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Abstract— In this paper an approach to reduce nonlinear
non-observable and non-strongly accessible port-Hamiltonian
systems to an observable and strongly accessible port-
Hamiltonian system, respectively, is treated. A local state
decomposition (the nonlinear version of the Kalman decom-
position) is instrumental for the approach that preserves the
port-Hamiltonian structure. The strongly accessible reduction
scheme goes along similar lines as the linear scheme. However,
the observable reduction scheme is somewhat more involved.
Under some additional assumptions, the reduction can be per-
formed along the lines of the linear scheme. If these assumptions
are not fulfilled, a reduction scheme for a zero-observable
representation using duality in the co-energy coordinates is
developed. Finally, the possibilities to apply the approaches
of this paper to approximate order reduction by e.g., use of
balancing procedures, is discussed.

I. INTRODUCTION

The problem of determining the minimal state-space rep-
resentation is a fundamental problem for control systems. It
connects to many other topics in realization theory, like con-
trollability and observability properties, similarity invariants,
balanced realizations and model reduction. Recently, addi-
tional properties, like structure preservation, for obtaining a
minimal realization or an approximate reduced order model
have received interest, e.g., [1], [5], [10]. Here, we take an
analysis and control perspective, which motivates our interest
in obtaining a minimal representation of a non-minimal port-
Hamiltonian (PH) system that preserves the PH structure.

For linear systems the latter structure preserving reduction
problem is treated in [7], where it is also used for new struc-
ture preserving approximate model reduction schemes. In the
linear case, minimality is equivalent with observability and
controllability, and the corresponding Kalman decomposition
of the linear system becomes a very useful tool for structure
preserving order reduction.

For nonlinear PH systems we use the insights obtained
from the linear case, and extend this to the reduction of a
non-strongly accessible PH system to a strongly accessible
PH system. In this, we use the nonlinear extension of the
Kalman decomposition, e.g., [4], [6]. For non-observable PH
systems we are able to use the non-linear Kalman decom-
position, but we have to impose additional assumptions on
the system in order to be able to preserve the structure in

obtaining an observable PH system. If these assumptions do
not hold, we investigate the possibility to use a duality notion
from [2] for obtaining a zero observable PH system. Finally,
we present the use for approximate structure preserving
model order reduction, where almost non-minimality based
on balanced realizations is a tool for model order reduction.

II. LINEAR PORT-HAMILTONIAN SYSTEMS

In this section we summarize how a linear uncontrollable
and/or unobservable port-Hamiltonian system is reduced
to a controllable/observable system that is again a port-
Hamiltonian system, [7].

A. Reduction to a controllable port-Hamiltonian system

In the linear case, and in the absence of algebraic constraints,
linear port-Hamiltonian systems take the form

ẋ = (J −R)Qx+Bu, J = −JT , R = RT ≥ 0
y = BTQx, Q = QT ≥ 0 (1)

with x ∈ X ⊂ Rn, u, y ∈ Rm, H(x) = 1
2x

TQx the
total energy (Hamiltonian) and R the dissipation matrix.
The matrices J and B specify the interconnection structure.
Define F := J −R.

Consider a linear port-Hamiltonian system which is not
controllable. Take linear coordinates x = (x1, x2) such that
the upper part of(

ẋ1

ẋ2

)
=

(
F11 F12

F21 F22

)(
Q11 Q12

Q21 Q22

)(
x1

x2

)
+
(
B1

B2

)
u (2)

y =
(
BT

1 BT
2

)( Q11 Q12

Q21 Q22

)(
x1

x2

)
is the reachability subspace R. By invariance of R this
implies

F21Q11 + F22Q21 = 0, B2 = 0 (3)

It follows that the dynamics restricted to R is given as

ẋ1 = (F11Q11 + F12Q21)x1 +B1u
y = BT

1 Q11x
1 (4)
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Now assume that F22 is invertible. Then we obtain from (3)
that Q21 = −F−1

22 F21Q11. Substitution in (4) yields

ẋ1 = (F11 − F12F
−1
22 F21)Q11x

1 +B1u
y = BT

1 Q11x
1 (5)

which is again a port-Hamiltonian system. Indeed, F+FT ≤
0 implies that the Schur complement F̄ := F11−F12F

−1
22 F21

also satisfies F̄ + F̄T ≤ 0.

