aspects of the writing behavior of an individual. Our methods operate at two
levels of analysis: the texture level and the allograph (character-shape) level. The texture-
level features are informative for the habitual pen-grip and preferred writing slant, while
the allograph-level features reveal the character shapes engrained in the motor mem-
ory of the writer, as a result of educational, cultural and memetic factors (Schomaker
and Bulacu 2004). Furthermore, very effective writer identification and verification is
achievable by combining texture-level and allograph-level features, which together of-
fer a fuller description of a person’s stable and discriminatory unconscious practices in
writing.

This chapter is organized as follows. Section 5.2 describes the datasets used in
the experiments reported in this chapter. Sections 5.3 and 5.4 give an overall coher-
ent overview of the algorithms for extracting the texture-level and the allograph-level
features respectively. The distances used for feature matching and the feature fusion
technique are explained in Section 5.5. Section 5.6 gives the experimental results, fol-
lowed by a discussion in Section 5.7. Conclusions are then drawn in Section 5.8.

5.2 Experimental datasets

The experiments reported in this chapter were conducted using three datasets: Fire-
maker, IAM and ImUnipen. The Firemaker and ImUnipen datasets were described pre-
viously in the thesis, while IAM is a large dataset newly introduced in this chapter. The
IAM dataset (Marti and Bunke 2002) is available on the Internet and was extensively
used for off-line handwriting recognition. In addition to the annotation of the textual
content, the IAM set contains also writer identity information needed in writer identifi-
cation studies. For completeness, we provide here brief descriptions of all the datasets
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used in the experiments reported in this chapter.
The Firemaker set (Schomaker and Vuurpijl 2000) contains handwriting collected

from 250 Dutch subjects, predominantly students, who were required to write 4 differ-
ent A4 pages. On page 1 they were asked to copy a text of 5 paragraphs using normal
handwriting (i.e. predominantly lowercase with some capital letters at the beginning of
sentences and names). On page 2 they were asked to copy another text of 2 paragraphs
using only uppercase letters. Page 3 contains ”forged” text and these samples are not
used in the current study. On page 4 the subjects were asked to describe the content of
a given cartoon in their own words. These samples consist of mostly lowercase hand-
writing of varying text content and the amount of written ink varies significantly, from
2 lines up to a full page. The documents were scanned at 300 dpi, 8 bits / pixel, gray-
scale. In the writer identification and verification experiments reported in this chapter,
we performed searches / matches of page 1 vs. 4 (Firemaker lowercase) and paragraph
1 vs. 2 from page 2 (Firemaker uppercase).

The IAM database (Marti and Bunke 2002) consists of forms with handwritten En-
glish text of variable content, scanned at 300 dpi, 8 bits / pixel, gray-scale. Besides the
writer identity, the images are accompanied by extensive segmentation and ground-
truth information at the text line, sentence and word levels (Zimmermann and Bunke
2002). This dataset includes a variable number of handwritten pages per writer, from
1 page (350 writers) to 59 pages (1 writer). In order to have comparable experimental
conditions across all datasets, we modified the IAM set to contain always 2 samples
per writer: we kept only the first 2 documents for those writers who contributed more
than 2 documents to the original IAM dataset and we have split the document roughly
in half for those writers with a unique page in the original set. Our modified IAM set
therefore contains lowercase handwriting from 650 persons, 2 samples per writer. The
amount of ink is roughly equal in the two samples belonging to one writer, but varies
between writers from 3 lines up to a full page.

The ImUnipen set contains handwriting from 215 subjects, 2 samples per writer. The
images were derived from the Unipen database (Guyon et al. 1994) of on-line handwrit-
ing. The time sequences of coordinates were transformed to simulated 300 dpi images
using a Bresenham line generator and an appropriate thickening function. The samples
contain lowercase handwriting with varying text content and amount of ink. This set
was not directly used in the writer identification and verification tests reported in this
chapter. However, a part of this dataset containing 65 writers (130 samples) was used in
our allograph-level approach for training the shape codebooks needed for computing
the writer-specific grapheme emission probability.

We merged the Firemaker lowercase and IAM datasets to obtain a combined set
which we named ”Large”. The Large dataset therefore contains 900 writers, 2 samples
per writer, lowercase handwriting. This combined set is comparable, in terms of number
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Table 5.1: Overview of the experimental datasets, the number of writers contained and some of
their properties.

Dataset Nwriters Handwriting Obs.
Firemaker 250 -lowercase -page 1 and 4

-UPPERCASE -parag. 1 and 2 of page 2
IAM 650 -lowercase -original IAM dataset

modified to contain
2 samples per writer

ImUnipen 215 -lowercase -derived from online data,
not used in writer identif.
and verif. tests,
130 samples by 65 writers
used for generating the
grapheme codebooks

Large 900 -lowercase -merger between Firemaker
lowercase and IAM datasets

of writers, to the largest dataset used in writer identification and verification until the
present (Srihari et al. 2002). It is significant to mention here that our approach to writer
identification and verification is text-independent and does not require human effort
for labeling. This gave us the noteworthy advantage of being able to easily extend
our methods to other datasets and to collect data from multiple sources and different
languages in a common framework. Table 5.1 gives an overview of all datasets used in
our tests.

5.3 Textural features

Asserting writer identity based on handwriting images requires three main processing
phases:

• 1) feature extraction,

• 2) feature matching / feature combination,

• 3) writer identification and verification.

In this and in the following sections of this chapter, we present the feature extraction
methods in a general coherent framework. We use probability distribution functions
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Table 5.2: Overview of the considered features, their dimensionalities and the distance func-
tions used in identification and verification. Features are grouped into four different categories:
directional PDFs (f1, f2, f3h, f3v), grapheme emission PDF (f4), run-length PDFs (f5h, f5v) and
autocorrelation (f6).

Feature Explanation N Dist Computed
dims from

f1: p(φ) Contour-direction 12 χ2 contours
PDF

f2: p(φ1, φ2) Contour-hinge 300 χ2 contours
PDF
Direction co-occurr. contours

f3h: p(φ1, φ3) h PDFs→ horiz. run 144 χ2

f3v: p(φ1, φ3) v → vert. run 144 χ2

f4: p(g) Grapheme emission 400 χ2 connected
PDF components
Run-length on white binary

f5h: p(rl) h PDFs→ horiz. run 60 χ2 image
f5v: p(rl) v → vert. run 60 χ2

f6: ACF Autocorr. horiz. 60 L2 gray-scale
image

(PDFs) extracted from the handwriting images to characterize writer individuality in a
text-independent manner. The term ”feature” will be used to denote such a complete
PDF: not a single value, but an entire vector of probabilities capturing a facet of hand-
writing uniqueness.

An overview of all the features used in our study is given in Table 5.2. In our anal-
ysis, we will consider a number of features that we have designed (f2, f3, f4) and also a
number of other features (f1, f5, f6) classically used for writer identification and verifi-
cation. For the present chapter, we have selected the most discriminative features from
a larger number of features tested in a previous paper (normalized entropy, ink-density
PDF, wavelets) (Schomaker and Bulacu 2004).

A succession of image processing steps applied on the handwriting image will pro-
vide a number of alternate base representations which will then be used for feature
computation. The initial gray-scale images containing the scanned samples of hand-
writing are binarized using Otsu’s method (Otsu 1979). The binary images, in which
only the ink pixels are ”on”, undergo connected component detection (labeling) using
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BACKGROUND

INK

φ

Figure 5.3: Schematic description for the extraction method of the contour-direction PDF (fea-
ture f1). The handwritten letter ”a”, provided as an example, would be roughly twice as large in
reality.

8-connectivity. Further, for all connected components, the inner and outer contours are
extracted using Moore’s contour-following algorithm. The contours will contain the se-
quence of coordinates (xk, yk) of all the pixels located exactly on the ink-background
boundary. This is a very effective vectorial representation that will allow a fast compu-
tation of the directional features. These features were computed using the edge image
in the previous chapters of the thesis. Four primary representations of the handwrit-
ten document will therefore be used for feature computation: the gray-scale image, the
binary image, the connected components and the contours.

The current study implicitly assumes that the foreground / background separation
can be realized in a pre-processing phase, yielding a white background with (near-)
black ink. This separation will often fail on the smudged and texture-rich fragments
sometimes collected in forensic practice, where the ink trace is often hard to identify.
However, the complete process of forensic writer identification is never fully automatic
and present image processing methods allow for advanced semi-interactive solutions
to the foreground / background separation problem.

Our methods work at two levels of analysis: the texture level and the allograph level.
Further in this section, we describe the extraction methods for the texture-level fea-
tures used in writer identification and verification. In these features, the handwriting
is merely seen as a texture described by some probability distributions computed from
the image and capturing the distinctive visual appearance of the written samples.
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Figure 5.4: Examples of lowercase handwriting from two different subjects. We superposed the
polar diagrams of the direction distribution p(φ) extracted from the two handwritten samples
for each of the two subjects. There is a large overlap between the directional PDFs extracted from
samples originating from the same writer, while there is a substantial variation in the directional
PDFs for different writers. The examples were chosen for visual clarity.

5.3.1 Contour-direction PDF (f1)

The most prominent visual attribute of handwriting that reveals individual writing style
is slant. Handwriting slant is also a very stable personal characteristic (Maarse and
Thomassen 1983, Maarse 1987). It has long been known in handwriting research that the
distribution of directions in the script provides useful information for writer identifica-
tion (Maarse et al. 1988), coarse writing-style classification (Crettez 1995) or signature
verification (Drouhard et al. 1995). This directional distribution can be computed very
fast using the contour representation with the additional advantage that the influence
of the ink-trace width is also eliminated.

The contour-direction distribution is extracted by considering the orientation of local
contour fragments. The analyzing fragment is determined by two contour pixels taken
a certain distance apart (see Fig. 5.3) and the angle that the fragment makes with the
horizontal is computed using equation 5.1. As the algorithm runs over the contours, the
orientation of the local contour fragments is computed and an angle histogram is built
thereby. The angle histogram is then normalized to a probability distribution p(φ) which
gives the probability of finding in the handwriting image a contour fragment oriented
at the angle φ measured from the horizontal.

φ = arctan(
yk+ε − yk

xk+ε − xk

) (5.1)

The parameter ε controls the length of the analyzing contour fragment. In our im-
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Figure 5.5: Schematic description for the extraction method of the contour-hinge PDF (feature
f2).

plementation ε = 5 and this value was selected such that the length of the contour frag-
ment is comparable to the thickness of the ink trace (6 pixels). The angle φ resides in the
first two quadrants because, without online information, we do not know which way
the writer ”traveled” along the probing contour fragment. The number of histogram
bins spanning the interval 0◦ - 180◦ was set to n = 12 through experimentation: 15◦ /
bin gives a sufficiently detailed and, at the same time, sufficiently robust description of
handwriting to be used in writer identification and verification. These settings will be
used for all the directional features presented in this chapter.