B. Reduction to an observable port-Hamiltonian system

Consider a linear port-Hamiltonian system (1) and suppose
the system is not observable. Then there exist coordinates
x = (x1, x2) such that the lower part of (2) is the unobserv-
ability subspace N . By invariance of N it follows that

F11Q12 + F12Q22 = 0, BT
1 Q12 +BT

2 Q22 = 0 (6)

Then the dynamics on the quotient space X�N is

ẋ1 = (F11Q11 + F12Q21)x1 +B1u
y = BT

1 Q11x
1 +BT

2 Q21x
1 (7)

Assuming invertibility of Q22 it follows from (6) that F12 =
−F11Q12Q

−1
22 and BT

2 = −BT
1 Q12Q

−1
22 . Substitution in (7)

ẋ1 = F11(Q11 −Q12Q
−1
22 Q21)x1 +B1u

y = BT
1 (Q11 −Q12Q

−1
22 Q21)x1 (8)

which is again a port-Hamiltonian system with Hamiltonian

H̄ = 1
2x

1T (Q11−Q12Q
−1
22 Q21)x1, since the Schur comple-

ment (Q11 − Q12Q
−1
22 Q21) is again symmetric (and ≥ 0 if

Q ≥ 0).

III. NONLINEAR SYSTEMS AND MINIMALITY

Consider a smooth, i.e., C∞, nonlinear system of the form

ẋ = f(x) + g(x)u, y = h(x) (9)

where u = (u1, . . . , um) ∈ Rm, y = (y1, . . . , yp) ∈ Rp and
x = (x1, . . . , xn) are local coordinates for a smooth state
space manifold denoted by M . Throughout we assume that
the system has an equilibrium. Without loss of generality
we take this equilibrium to be at 0, i.e. f(0) = 0, and
we also take h(0) = 0. For the analysis in this paper the
definitions of local reachability, (strong) accessibility, and
observability are needed. We refer to standard references
like [3], [4], [6], [11]. For clarity we mention a special case
of observability, though also well-known, it is less standard,
namely, zero observability. The system (9) is zero observable
if it is observable for u ≡ 0. We say that the system (9) is
locally zero observable, if there exists a neighborhood W of
0 where the system is zero observable.

A. The nonlinear Kalman decomposition

It is well-known, e.g. [6], that for the accessibility distri-
bution, C, the strong accessibility distribution, C0, and the
observation space, O, with its corresponding co-distribution,
dO, there exist rank conditions implying local (strong)
accessibility and local observability. The following result
relates minimality of an analytic realization for a formal

power series (Chen-Fliess functional expansion) with the
observability and accessibility rank conditions.

Theorem 3.1: [4] An analytic realization (f, g, h) about
x0 of a formal power series is minimal if and only if
dim C(x0) = n and dim dO(x0) = n. �

If the system is not locally observable, and/or not locally
strongly accessible, there exists a nonlinear version of the
Kalman decomposition, e.g., [6]. Note that for the above
characterization of minimality we consider accessibility,
whereas for the Kalman decomposition we use the stronger
notion of strong accessibility.

Theorem 3.2: Assume that the distributions C0, ker dO
and C0 + ker dO all have constant dimension and that C0 +
ker dO is involutive. Then one can find local coordinates
x = (x1, x2, x3, x4) such that C0 = span{ ∂

∂x1 ,
∂

∂x2 } and
ker dO = span{ ∂

∂x2 ,
∂

∂x4 }. The system (9) takes the form

ẋ1 = f1(x1, x3) +
m∑

j=1

g1
j (x1, x3)uj (10)

ẋ2 = f2(x1, x2, x3, x4) +
m∑

j=1

g2
j (x1, x2, x3, x4)uj (11)

ẋ3 = f3(x3) (12)

ẋ4 = f4(x3, x4) (13)

y = h(x1, x3). (14)

�
For local zero observability a similar rank condition as for
observability and (strong) accessibility exists with the zero
observation space O0 defined by the linear space of functions
on M containing h1, . . . , hp and all repeated Lie derivatives
Lk

fhj , j ∈ 1, . . . , p, k = 1, 2, . . .. As a consequence,
local zero observability implies local observability at 0. In
the case of zero observability, we can apply the Kalman
decomposition as well, with the difference that the input
vector field in equation (10) becomes g1

j (x1, x2, x3, x4),
j = 1, . . . ,m, see [9].