The prevalent direction in p(φ) (see Fig. 5.4) corresponds, as expected, to the slant
of writing. In handwriting recognition, this can be used to deslant the script using
a shear transform prior to applying the statistical recognizer. Note that not only the
slant (the mode of the angular PDF), but the entire distribution is informative for writer
identification. For example, even for the same slant angle, a more round handwriting
will have a different directional PDF (more spread) than a more pointed handwriting
and it will still be possible to distinguish between them using the distribution p(φ).

5.3.2 Contour-hinge PDF (f2)

The directional distribution p(φ) represented our starting point in designing more com-
plex features that give a more intimate characterization of the individual handwriting
style and ultimately yield significant improvements in writer identification and verifica-
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Figure 5.6: Surface plots of the contour-hinge PDF p(φ1, φ2) for two writers. One half of the 3D
plot (on one side of the main diagonal) is flat because we only consider angle combinations with
φ2 ≥ φ1.

tion performance. In order to capture, besides orientation, also the curvature of the ink
trace, which is very discriminatory between different writers, we designed the ”hinge”
feature. The central idea is to consider, not one, but two contour fragments attached at a
common end pixel and, subsequently, compute the joint probability distribution of the
orientations of the two legs of the obtained ”contour-hinge” (see Fig. 5.5). To have an
intuitive picture of this feature, imagine having a hinge laid on the surface of the image.
Place its junction on top of every contour pixel, then open the hinge and align its legs
along the contour. Consider the angles φ1 and φ2 that the legs make with the horizontal
and count the found instances in a two dimensional array of bins indexed by φ1 and φ2.
The final normalized histogram gives the joint PDF p(φ1, φ2) quantifying the chance of
finding in the image two ”hinged” contour fragments oriented at the angles φ1 and φ2

respectively.
In contrast with feature f1 for which spanning the upper two quadrants (180◦) was

sufficient, we now have to span all the four quadrants (360◦) around the central junction
pixel when assessing the angles of the two fragments. The orientation is now quantized
in 2n directions for every leg of the ”contour-hinge”. From the total number of combi-
nations of two angles (4n2) we will consider only non-redundant ones (φ2 ≥ φ1). The
final number of combinations is C2

2n + 2n = n(2n + 1). For n = 12, the contour-hinge
feature vector will have 300 dimensions.

The feature p(φ1, φ2) is a bivariate PDF capturing both the orientation and the cur-
vature of contours. Examples are given in Fig. 5.6. Additionally, the joint probability
p(φ1, φ2) is proportional to the conditional probability p(φ2|φ1) that can be interpreted as
the transition probability from state φ1 to state φ2 in a simple Markov process. Feature
f2 is highly discriminative and gives very satisfying results in writer identification.
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Figure 5.7: Schematic description for the extraction methods of the direction co-occurrence PDFs
(horizontal scan - feature f3h on the left and vertical scan - feature f3v on the right).

5.3.3 Direction co-occurrence PDFs (f3h, f3v)

Building upon the same idea of combining oriented contour fragments, we designed
another feature: the directional co-occurrence PDF. For this feature, we consider the
combination of contour-angles occurring at the ends of run-lengths on the background
(see Fig. 5.7). The joint PDF p(φ1, φ3) of the two contour-angles occurring at the ends of a
run-length on white captures longer range correlations between contour directions and
gives a measure of the roundness of the written characters. Horizontal runs along the
rows of the image generate f3h and vertical runs along the columns of the image gener-
ate f3v. The PDFs f3h and f3v have n2 dimensions, namely 144 in our implementation.

These features derive conceptually from the directional distribution f1 presented
above and the run-length distributions f5h and f5v which will be described further. Ex-
amples of p(φ1, φ3)h for two writers are given in Fig. 5.8.

The features presented thus far (f1, f2 and f3) are directional PDFs constructed using
oriented contour fragments that act like local phasors and perform, in Fourier terms,
a local phase analysis at the scale of the ink-trace width. The local phase correlations
are collected in the joint probability distributions that are generic texture descriptors
characterizing individual handwriting style independently of the text content of the
written samples.

5.3.4 Other texture-level features: run-length PDFs (f5h, f5v),
autocorrelation (f6)

Run lengths were first proposed for writer identification in (Arazi 1977, Arazi 1983) and
were also used on historical documents in (Dinstein and Shapira 1982). Run lengths



82 5. Feature Fusion for Text-Independent Writer Identification and Verification

writer 1 - sample 1

φ1
φ3

 0

 0.02

 0.04

 0.06
p(φ1, φ3) h

writer 2 - sample 1

φ1
φ3

 0

 0.02

 0.04

 0.06
p(φ1, φ3) h

Figure 5.8: Surface plots of the contour-direction co-occurrence PDF p(φ1, φ3)h for two writers.
Every writer has a different ”probability landscape”.

are determined on the binary image taking into consideration either the black pixels
corresponding to the ink trace or the white pixels corresponding to the background.
The statistical properties of the black runs are significantly influenced by the ink width
and therefore by the type of pen used for writing. The white runs capture the regions
enclosed inside the letters and also the empty spaces between letters and words. The
probability distribution of white lengths (runs on background) will be used in our writer
identification and verification tests. There are two basic scanning methods: horizontal
along the rows of the image (f5h) and vertical along the columns of the image (f5v).
Similarly to the contour-based directional features presented above, the histogram of
run lengths is normalized and interpreted as a probability distribution. Our particular
implementation considers only run-lengths of up to 60 pixels to prevent the vertical
measurements from going in between successive text lines (the height of a written line
in our dataset is about 120 pixels).