B. Energy functions

We can relate the following energy functions with system
(9), (e.g., [8]).

Definition 3.3: The controllability and observability func-
tions of a nonlinear system (9) are given by

Lc(x0) = min
u ∈ L−2

x(−∞) = 0,
x(0) = x0

1
2

∫ 0

−∞
‖ u(t) ‖2 dt, (15)

and

Lo(x0) =
1
2

∫ ∞

0

‖ y(t) ‖2 dt, (16)

x(0) = x0, u(t) ≡ 0, 0 ≤ t <∞,
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respectively. �

The above energy functions can be characterized by
Hamilton-Jacobi-Bellman type of equations, stemming from
Optimal Control theory, [8]. The following theorem is closely
related to results that appear in [3], [11]. It reveals an im-
portant relationship between zero observability and positive
definiteness of the observability function.

Theorem 3.4: [9] Assume f(x) is asymptotically stable
on a neighborhood W of 0. If the system (9) is zero
observable on W , then Lo(x) > 0, ∀x ∈W , x 6= 0. �

To this end, we state a result of [9] that relates positivity of
Lo with the zero-observability rank condition.

Theorem 3.5: ([9]) Assume that the zero-observability
co-distribution dO0 has constant dimension about 0. If the
observability function (16) is smooth, finite and satisfies
Lo(x) > 0, x ∈W , x 6= 0, then dim dO0(0) = n. �

In [2], a duality characterization with help of the above
functions was given. We will use the following result in our
observability study.

Proposition 3.6: ([2]) Consider the smooth state space
system (9), with f(0) = 0 and h(0) = 0. Factorize
f(x) = A(x)x, and h(x) = C(x)x to obtain A(x) and
C(x). Assume that 0 is an asymptotically stable equilibrium
of ẋ = f(x) and that Lo(x) and Lc(x) exist and are smooth.
Consider the system{

ṗ = AT (φi(p))p+ CT (φi(p))ua

ya = gT (φi(p))p
(17)

with the subscript i ∈ {c, o}. Let x = φc(p) denote the
inverse mapping of p = (∂Lc(x)/∂x)T . Suppose that (17)
has observability function L̃o(p) and that i = c. Then L̃o(p)
is given by the Legendre transformation

L̃o(p) = −Lc(x) + pTx. (18)

Let x = φo(p) denote the inverse mapping of p =
(∂Lo(x)/∂x)T . Suppose that (17) has controllability func-
tion L̃c(p) and that i = o. Then L̃c(p) is given by the
Legendre transformation

L̃c(p) = −Lo(x) + pTx. (19)

�

IV. REDUCTION TO A STRONGLY ACCESSIBLE PH
SYSTEM

Consider a port-Hamiltonian (PH) system of the form

ẋ = (J(x)−R(x))
∂H

∂x
(x) + g(x)u

y = g(x)T ∂H

∂x
(x)

(20)

where u = (u1, . . . , um)T ∈ Rm, y = (y1, . . . , yp)T ∈ Rp,
and x = (x1, . . . , xn)T are local coordinates for a smooth
state space manifold denoted by M. Furthermore, J(x) =
−J(x)T and R(x) = R(x)T ≥ 0. We assume that there
exists an equilibrium point in x = 0.

Define F (x) := J(x)−R(x). Similar to the linear case, [7],
we have that

F (x) + FT (x) ≤ 0, (21)

while conversely any F (x) satisfying (21) can be written as
J(x)−R(x) as above by decomposing F (x) into its skew-
symmetric and symmetric part, i.e.,

J(x) = 1
2 (F (x)− FT (x))

R(x) = 1
2 (F (x) + FT (x)) (22)

Assume that the strong accessibility distribution C0 has
constant dimension. Then there exist local coordinates such
that C0 =span{ ∂

∂x1 } (see Theorem 3.2). In these coordinates,
we can write system (20) as(
ẋ1

ẋ2

)
=

(
F11(x) F12(x)

F21(x) F22(x)

)
∂H

∂x1
(x)

∂H

∂x2
(x)

+

(
g1(x)

0

)
u

y =
(
g1(x)T 0

)
∂H

∂x1
(x)

∂H

∂x2
(x)

 (23)

Theorem 4.1: Assume that system (23) is in the local
coordinates such that C0 =span{ ∂

∂x1 }, and that F22(x1, 0)
is invertible for all x1. Then the PH dynamics restricted to
C0 can be written as

ẋ1 =
(
F̄11(x1)− F̄12(x1)F̄−1

22 (x1)F̄21(x1)
) ∂H
∂x1

(x1, 0)

+ḡ1(x1)u (24)

y = ḡ1(x1)
∂H

∂x1
(x1, 0)

where F̄ij = Fij(x1, 0) for i, j = 1, 2, ḡ1(x1) = g1(x1, 0),
which is again a PH system.
Proof
Since C0 =span{ ∂

∂x1 }, we conclude from Theorem 3.2 that

F21(x)
∂H

∂x1
(x) + F22(x)

∂H

∂x2
(x) = f(x2).

Since for any value of x2 the x1 sub-system is strongly
accessible, we consider x2 = 0. Since f(0) = 0, we obtain

F21(x1, 0)
∂H

∂x1
(x1, 0) + F22(x1, 0)

∂H

∂x2
(x1, 0) = 0

⇔
∂H

∂x2
(x1, 0) = −F−1

22 (x1, 0)F21(x1, 0)
∂H

∂x1
(x1, 0).

Substituting the latter into (23) we obtain (24). Given that
F (x1, 0) + FT (x1, 0)) ≤ 0 implies that the Schur comple-
ment F̃ (x1) = F̄11(x1)− F̄12(x1)F̄−1

22 (x1)F̄21(x1) satisfies
F̃ (x1) + F̃T (x1) ≤ 0. Thus, (24) is a PH system. �
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V. REDUCTION TO AN OBSERVABLE PH SYSTEM

The observability case is somewhat more complex. How-
ever, under the extra assumption that part of the matrices
F (x) and g(x) do not depend on the observable coordi-
nates the nonlinear Kalman decomposition is immediately
seen to lead to an observable system that is again port-
Hamiltonian. Furthermore, the form of this port-Hamiltonian
system is somewhat dual to the reduced port-Hamiltonian
system found in the previous section considering its strong
accessibility properties. In Section V-B we will discuss an
alternative route for reduction to an observable system that is
again in port-Hamiltonian form, by transforming the system
into co-energy variables.

A. Special F and g

If we assume that the observability co-distribution dO
has constant dimension, then there exist local coordinates
(x1, x2) such that ker dO =span{ ∂

∂x2 } (see Theorem 3.2).
Now assume throughout Section V-A that
• dO has constant dimension.
• F and g are in a form such that F11, F12, g1, and g2

only depend on x1.
Then, the PH system (20) takes the form(

ẋ1

ẋ2

)
=

(
F11(x1) F12(x1)

F21(x) F22(x)

)
∂H

∂x1
(x)

∂H

∂x2
(x)


+

(
g1(x1)

g2(x1)

)
u (25)

y =
(
gT
1 (x1) gT

2 (x1)
)

∂H

∂x1
(x)

∂H

∂x2
(x)


where

F11(x1)
∂H

∂x1
(x) + F12(x1)

∂H

∂x2
(x) = f(x1) (26)

gT
1 (x1)

∂H

∂x1
(x) + gT

2 (x1)
∂H

∂x2
(x) = h(x1) (27)

Under the standing assumption differentiation of (26) and
(27) with respect to x2 yields

F11(x1)
∂2H

∂x1∂x2
(x) + F12(x1)

∂2H

∂x22 (x) = 0, (28)

gT
1 (x1)

∂2H

∂x1∂x2
(x) + gT

2 (x1)
∂2H

∂x22 (x) = 0. (29)

Theorem 5.1: Assume that system (23) is in the local co-
ordinates such that ker dO =span{ ∂

∂x2 }, and that ∂2H
(∂x2)2 (x)

is invertible for all x. Then the equation

∂H

∂x2
(x1, x2) = 0 (30)

can be solved (at least locally) for x2 as a function x2(x1).
Define the restricted Hamiltonian H̃(x1) := H(x1, x2(x1)).
Then the PH system restricted to its observable part can be
written as the PH system

ẋ1 = F11(x1)
∂H̃

∂x1
(x1) + g1(x1)u (31)

y = g1(x1)T ∂H̃

∂x1
(x1) (32)

Proof
From (28) and (29) and the invertibility of ∂2H

∂x22 (x) we obtain

F12(x
1) = −F11(x

1)
∂2H

∂x1∂x2
(x)

(
∂2H

(∂x2)2
(x)

)−1

,

gT
2 (x1) = −gT

1 (x1)
∂2H

∂x1∂x2
(x)

(
∂2H

(∂x2)2
(x)

)−1

.