To compute the autocorrelation feature (f6), every row of the image is shifted onto
itself by a given offset and then the normalized dot product between the original row
and the shifted copy is calculated. The original gray-scale image is used in the compu-
tation and the maximum offset (”delay”) corresponds to 60 pixels. For every offset, the
autocorrelation coefficients are then averaged across all image rows. The autocorrela-
tion function detects the presence of regularity in writing: regular vertical strokes will
overlap in the original row and its horizontally shifted copy for offsets equal to integer
multiples of the spatial wavelength of handwriting. This results in a large dot product
contribution to the final autocorrelation function. Autocorrelation is the only feature in
our analysis that is not a probability distribution function and it will require a different
distance measure than the other features, Euclidean (L2 norm) rather than χ2.

We note here that the autocorrelation and the power spectrum are Fourier transform
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pairs. Therefore, in effect, the autocorrelation function performs a Fourier analysis di-
rectly in image space along the pixel rows. The amplitude information is retained and
averaged across all image rows, while all phase information is discarded. Directional
features (f1, f2 and f3) are essentially built on local phase information, while autocorre-
lation encodes only amplitude information. It will be interesting to consider a perfor-
mance comparison in the experimental results.

The features presented in this section are generic texture-level descriptors that, when
applied to handwriting, capture writer individuality, thus providing the basis for writer
identification. Their virtue resides in the local computation on the image and, as such,
they are generally applicable and do not impose additional constraints. Using the con-
tour representation for extracting the directional distributions offers definite advantages
regarding computation speed and control of feature dimensionality. The PDFs can be
estimated even from samples with very reduced amounts of written ink. In our data,
many handwritten samples contain as little as three lines of text.

5.4 Allographic features

In this section, we briefly reiterate our allograph-level approach to writer identifica-
tion and verification. Our method, similar to the approach described in (Bensefia et al.
2005b), is based on assuming that the writer acts as a stochastic generator of ink-blob
shapes, or graphemes. The probability distribution of grapheme usage is characteristic
of each writer and is computed using a common codebook of shapes obtained by clus-
tering. This approach was first applied to isolated uppercase handwriting (Schomaker
and Bulacu 2004) and later it was extended to lowercase cursive handwriting by using
a segmentation method (Schomaker et al. 2004).

This writer identification and verification method was fully described in the previ-
ous chapter of the thesis and involves three processing stages:

1) Handwriting segmentation: the ink is cut at the minima in the lower contour
for which the distance to the upper contour is comparable to the ink-trace width (see
Fig. 4.4). The graphemes are then extracted as connected components, followed by size
normalization to 30x30 pixel bitmaps, preserving the aspect ratio of the original pat-
tern. This segmentation stage makes our allograph-level method applicable to free-style
handwriting, both cursive and isolated.

2) Shape codebook generation: grapheme clustering was applied to a training set
containing 41k graphemes extracted from 130 samples (65 writers) from the ImUnipen
set. On the new Large dataset, the three clustering algorithms used previously will
be compared for a large range of codebook sizes: k-means, Kohonen SOM 1D and 2D
(Kohonen 1988, Duda et al. 2001). Fig. 5.9 shows three examples of shape codebooks
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codebook with 100 graphemes

codebook with 225 graphemes

codebook with 400 graphemes

Figure 5.9: Examples of shape codebooks generated by k-means clustering and containing an
increasing number of graphemes (increasing values of the parameter k were used in training).
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generated by k-means clustering for increasing values of k. The codebook graphemes
act as prototype shapes representative for the types of shapes to be expected as a result
of handwriting segmentation.

3) Grapheme-usage PDF computation: one bin is allocated to every grapheme in
the codebook and a shape occurrence histogram is computed for every handwritten
sample. For every ink fraglet extracted from a sample after segmentation, the nearest
codebook grapheme g is found using Euclidean distance and this occurrence is counted
into the corresponding histogram bin. The histogram is normalized to a PDF p(g) that
acts as the writer descriptor used for identification and verification.

The perfect segmentation of individual characters in free-style script is still unachiev-
able and this represents a fundamental problem for handwriting recognition. Never-
theless, the ink fraglets generated by our imperfect segmentation procedure can still be
effectively used for writer identification. The essential idea is that the ensemble of these
simple graphemes still manages to capture the shape details of the allographs emitted
by the writer.

The nature of the proposed method does not consist in an exhaustive enumeration of
all possible allographic part shapes. Rather, the grapheme codebook spans up a shape
space by providing a set of nearest-neighbor attractors for the ink fraglets extracted
from a given handwritten sample. The occurrence PDF of these sub-allographic script
fragments constitutes a very effective feature for writer identification and verification.

5.5 Feature matching and fusion for writer identification
and verification

After the handwritten samples have been mapped onto features capturing writer in-
dividuality, an appropriate distance measure between the feature vectors is needed
to compute the (dis)similarity, in individual handwriting style, between any two cho-
sen samples. A large number of distance measures were tested in our experiments:
Minkowski up to order 5, χ2, Bhattacharya, Hausdorff. We will report however only on
the best performing ones.

For the PDF features (f1, f2, f3, f4, f5), the χ2 distance (Press et al. 1992) is used for
matching a query sample q and any other sample i from the database:

χ2
qi =

Ndims∑
n=1

(pqn − pin)2

pqn + pin

(5.2)

where p are entries in the PDF, n is the bin index and Ndims is the number of bins in the
PDF (the dimensionality of the feature). χ2 is a natural choice as a distance measure for
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the PDF features. Euclidean distance is used for the autocorrelation (f6).
Writer identification is performed using nearest-neighbor (Cover and Hart 1967) clas-

sification in a ”leave-one-out” strategy. For a query sample q, the distances to all the
other samples i 6= q are computed using a selected feature. Then all the samples i are
ordered in a sorted hit list with increasing distance to the query q (Press et al. 1992). Ide-
ally, the first ranked sample should be the pair sample produced by the same writer. If
one considers, not only the nearest neighbor (Top 1), but rather a longer list of neighbors
starting with the first and up to a chosen rank (e.g. Top 10), the chance of finding the
correct hit (the recall) increases with the list size. We point out that, in experiments, we
do not make a separation between a training set and a test set, all the data is in one suite.
This is actually a more difficult and realistic testing condition, with more distractors: not
1, but 2 per false writer and only one correct hit.

Writer verification, as all biometric verification tasks, can be perfectly placed into
the classical Neyman-Pearson framework of statistical decision theory (Neyman and
Pearson 1933). For writer verification, the distance ξ between two given handwriting
samples is computed using a chosen feature. Distances up to a predefined decision
threshold T are deemed sufficiently low for considering that the two samples have been
written by the same person. Beyond T , the samples are considered to have been written
by different persons. Two types of error are possible: falsely accepting (FA) that two
samples are written by the same person when in fact this is not true or falsely rejecting
(FR) that two samples are written by the same person when in fact this is the case. The
associated error rates are FAR and FRR. In a scenario in which a suspect must be found
in a stream of documents, FAR becomes false alarm rate, while FRR becomes miss rate.
These error rates can be empirically computed by integrating up-to / from the deci-
sion threshold T the probability distribution of distances between samples written by
the same person PS(ξ) and the probability distribution of distances between samples
written by different persons PD(ξ):

FAR =

∫ T

0

PD(ξ) dξ (5.3)

FRR =

∫ ∞

T

PS(ξ) dξ. (5.4)

By varying the threshold T a Receiver Operating Characteristic (ROC) curve is ob-
tained that illustrates the inevitable trade-off between the two error rates. The Equal
Error Rate (EER) corresponds to the point on the ROC curve where FAR = FRR and it
quantifies in a single number the writer verification performance.

The features considered in the present study are not totally orthogonal, but neverthe-
less they do offer different points of view on a handwritten sample. It is therefore nat-
ural to try to combine them for improving performance (Bulacu and Schomaker 2006),
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Writer
identification

Ordered list of writers

Writer
verification

Decision
− dist < thres: same writer
− dist > thres: different writer

Combiner
(average)

dist

Figure 5.10: Feature combination scheme: the distances generated by the individual features are
averaged (using simple or weighted average) and the result is then used in writer identification
and verification.

this being the main focus of the present chapter of the thesis. In our feature combination
scheme, the final unique distance between any two handwritten samples is computed as
the average (simple or weighted average) of the distances due to the individual features
participating in the combination (see Fig. 5.10).

In feature combinations, Hamming distance performed best:

Hqi =
Ndims∑
n=1

|pqn − pin| (5.5)

The χ2 distance, due to the denominator (see eq. 5.2), gives more weight to the low
probability regions in the PDFs and maximizes performance for each individual feature.
On the other hand, Hamming distance generates comparable distance values for the
different PDF features and offers a common ground with slight advantages in feature
combinations.

The Bayesian framework underlying the feature combination scheme proposed here
entails two fundamental assumptions: features are independent and the probability of
two samples having been written by the same person assumes an exponential distri-
bution with respect to the distance between the two samples as generated by a chosen
feature PS(ξ) ∝ e−ξ/σ. The decay constants σ control the weights that different features
take on in the combination. While this basic probabilistic model will almost certainly
be violated in reality, experimental results show that significant performance improve-
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ments are nevertheless achievable by using the proposed feature combination method.
In a more general perspective, feature fusion for writer identification and verifi-

cation pertains to the broader theme of classifier combination (Kittler et al. 1998) or
multi-modal biometrics (Maltoni et al. 2003, Roli et al. 2002). Information can be com-
bined at three levels in the biometric identification or verification process: sensor fusion,
similarity-score fusion and decision-level fusion (Daugman 2000). Combining similarity
scores (”soft” fusion) seems to be the method of choice in multi-modal biometrics. This
is also confirmed in our experiments: we obtained the best feature fusion results by
combining the distances (or similarity scores) generated by the individual features.

5.6 Results

In this section of the chapter, we present our experimental results. The performance
measures used are the Top-1 and Top-10 identification rates and the Equal-Error-Rate
(EER) for verification. As explained in section 5.2 of this chapter, four datasets are
considered in the experimental evaluation (see Table 5.1): Firemaker uppercase (250
writers), Firemaker lowercase (250 writers), IAM (650 writers) and Large (900 writers
obtained by merging Firemaker lowercase and IAM datasets). All datasets contain 2
samples per writer and writer identification searches are performed in a ”leave-one-
out” manner. The shape codebook necessary for computing the grapheme occurrence
probability (feature f4) was built using part of the ImUnipen dataset (65 writers, 2 sam-
ples / writer, 41k bitmap patterns). This ensures a complete separation, at the level of
the writers, between the training and the testing data. For the results reported in this
section, we used a grapheme codebook generated by k-means clustering and containing
400 prototype shapes.