Substituting this into the x1 equation of (25), we obtain

ẋ1 = F11(x
1)

(
∂H

∂x1
(x)

− ∂2H

∂x1∂x2
(x)

(
∂2H

(∂x2)2
(x)

)−1
∂H

∂x2
(x)

)
+ g1(x

1)u

y = g1(x
1)T

(
∂H

∂x1
(x)

− ∂2H

∂x1∂x2
(x)

(
∂2H

(∂x2)2
(x)

)−1
∂H

∂x2
(x)

)
On the other hand, we have

∂H̃

∂x1
(x1) =

∂H

∂x1
(x1, x2(x1)) +

∂x2(x1)

∂x1

∂H

∂x2
(x1, x2(x1)) (33)

Furthermore, differentiation of (30) yields

∂2H

∂x1∂x2
(x1, x2(x1)) +

∂x2(x1)

∂x1

∂H

∂x2
(x1, x2(x1)) = 0 (34)

which upon substitution in (33) yields
∂H̃
∂x1 (x1) = ∂H

∂x1 (x1, x2(x1))

− ∂2H
∂x1∂x2 (x1, x2(x1))

(
∂2H

(∂x2)2
(x1, x2(x1))

)−1
∂H
∂x2 (x1, x2(x1))

resulting in the observable PH system (31), (32). �

B. Zero observability in the co-energy variables

If we allow F (x) and g(x) to also depend on x2, it is
clear that equations (28) and (29) are not valid anymore.
Therefore, we consider the co-energy variable representation,
i.e., consider the PH system (20), and transform the system
into the coordinates

z =
∂H

∂x
(x) =: γ(x),

under the assumption that the transformation is non-singular.
Take Ĥ(z) as the full Legendre transform of H(x), i.e.,

Ĥ(z) = xT z −H(x),

then x =
∂Ĥ

∂z
(z) = γ−1(z). System (20) transforms into

ż =

(
∂2Ĥ

∂z2
(z)

)−1 (
Ĵ(z)− R̂(z)

)
z

+

(
∂2Ĥ

∂z2
(z)

)−1

ĝ(z)u (35)

y = ĝ(z)T z
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with Ĵ(z) := J(γ−1(z)), R̂(z) := R(γ−1(z)), and ĝ(z) :=
g(γ−1(z)). Define

Q(z) :=

(
∂2Ĥ

∂z2
(z)

)−1

=
∂2H

∂x2
(γ−1(z)),

and F̂ (z) := Ĵ(z)− R̂(z).

Since we like to apply the duality result of Proposition 3.6,
we study the zero observability co-distribution, rather than
the observability co-distribution. Assume throughout Section
V-B that zero observability co-distribution dO0 has constant
dimension, then there exists local coordinates (z1, z2) such
that ker dO0 =span{ ∂

∂z2 } (see e.g., [9]). Then the co-energy
variable system takes the form(
ż1

ż2

)
=

(
Q11(z) Q12(z)

Q21(z) Q22(z)

)(
F̂11(z) F̂12(z)

F̂21(z) F̂22(z)

)(
z1

z2

)

+

(
Q11(z) Q12(z)

Q21(z) Q22(z)

)(
ĝ1(z)

ĝ2(z)

)
u (36)

y =
(
ĝT
1 (z) ĝT

2 (z)
)(z1

z2

)
with

Q11(z)F̂11(z)z1 +Q12F̂21(z)z1 +Q11(z)F̂12(z)z2

+Q12(z)F̂22(z)z2 = a(z1) (37)
ĝ1(z)T z1 + ĝ2(z)T z2 = c(z1) (38)

Assume that F22(z) is invertible, and that Lo is smooth and
exists. Clearly, in these coordinates it holds that Lo(0, z2) =
0 (see [9]). Additionally, assume that we can bring the
observability function Lo(z) in a form so that it only depends
on z1, i.e., Lo(z1).