We are interested in a comparative performance analysis of the different features
across the four test datasets. We are also interested in the improvements in performance
obtained by combining multiple features. First we shall consider the individual features
and then their combinations.

5.6.1 Performances of individual features

Table 5.3 gives the writer identification and verification performance of the individual
features considered in this study. While there are important differences in performance
among the different features, it can be noticed that, for a chosen feature, performance
is consistent across the four experimental datasets. The best performer is the contour-
hinge PDF (f2) followed by the grapheme-emission PDF (f4).

The results obtained on Firemaker uppercase are comparable to those obtained on
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Firemaker lowercase. Although the amount of ink contained in the samples varies be-
tween the two datasets, this result is nevertheless interesting because, in our data, the
uppercase samples generally contain less handwriting than the lowercase ones. Similar
results were reported in Chapter 3 in experiments where the amount of ink in the sam-
ples was controlled (Bulacu and Schomaker 2003). These findings contradict the idea,
one might intuitively expect, that it is always easier to identify the author of lowercase
rather than uppercase handwriting. Naturally, the features used are sensitive to ma-
jor style variations and, in mixed searches (e.g. lowercase query sample / uppercase
dataset), performance is very low.

The writer identification performances obtained on Firemaker lowercase and IAM
are very similar, albeit the large difference in the number of writers contained in the
two datasets. This is probably due to differences in the writer distributions underlying
the two datasets. The Firemaker dataset was collected from a rather uniform population
in terms of age and education, predominantly Dutch students, and, as a consequence,
there is less variation in writing styles compared to the IAM dataset. Under these condi-
tions, when these two datasets are combined, only a slight decrease in writer identifica-
tion performance on the Large dataset is noticed. The dependence of the writer identi-
fication rate on number of writers contained in the dataset is discussed in the following
section of this chapter. For the size of the datasets used here, the writer identification
percentages are subject to a 3-4% confidence interval at a 95% confidence level.
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From the point of view of Fourier analysis, it is important to observe that the contour-
direction feature f1, encoding local phase information, performs much better than the
autocorrelation feature f6, encoding amplitude information. In computer vision, it is
commonly acknowledged that phase information is predominantly used for identifica-
tion, while amplitude information is generally used for recognition mainly due to the
shift-invariance of the power spectrum. Phase demodulation and phase-based repre-
sentations are pervasive in biometric identification (Daugman 1993, Jain et al. 1997).

Further more, the contour-angle combination features f2, f3h and f3v, based on lo-
cal phase correlations, deliver significant improvements in performance over the basic
directional PDF f1. This confirms the general principle that joint probability distribu-
tions do capture more information from the input signal. And, despite their higher
dimensionalities, reliable probability estimates can be obtained for the proposed joint
PDFs when a few handwritten text lines are available (usually more than three in our
datasets). An analysis of writer identification performance vs. amount of ink contained
in the samples is given in Chapter 2 (Bulacu et al. 2003).

The run length PDFs, despite having the worst performance among the echelon of
features selected in this study, in fact do perform better than a number of other known
writer identification features, e.g. entropy, wavelets (see (Schomaker and Bulacu 2004)
for a wide analysis).

In brief, our results show that the contour-based angle-combination PDFs (f2, f3h,
f3v) and the grapheme-emission PDF (f4) outperform the other features over the four
test datasets. They constitute the gist of our text-independent approach to writer iden-
tification and verification.

5.6.2 Performances of feature combinations

The features considered in this thesis capture different aspects of handwriting individ-
uality and operate at different levels of analysis and also at different scales. While our
features are not completely orthogonal, combining multiple features proves, neverthe-
less, to be beneficial. As stated previously, feature fusion is performed by distance aver-
aging. Assigning distinct weights to the different features participating in the combina-
tion yields only very small performance improvements as will be shown further. This
has lead us to prefer simplicity and robustness here and report the feature combination
results obtained by plain distance averaging.

The features studied here can be grouped into four broad categories (see Table 5.2):
contour-based directional PDFs (f1, f2, f3h, f3v), grapheme emission PDF (f4), run-length
PDFs (f5h, f5v) and autocorrelation (f6). We will analyze combinations of features within
and between these broad feature groups.
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First, we consider the natural combinations f3h with f3v and f5h with f5v (first two
rows of Table 5.4). Features f3 and f5 are therefore obtained by combining the two or-
thogonal directions of scanning the input image. Compared to their single horizontal or
vertical counterparts, the fused features perform markedly better and they will be used,
as such, in future combinations.

It is important to note that further combining directional features (f1 & f2, f1 & f3,
f2 & f3 or f1 & f2 & f3) did not produce extra improvements over the performance of
the best feature involved in the combination. Rather, the experimental results show that
improvements are obtained by combining features from different feature groups. In the
results given in Table 5.4, the combined performance exceeds the performances of all
individual features involved in the combination, with only one exception marked with
parenthesis. As can be noticed, the performance of feature combinations is generally
consistent over the four experimental datasets.

The best performing feature combinations fuse directional, grapheme and run-length
information yielding, on the Large dataset, writer identification rates of 85-87% Top-1
and 96% Top-10 with an EER around 3% for verification.