Theorem 5.2: Under the above assumptions there exists a
coordinate transformation z = ξ(z̄) such that the co-energy
variable dynamics restricted to its zero observable part can
be written as

˙̄z = Q̄11(z̄)
(
F̄11(z̄)− F̄12(z̄)

(
F̄22(z̄)

)−1
F̄21(z̄)

)
z̄

+Q̄11(z̄)ḡ1(z̄)u (39)

y = ḡT
1 (z̄)z̄

with Q̄11(z̄) = Q11(ξ(z̄)) =
∂2H

(∂x1)2
(γ−1(ξ(z̄)), F̄ij(z̄) =

Fij(ξ(z̄)), i, j = 1, 2. As in Theorem 4.1 F̄ (z̄) := F̄11(z̄)−
F̄12(z̄)

(
F̄22(z̄)

)−1
F̄21(z̄) is such that F̄ (z̄) + F̄T (z̄) ≤ 0.

Proof
Consider the dual system of (36) along the lines of Propo-
sition 3.6, i.e.,(
ṗ1

ṗ2

)
=

(
F̂T

11(z) F̂T
21(z)

F̂T
12(z) F̂T

22(z)

)(
QT

11(z) QT
21(z)

QT
12(z) QT

22(z)

)(
p1

p2

)

+

(
ĝ1(z)

ĝ2(z)

)
ud (40)

ya =
(
ĝT
1 (z) ĝT

2 (z)
)(QT

11(z) QT
21(z)

QT
12(z) QT

22(z)

)(
p1

p2

)

If we consider the Legendre transform L̂c(p) = pT z−Lo(z)
of system (36), we obtain the controllability function L̂c(p)
of the dual system (40), with z = ∂L̂c

∂p (p) =: φ(p), and p =
∂Lo

∂z (z). Hence, p2 = ∂Lo

∂z2 (z) = 0 and L̂c(p1, p2) does not

exist for p2 6= 0, while L̂c(p1, 0) <∞. Thus, p2 corresponds
to the non-asymptotically reachable part of the system, [9].
Since p2 = 0, ṗ2 = 0, we obtain similar restrictions as in
the proof of Theorem 4.1, i.e.,

(F̃T
12(p

1)Q̃T
11(p

1)+F̃T
22(p

1)Q̃T
12(p

1))p1 = 0, and g̃2(p) = 0,

with F̃ij(p1) = F̂ij(φ(p1, 0)), Q̃ij(p1) = Qij(φ(p1, 0)),
g̃i(p1) = ĝi(φ(p1, 0)), i, j = 1, 2. Since F̃22(p1, 0) is
invertible, we obtain

Q̃T
12(p

1)p1 = −F̃−T
22 (p1)F̃T

12(p
1)Q̃T

11(p
1)p1

Then the strongly accessible p1 dynamics are

ṗ1 =
(
F̃ T

11(p
1)− F̃ T

21(p
1)F̃−T

22 (p1)F̃ T
12(p

1)
)

Q̃T
11(p

1)p1

+g̃1(p
1)ud (41)

yd = g̃T
1 (p1)Q̃T

11(p
1)p1

Now, we can consider the dual system of (41), and the
Legendre transform of its controllability function L̃c(p1) =
L̂c(p1, 0), i.e., L̄o(z̄) = z̄T p1 − L̃c(p1), p1 = ∂L̄o

∂z̄ (z̄) =:
ψ(z̄). The dual zero observable system is now given by (39)
with ξ(z̄) = φ(ψ(z̄), 0). �

Our zero observable representation (39) corresponds to the
linear co-energy variable case presented in [7]. However, to
proof that Q11 is the Hessian of a Hamiltonian is still an
open issue.

VI. APPROXIMATE MODEL REDUCTION

In the preceding two sections we have seen how the nonlinear
Kalman decomposition of a port-Hamiltonian system results
in a minimal system that is again port-Hamiltonian, and takes
either the form (24) (reduction in the non strongly accessible
case) or (31) (reduction in the non observable case). Of
course, both methods can be combined in case the system is
not strongly accessible as well as not observable.

These methods for exact model reduction (from a non-
minimal to a minimal and externally equivalent system)
may be taken as starting point for approximate structure-
preserving model reduction of port-Hamiltonian systems.
Thus consider a general port-Hamiltonian system(

ẋ1

ẋ2

)
=

(
F11(x) F12(x)

F21(x) F22(x)

)
∂H

∂x1
(x)

∂H

∂x2
(x)

+

(
g1(x)

g2(x)

)
u

y =
(
g1(x)T g2(x)T

)
∂H

∂x1
(x)

∂H

∂x2
(x)


(42)
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and suppose we regard the second group of state coordinates
x2 as relatively unimportant for the input-output behavior of
the PH system (e.g., on the basis of balancing).