In Fig. 5.11a, we show the results obtained by considering a weighted combination
between features f2 and f4: d = (1 − λ)d2 + λd4, where λ is the mixing coefficient.
Similarly, in Fig. 5.11b, we consider the combination f3 and f4: d = (1−λ)d3 +λd4. Only
marginal improvements are attainable over the performance corresponding to simple
distance averaging at λ = 0.5. These results are, in fact, representative for extensive
weight optimization tests carried on different feature combinations and generating, in
the end, very small overall additional performance improvements.

Such a direct feature combination by simple distance averaging is possible in our
case because the fused features are PDFs (that sum up to 1) and, for a chosen pair of
samples, the Hamming distances produced by the different features lie roughly within
the same range. The only exception is autocorrelation feature f6 which requires weight-
ing with respect to the other features. This has lead, however, only to minor additional
improvements in performance, only about 1% increase in Top-1 identification rate.

We mention that we replaced the linear distance combiner with an SVM (Joachims
1999, Burges 1998, Cristianini and Shawe-Taylor 2000) trained for writer verification.
The output of the SVM, i.e. the distance to the separating hyperplane in the space in-
duced by the kernel function, was used for writer identification (ordering the samples
with increasing distance) and writer verification (decision same / different writer). The
linear kernel outperformed the other general-purpose kernels (polynomial, radial basis,
sigmoid). However, the experimental results were rather dismal, not justifying, in our
view, the increase in system complexity and computation time.

We also experimented with Borda rank combination schemes in Chapter 3 with only
marginal performance improvements (Bulacu and Schomaker 2003).
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Figure 5.11: Writer identification and verification performance on the Large dataset for a
weighted combination of features a) f2 and f4, b) f3 and f4. Only marginal improvements are
obtainable over the performance levels of the simple average combination represented by the
horizontal lines and corresponding to a mixing coefficient λ = 0.5.

Fig. 5.12 gives a graphical overview of the writer identification results on the Large
dataset for individual features and for the best performing feature combination. The
Top-1 and Top-10 recall rates were used as anchor points in reporting the numerical
results from tables 5.3 and 5.4. Fig. 5.13 gives the writer verification ROC curves. In
our case, the EER values are sufficiently descriptive, as a performance measure, for the
whole profile of the corresponding ROC curves.
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Figure 5.12: Writer identification performance as a function of hit list size. The results were
obtained on the Large dataset containing 900 writers, 2 samples per writer.

5.7 Discussion

The analyzed features are not complete: feature extraction is a lossy operation and thus
starting from the feature values, a total reconstruction of the input handwriting image
is not possible. On the other hand, this is also not desirable, as we are interested in
text-independent methods for writer identification and verification. Our features used
to encode individual handwriting style are independent of the textual content of the
handwritten sample. The handwriting is merely seen as a texture characterized by joint
directional probability distributions or as a simple stochastic shape-emission process
characterized by a grapheme occurrence probability.

The directional PDFs (f1, f2, f3) operate at the scale of the ink-trace width and im-
plement a local phase analysis yielding results that are significantly better than those
of the autocorrelation feature (f6) capturing amplitude information. The writer-specific
shape-emission PDF (f4) operates at the scale of characters. Combining information
across multiple scales by feature fusion results in sizeable performance improvements.
The presented fusion method based on simple distance averaging diminishes the risk
of a biased solution, while capturing most of the achievable increases in writer identifi-
cation and verification performance.
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Figure 5.13: Writer verification ROC curves obtained on the Large dataset containing 900 writ-
ers, 2 samples per writer. The EER operational points lie on the dotted diagonal.

Similar to the previous chapter, we accomplished a more in-depth analysis of the
performance of our allograph-level method on the Large dataset. The computation of
feature f4 depends on two important issues: the size of the shape codebook and the
clustering algorithm used to generate the codebook. We have run large-scale computa-
tional experiments to compare three clustering methods over a large range of codebook
sizes: k-means, Kohonen SOM 1D and 2D. Figures 4.1, 4.2 and 4.3 show examples of
shape codebooks that have been generated by the three clustering methods. Figure 5.9
shows examples of codebooks of increasing size generated by k-means clustering.

In the experiments, the number of clusters used was varied from 9 (3x3) to 2500
(50x50). A number of 200 epochs have been used for training the Kohonen SOMs. Com-
putations have been run on a Beowulf high-performance Linux cluster with 1.7GHz /
0.5GB nodes. Training times for codebooks of size 400: k-means - 1 hrs, ksom1D - 10
hrs, ksom2D - 17 hrs. Computation times for the grapheme emission PDF on codebooks
of size 400: k-means - 0.5 s / sample, ksom1D - 1.5 s / sample, ksom2D - 3.1 s / sample.
These computation times were obtained using the ’gcc’ compiler with optimization for
single-precision floating-point calculations.

The results obtained on the Large dataset confirm our previous findings from Chap-
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Figure 5.14: Performance vs. clustering method and codebook size for the grapheme-based
writer identification and verification method (feature f4) on the Large dataset.

ter 4. Fig. 5.14 shows that the same performance is achieved by all three clustering
methods and that performance is stable over the range of codebook sizes covered in the
experiments. Writer identification rates (Top-1 and Top-10) reach a plateau for code-
book sizes larger than about 100 (10x10) shapes. The writer verification EER reaches a
minimum of about 4% for a codebook size of 100 and increases to about 7% for larger
codebooks.

These results can be explained considering that, as the codebook size increases, it
contains a larger variety of shapes and therefore becomes more discriminatory between
writers, with the inevitable drawback that PDF estimation becomes more difficult given
the limited amount of handwriting present in our samples. As observed also previ-
ously in the experiments reported in Chapter 4, the increase in the EER is probably
due to the fact that, for larger codebooks, the dimensionality of the grapheme emission
PDFs increases and consequently a unique decision threshold is no longer appropriate
for all the sample-to-sample distances used in writer verification. The writer verifica-
tion system commits to a global decision threshold before actually being confronted
with the two samples that must be compared. An individualized threshold would be
required, taking into account the within-writer variability specific to the two samples
being matched in a chosen writer verification trial. However, considering the limited
amount of handwritten material contained in our samples, estimating this within-writer
variability is a difficult problem that requires further research. It is important to observe
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Figure 5.15: Top-1 identification rate vs. number of writers contained in the test. For every
size of the writer set, the results were averaged over fifty random draws from the Large dataset.
For the complete dataset (1800 samples by 900 writers), the writer identification percentages are
subject to a ±3% confidence interval at a 95% confidence level.

that the described dimensionality problem does not significantly affect the writer identi-
fication performance because the query sample constitutes a vantage point with respect
to which the distance rankings of the other samples remain essentially stable with the
increase in codebook size. Similar results were found also on the other test datasets in
the previous chapter (Bulacu and Schomaker 2005a).

The results reported for the grapheme-emission PDF (feature f4) in the previous sec-
tions of the chapter were obtained using a codebook generated by k-means clustering
and containing 400 graphemes, which was chosen as an anchor point. The grapheme
codebook is obtained much faster using k-means instead of Kohonen training.

The grapheme codebook spans up the shape space of the possible allographic parts
encountered in handwritten samples as a result of the ink segmentation procedure. The
three clustering methods considered here seem to perform equally well the task of se-
lecting representative graphemes adequate for constructing a shape-occurrence PDF in-
formative about the writer identity.

We can confidently conclude that the proposed allograph-level method is robust to
the underlying shape representation used (whether contours or normalized bitmaps),
to the size of codebook used (stable performance for sizes from 102 to 2.5 × 103) and to
the clustering method used to generate the codebook (essentially the same performance
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was obtained for k-means, ksom1D and ksom2D).
In order to complete our study, another necessary analysis was carried out evalu-

ating how the identification performance (Top-1 and Top-10) depends on the number
of writers contained in the test dataset. We determined this relationship by experiment
using the Large dataset: for each size of the writer set (up to 900 writers), fifty iden-
tification tests were performed on random selections of writers and the results were
averaged. Fig. 5.15 shows the Top-1 identification rate as a function of the number of
writers for individual features and for the feature combination f2 & f4 & f5. Naturally,
the identification rate decreases as the number of writers grows. However, the decline
is not severe. In the range studied, for the best performing feature combination f2 & f4
& f5, we observe that the Top-1 identification rate drops by approx. 2-3% for every dou-
bling of the number of writers in the dataset. Our writer identification system shows
usable performance for 103 writer sets. Undoubtedly, further experiments with larger
numbers of writers are needed in order to approach the 104 scale of the actual forensic
databases.

The writer identification experiments reported in this thesis always involved two
samples per writer: one was used as the query, while the other one represented the
correct hit that the system was supposed to find in the database. Having more samples
per writer enrolled in the database, increases the chance of finding in the top positions
of the hit list the correct author for a given query. We have run writer identification
tests on the original IAM database that included at least 3 samples per writer for about
a quarter of the total of 650 writers incorporated in the set. For the best performing
feature combination f2 & f4 & f5, we obtained writer identification rates of Top-1 92%
and Top-10 98%. These values exceed the identification rates obtained on our modified
IAM set that always contained only two samples per writer (see Table 5.4).

In another study performed on a subset comprising 100 writers from the Firemaker
dataset, our methods largely outperformed two actual systems used in current forensic
practice (Schomaker and Bulacu 2004). The use of automatic and computation-intensive
approaches in this application domain will allow for massive search in large databases,
with less human intervention than is current practice. By reducing the size of a tar-
get set of writers, detailed manual and microscopic forensic analysis becomes feasible.
In the foreseeable future, the toolbox of the forensic expert will have been thoroughly
modernized and extended. Part of our directional texture-level features have already
been included in real-life applications.

It is important to note that the methods described in this thesis are equally applicable
to handwriting as well as machine print: writer identification vs. font identification
(e.g. for OCR). Besides the forensic field, interesting potential applications are in the
domain of historic document analysis: identification of scribes or manuscript dating
on medieval handwritten documents or identification of the printing house on historic
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prints. Furthermore, writer identification may be used in handwriting recognition as a
preprocessing step allowing the use of dedicated recognizers specialized to one writer
or to a limit group of writers with similar handwriting styles.

5.8 Conclusions

The writer identification and verification methods described in this thesis exploit two
essential sources of behavioral information regarding handwriting individuality. Firstly,
habitual pen grip and preferred writing slant and curvature are reflected in the di-
rectional texture-level features that operate in the angular domain at the scale of the
ink-trace width. Secondly, the personalized set of allographs that each person uses in
writing is captured by the grapheme occurrence probability. This feature works in the
Cartesian domain at the scale of the character shapes.

The proposed features are probability distributions extracted from the handwriting
images and offer a text-independent and robust characterization of individual hand-
writing style. They have practical feasibility and they are applicable to free-style hand-
writing, both cursive and isolated. Combining texture-level and allograph-level fea-
tures yields very high writer identification and verification performance, with usable
rates for datasets containing 103 writers.

The challenge is to integrate the recent developments in this field of behavioral bio-
metrics into the real writer identification systems of the future.