For approximate structure-preserving model reduction the
approach based on the reduction of a non-observable PH
system of Section V-A is most easily applicable. In this
approach the full-order PH system is approximated by the
reduced-order PH system

ẋ1 = F11(x1, x2(x1)) ∂H̃
∂x1 (x1) + g1(x1, x2(x1))u

y = g1(x1, x2(x1))T ∂H̃
∂x1 (x1)

(43)
where as before H̃ = H(x1, x2(x1)), with x2(x1) the solu-
tion of the equation ∂H

∂x2 (x1, x2) = 0. Note that, contrary to
exact reduction for non-observability, we do not necessarily
assume that F11, F12, g1, g2 only depend on x1.

Alternatively, based on the reduction of a non strongly ac-
cessible PH system, the full-order PH system can be reduced
as follows. Write the full-order model (42) succinctly as(

ẋ1

ẋ2

)
=

(
F11 F12

F21 F22

)(
e1

e2

)
+
(
g1
g2

)
u

y =
(
gT
1 gT

2

)(e1
e2

) (44)

where e1 = ∂H
∂x1 (x), e2 = ∂H

∂x2 (x). Now set ẋ2 equal to zero.
This yields

0 = F21e
1 + F22e

2 + g2u

which by assuming invertibility of F22 yields e2 =
−F−1

22 F21e
1 − F−1

22 g2u. Substitution of this expression, to-
gether with x2 = 0, then yields

ẋ1 =
(
F̃11(x

1)− F̃12(x
1)F̃−1

22 (x1)F̃21(x
1)

) ∂H

∂x1
(x1, 0)

+(g1(x
1, 0)− F̃12(x

1)F̃−1
22 (x1)g2(x

1, 0))u (45)

y = (gT
1 (x1, 0)− gT

2 (x1, 0)F̃−1
22 (x1)F̃21(x

1)

−gT
2 (x1, 0)F̃−1

22 (x1)g2(x
1, 0)u

with F̃ij(x1) = Fij(x1, 0), i, j = 1, 2, which is again a
port-Hamiltonian system (with through-term) provided that
(F12F

−1
22 )T = F−1

22 F21.

We will call the first structure-preserving method the Effort-
constraint reduction, while the second one will be called
the Flow-constraint reduction. The second terminology stems
from the fact that the Flow-constraint reduction corresponds
to taking the ’flow’ ẋ2 equal to 0, both in the dynamical
equations as well as in the state vector, corresponding to
setting x2 = 0 (or possibly another constant value). On the
other hand, the Effort-constraint reduction corresponds to
taking the ’effort’ ∂H

∂x2 equal to 0, both in the dynamical
equations, as well as in the state vector (leading to the
new Hamiltonian H̃). Note that both methods imply that the
power ∂T H

∂x2 ẋ
2 through the power-port corresponding to the

flow ẋ2 and the effort ∂H
∂x2 is approximated to be equal to 0.

Remark 6.1: Effort-constraints are in fact quite common
in physical system modeling. For example, kinematic con-
straints are of this type. Kinematic constraints for a mechan-
ical system, represented in Hamiltonian form as

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p)

with q denoting the generalized position coordinates and p
the corresponding generalized momenta, are of the form

0 = AT (q)q̇ = AT (q)
∂H

∂p
(q, p)

for a certain matrix A with entries depending on q, thus
constraining the vector of co-energy variables z = ∂H

∂x (x)
with x = (q, p). In many cases such kinematic constraints
constitute an idealization, or approximation, of reality. For
example, “rolling without slipping constraints” are often an
idealization of the case where the physical phenomenon of
rolling involves various effects, including dynamical ones,
but the modeler takes the decision to reduce and simplify
the model by imposing the idealized rolling without slipping
constraints. In this sense, the structure-preserving Effort-
constraint model reduction method as described above is
close to modeling practice. �

VII. CONCLUSIONS

In this paper we have developed schemes to reduce a non-
minimal PH system to a minimal PH system. This can be
done by first reducing to a strongly accessible PH system,
and then to a zero observable system. The reduction methods
open new possibilities for developing approximate structure
preserving order reduction methods for PH systems.
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